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The transport distance of excitons in exciton-polariton systems has previously been assumed to
be very small (. 1 µm). The sharp spatial profiles observed when generating polaritons by non-
resonant optical excitation show that this assumption is generally true. In this paper, however, we
show that the transport distances of excitons in two-dimensional planar cavity structures with even
a slightly polaritonic character are much longer than expected (≈ 20 µm). Although this population
of slightly polaritonic excitons is normally small compared to the total population of excitons, they
can substantially outnumber the population of the polaritons at lower energies, leading to important
implications for the tailoring of potential landscapes and the measurement of interactions between
polaritons.

I. INTRODUCTION

The transport of excitons has great importance for so-
lar energy and other optoelectronic applications. One of
the limiting design constraints in organic solar cell design
is the distance excitons can flow before they recombine1.
Exciton transport in organic and inorganic semiconduc-
tors is normally assumed to be very short, of the order of
a micron or less. The properties of excitons at low mo-
menta can be greatly altered, however, by coupling exci-
ton states with the photon states in an optical resonator,
to make exciton-polaritons. Exciting observations in po-
lariton systems include Bose-Einstein condensation2,3,
room-temperature lasing4,5, superfluidity6,7, and long-
range ballistic flow8; for a general review of exciton-
polariton properties, see, e.g., Ref. 9.

In a typical system, strong coupling leads to two new
eigenstates known as the upper polariton (UP) and lower
polariton (LP). Near zone center, the lower polaritons
have a very light mass (∼ 10−4me) and short lifetime
(less than a picosecond in most organics, to up to 200 ps
in some inorganic structures8). At higher momentum,
this LP branch transforms continuously into a bare exci-
ton branch. It is typical in the exciton-polariton litera-
ture (e.g. Refs. 10–14) to make a sharp distinction be-
tween polaritons near zone center and an exciton “reser-
voir” at higher momentum. These reservoir excitons are
assumed to have a much heavier effective mass (of the
order of a free electron) and long lifetime (of the or-
der of nanoseconds), and are then assumed to not move
significantly on the time scales of the polariton motion.
Recent theoretical work using a simple model of a 1D
chain of quantum emitters has already shown that ex-
citons could move much longer distances when strongly
coupled to a photon mode15. In this work, we show ex-
perimental evidence that the assumption of stationary
excitons is not entirely valid, as we report evidence of

long-range transport of highly excitonic lower polaritons.
We must, indeed, distinguish between three populations
on the lower polariton branch: light-mass lower polari-
tons at zone center, “bare” excitons at high momentum,
with low speed due to their much heavier mass, and a
third category of “bottleneck excitons”, which have many
of the properties of the bare excitons, but can travel much
longer distances.

II. LOWER POLARITON PROPERTIES

The LP detuning (δ = Ecav − Eexc) affects how “ex-
citonic” or “photonic” the LP is; when detuning is neg-
ative, the LP is more photonic, and when the detuning
is positive, it is more excitonic. At resonance (δ = 0),
the LP is exactly half photon and half exciton. We write
the exciton fraction as fexc and the cavity photon frac-
tion as fcav, related by fcav + fexc = 1 (see Ref. 9 for
more details). The LP detuning is not only a function
of the ground-state energies of the photon and the exci-
ton modes; in a planar cavity it is also dependent on the
in-plane momentum (k‖) of the LP. For the LP mode,
higher k‖ always corresponds to larger exciton fraction.
This means that at high enough k‖, the LP mode is
essentially no different from the original exciton mode.
Under the conditions of non-resonant optical pumping
with large excess energy, a large population (reservoir)
of highly excitonic lower polaritons will be created at the
location of the pump spot, some of which will cool into
the low-k‖, “true” LP states. Since this excitonic LP
reservoir is at such high k‖, its photoluminescence (PL)
is typically unresolved by imaging optics. This is be-
cause high k‖ corresponds to high angle of emission, and
such collection is limited by the numerical aperture (NA)
of the optics. Resonant optical pumping can be used to
avoid producing this high k‖ reservoir, instead producing
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a population at a specific k‖ point in the LP mode16,17.
The mixing of the photon and exciton states, with the

resulting change from very light mass to heavy, excitonic
mass in the lower polariton branch, leads to an inflec-
tion point in the LP branch above which the effective
mass becomes negative. The mass only becomes positive
again above another inflection point at much higher k‖.
Since the lower inflection point usually corresponds to
angles of emission of about 20◦, corresponding to a mod-
est NA of 0.34, and occupation is typically low near the
inflection due to low density of states, it is a convenient
point for distinguishing between two populations. In this
work, we observe the polariton dispersion from k‖ = 0 to
about k‖ = 2kinflection. We will consider all the emission
below kinflection to be “normal” lower polaritons, and all
the emission above the inflection point to be “bottleneck
excitons”. The third category, of “bare excitons,” is not
observable since their momenta lie even higher, outside
the light cone for photon emission; their presence must
be deduced indirectly.

The repulsive interactions between excitons and po-
laritons have proven extremely useful for forming various
potential profiles11,12,18–23. From these studies, it can be
seen that most of the excitons are essentially stationary.
The profile of their distribution can be deduced from the
energy profile of the polaritons, and largely resembles
the profile of the pump spot. However, the details of the
distribution matter, especially when attempting to mea-
sure the strength of the interactions when using a non-
resonant pump. To do so, one must isolate a sufficiently
large population of observable polaritons far from all un-
detectable excitons. This is necessary so that measured
interactions are caused only by detected particles, allow-
ing the density dependence to be determined. One re-
cent work24, which implemented non-resonant excitation,
used the assumption that all of the excitons not detected
by the NA of the optics had the low diffusion lengths re-
ported in semiconductor QWs25–27 and organics28,29 of
. 1 µm. To the contrary, we show that the bottleneck
excitons do not exhibit the nearly stationary behavior of
bare excitons, and yet can have a significant population.
This can be used, at least in part, to explain the large
discrepancy in measured values of the polariton-polariton
interaction strength24,30,31.

III. EXPERIMENTAL METHODS

The sample used in this experiment is the same
as those used in previous work8,10,22,24,32,33. It con-
sists of 7 nm GaAs QWs with AlAs barriers embedded
within a distributed Bragg reflector (DBR) microcavity.
The DBRs are made of alternating layers of AlAs and
Al0.2Ga0.8As, with 32 periods in the top DBR and 40
in the bottom. The QWs are in sets of 4, with one
set at each of the three antinodes of the 3λ/2 cavity.
The sample exhibits polariton lifetimes near resonance
of ∼ 200 ps. Because of a wedge in cavity length, the

FIG. 1. (a) A diagram showing the basics of the optical setup,
viewed from above. The sample was mounted in a cold-finger
cryostat, which could be rotated by angle θ. The pump laser
was reflected off a beam splitter (BS) through the imaging
microscope objective (MO). The PL was collected by the ob-
jective and then imaged by lens L1 onto a secondary real-
space plane. At this plane, a movable slit (R-space Slit) was
placed to select regions of the sample from which to resolve
PL. The Fourier plane of the objective was also imaged by
lens L1 at location FP. Lenses L2 and L3 then imaged this
secondary Fourier plane onto the slit of the spectrometer. (b)
A diagram of the real-space plane at the location of the slit
(R-space Slit in (a)) as viewed along the imaging axis. The
slit could be moved horizontally to select different regions of
the image without changing the pump location. The +x,+k,
and cavity gradient (“uphill”) directions are all the same.

cavity energy changes across the sample. This gives a
LP energy gradient pointing in the direction 8.6◦ from
the +x-direction as defined in Figure 1. The magnitude
of the gradient was measured to be ≈ 5.2 meV/mm at
the most excitonic detuning (δ ≈ 7 meV) used in this
study.

To produce polaritons, the sample was pumped non-
resonantly (pump energy was 1726.8 meV) through the
imaging objective lens, producing a pump spot with
≈ 3 µm FWHM34. The sample was held at ∼ 5 K within
a cryostat, which could be rotated around an axis per-
pendicular to the optical axis of the imaging objective.
The numerical aperture of the objective was 0.40. This
allowed collection of emission angles of about −3◦ to 43◦

with the cryostat rotated to 20◦, and up to 64◦ with the
cryostat rotated to 40◦. A narrow slit was placed at a sec-
ondary real space imaging plane, which could be adjusted
to select various regions of the image for angle-resolved
imaging (see Figure 1 for details of the setup).

With the pump tightly focused, the real space slit was
swept through the region containing the pump spot while
a CCD collected angle- and energy-resolved images of
the photoluminescence (PL). This was done both near
resonance (δ ≈ 2 meV) and at more excitonic detun-
ing (δ ≈ 8 meV), using pump powers below the quasi-
condensate threshold power, referred to as Pth through-
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out this work (see Ref. 35 for a discussion of the various
thresholds in these polariton systems). For the angle-
resolved images, the spectrometer slit selected a slice of
the k‖ plane along the x-axis. The slit was closed to
40 µm for all of the images. This corresponded to a se-
lection width of 0.034± 0.004 µm−1 in the k‖ plane.

IV. EXPERIMENTAL RESULTS

Figure 2 shows examples of the energy- and angle-
resolved data, collected with the sample rotated to an
angle of 20◦ to allow high angle imaging. Since the sam-
ple was held at an angle relative to the imaging objective,
the range of collection angles is asymmetric. The data
were adjusted at each k‖ to give a relative number of par-
ticles from the PL intensity (Npol ≡ Nphotτpol). The PL
intensity (Nphot) is simply proportional to the intensity
measured by the camera, while the LP lifetime depends
mostly on the short cavity photon lifetime and the cavity
fraction (τpol ≈ τcav

fcav
). Therefore, since the cavity lifetime

is constant, the relative number of particles can be de-
duced from the PL intensity and cavity fraction at each
k‖.
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FIG. 2. Normalized lower polariton population as a func-
tion of energy and k‖, taken from angle-resolved images and
adjusted for the k‖-dependent photon-fraction to show the
relative particle populations. The pump power was about
Pth/2, and the detuning was about 8 meV. The positions of
the real-space filter with respect to the pump spot are given in
the upper right corners of each plot. The red lines show the
theoretical LP dispersion. The counts for each image were
normalized separately, so the counts of separate images are
not comparable.

The LP dispersion in one direction is clearly visible,
with a parabolic shape at low k‖ and an inflection near

2.6 µm−1. The dispersion flattens out at high k‖ as
the LP energy approaches the nearly flat exciton energy.
Above the inflection, the energy line-width increases due

to the high exciton fraction and the broader exciton en-
ergy line-width. Figure 3 shows the same data as Figure
2, but integrated over energy, clearly revealing the k‖
dependence of the populations within the LP band.
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FIG. 3. Relative lower polariton population as a function
of in-plane momentum (k‖), derived from angle- and energy-
resolved images integrated over energy. The inflection point
of the LP dispersion is near 2.6 µm−1. For these data, the
sample was at θ = 20◦ with respect to the imaging objective
lens (as shown in Figure 1(a)), the pump power was about
Pth/2, and the detuning was about 8 meV. The positions of
the real-space filter with respect to the pump spot are given
in the upper right corners of each plot. The uncertainty of
the relative number values is approximately the same as the
scatter in the data.

V. EXCITON TRANSPORT

Figure 4(a) shows the relative populations for differ-
ent ranges of in-plane momentum as the real-space filter
is swept across the pump spot. This particular figure
corresponds to polaritons and bottleneck excitons mov-
ing only in the +x-direction because of our choice of the
range of collection angles. As expected for motion in this
direction, the total number of “normal” polaritons be-
low the inflection point in k‖ peaks on the positive side
of the pump spot, which was located by looking at the
symmetric range of k‖ near k‖ = 0. The relative number
of bottleneck excitons with momentum above the inflec-
tion point peaks closer to the pump spot, but is broader
overall. One feature to note is that there is asymme-
try around the peak, with higher relative counts on the
left side compared to the polaritons below the inflection,
corresponding to back-scattered particles moving back
toward the pump spot. This population of backward-
moving, highly excitonic polaritons is visible in Figures
2(a) and 3(a) and is discussed below in Section VII.

As mentioned above, we consider all of the emission
from above the inflection to be part of the bottleneck ex-
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citon population. These bottleneck excitons, even at the
resonant point for k‖ = 0, have excitonic fractions of at
least 0.70, and are often undetected, e.g., in experiments
like Ref. 24, due to their high emission angle (& 20◦).
We note, however, that as seen in Figure 4(a), the popu-
lation of these high-momenta bottleneck excitons is com-
parable to that of the entire thermalized population at
low momentum. Although the occupation of these high-
energy states is strongly suppressed in equilibrium by
the Boltzmann factor e−∆/kBT , the well-known polari-
ton bottleneck effect36 prevents full thermalization due to
the suppressed phonon emission rate for excitons in these
states. At higher densities, stimulated collisional effects
can thermalize the polariton gas much more effectively9;
the experiments reported here were performed with ex-
citation intensities well below the critical density thresh-
old Pthres for Bose-Einstein condensation of polaritons, so
that such collisional thermalization is suppressed, similar
to the low-density conditions of Ref. 24.

We can assume that the contribution of the cavity gra-
dient in the relatively short distances shown is negligible.
Therefore, due to symmetry, the particles with positive
k‖ on the negative side of the pump spot can be assumed
to have the same distribution in space as the particles
with negative k‖ on the positive side of the pump spot.
This is utilized in Figure 4(b), which simply adds the
two sides of the positive k‖ distribution together at equal
distances. This estimates the full population integrated
over both momentum directions.

Given the circular symmetry of the experiment, we can
also assume that the polaritons and bottleneck excitons
move radially outward from the pump spot. This means
that, for the slice of the k‖ plane collected, only particles
moving along a radial line parallel to that slice make
a significant contribution to the measured population.
Therefore, the experiment can be simulated with a 1D
spatial distribution. We used a Voigt profile to produce
this approximate distribution:

N(x) =

∫ ∞
−∞

Ae−x
′2/2σ2

(x− x′ − x0)2 + γ2
dx′. (1)

By integrating this distribution with bounds similar to
those given by the real-space slit width (typically about
20 µm), we were able to reconstruct the collected real-
space integrated data.

This method returned a FWHM for the distribution of
the bottleneck excitons of 36± 1 µm at a pump power of
Pth/2. It is also mostly unaffected by pump power below
threshold. This is much larger than the diffusion lengths
for bare excitons in quantum wells, which, as discussed
above, are typically of the order of 1 µm. This result also
indicates that the reservoir exciton population far from
the excitation region is not negligible, contrary to the
assumption in Ref. 24. See the Supplementary Material34

for data for additional pump powers and detunings.
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FIG. 4. (a) The relative number of particles within the LP
band vs. position of the real space filter for various ranges of
k‖ for a pump power of about Pth/2 and detuning of about
8 meV. The zero point in position was set by looking only at
the symmetric range of visible k‖ near k‖ = 0 (green squares).
(b) The experimental data (red diamonds) are the sum of the
relative numbers at opposite sides of the pump spot (opposite
x positions) for the k‖ range of 2.6 to 5.5 µm, shown as red
diamonds in (a). The simulated profile (solid black line) is the
Voigt profile representing the real-space distribution of the
bottleneck excitons, which was normalized to show its shape
compared to the data. The simulated data (blue squares)
come from integrating the Voigt profile over small bounds in
X, simulating the effect of the real-space slit in acquiring the
experimental data. For details about the error bounds, see
the Supplementary Material34.

VI. TRANSPORT DISTANCE ESTIMATE

A simple calculation using the group velocity of the
lower polariton band can be used to explain the overall
effect. We assume that the exciton-polaritons we ob-
serve travel ballistically until they scatter out of the field
of view of our detection or decay radiatively. The dis-
tance traveled is then approximately the group velocity
of the particles times their effective time spent traveling
ballistically. The group velocity can be easily calculated
as vg = 1

~
dE
dk‖

, which is plotted as a function of k‖ in

Figure 5(a), using the energy dispersion for δ ≈ 8 meV
(shown in Figure 2). A particle loss time (τloss) can be
estimated by assuming loss rates from both radiative de-
cay and scattering (since this experiment was done at low
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polariton density, the thermalization rate is assumed to
be negligible). For the same reasons given in Section V,
we can treat scattering similarly to radiative loss, since
any change of momentum away from the narrow slice in
k‖ that we collected for the experiment will result in the
particle leaving the field of view. This leads to a loss time
of τloss = (1/τr + 1/τs)

−1, where τr is the radiative decay
time and τs is the scattering time.

As discussed in Section IV, the radiative decay time is
mostly dependent on the cavity photon decay time (τcav)
and cavity fraction (fcav), giving τr ≈ τcav

fcav
. The scatter-

ing time is similarly dependent on the exciton fraction
(fexc), since the excitonic part is the primary part that
undergoes scattering, giving τs ≈ τs,exc

fexc
, where τs,exc is

the exciton scattering time.
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FIG. 5. (a) The group velocity of the lower polariton band
for the actual sample parameters at a detuning of about 8
meV. (b) The estimated transport distance, assuming a cavity
photon decay time of 100 ps and an exciton scattering time
of 10 ps. The solid vertical lines mark ±2.6 µm−1.

By multiplying the group velocity by the loss time, a
transport distance can be estimated as

d ≈ vgτloss ≈ vg

(
fcav

τcav
+

fexc

τs,exc

)−1

, (2)

which is plotted in Figure 5(b), using a cavity photon de-
cay time of 100 ps and an exciton scattering time of 10 ps.
This plot shows that the distance is strongly peaked near
the inflection points, with significant populations both
above and below the inflection point traveling the longest
distances. These parameters give an estimate consistent
with our measured result of transport ∼ 20 µm for both
the bottleneck excitons and the polaritons.

VII. BACKSCATTERING AT HIGH IN-PLANE
MOMENTUM

As mentioned above, a significant population of bot-
tleneck excitons can be seen with momentum in the di-
rection back toward the pump spot. Figure 6 shows
data similar to those in Figure 2, but with the sample
rotated in the opposite direction and at a greater an-
gle (θ = −40◦). This allowed for collection up to 64◦

external emission angle. Since these data are for nega-
tive momenta collected on the positive side of the pump
spot, they correspond to backscattered bottleneck exci-
tons traveling back toward the pump. They clearly show
that this population is narrowly peaked and not a con-
tinuous distribution cut off by the numerical aperture of
the optics. A similar population on the opposite side and
with opposite momentum is also visible in Figure 2(a).
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FIG. 6. The LP distribution as a function of energy and k‖
at large angle (compare to Figure 2). For these images, the
sample was at θ = −40◦ with respect to the imaging objective
lens, the pump power was ≈ Pth/2, and the detuning was
≈ 7 meV. The positions of the real-space filter with respect
to the pump spot for each plot are given in the upper right
corners. The red lines show the theoretical LP dispersion.
The counts for each image were normalized separately, so the
counts of separate images are not comparable.

The momentum of this backscattered population in-
creases with increasing distance away from the pump
spot. We do not fully understand this process, but
we note that backscattered populations have been re-
ported in similar samples under similar experimental
conditions37. This phenomenon could possibly be ex-
plained by the self interference of a population of po-
laritons with the positive and negative effective diffusive
masses corresponding to momenta below and above the
lower inflection point, respectively38. It is also possi-
ble that bright soliton states could explain the observed
backscattering. The bottleneck excitons populate the
negative mass region of the LP dispersion that supports
bright solitons39. Furthermore, backward flowing emis-
sion has been recently observed due to Cherenkov radia-
tion from bright polarition solitons40. While the present
work differs in that we use non-resonant excitation, it
is possible that bright solitons are still formed since the
pumping populates states that support them.

Another interesting effect can be seen in Figure 6: At
large enough distance from the pump spot, the k‖ of the
population brings it near to where the distributed Bragg
reflector (DBR) stop band dips cross the LP energy band
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FIG. 7. The approximate transmission of the top DBR vs.
energy and k‖, produced using the transfer-matrix method.
The red line shows the theoretical LP dispersion for a detun-
ing of 7 meV, comparable to the red lines in Figure 6. (a)
and (b) are identical except for the axes ranges.

(see Figure 7). Figure 6(b) shows where the population
begins to couple with the stop band dip, and Figure 6(c)
shows the position at which it begins to heavily over-
lap. The PL intensity is greatly increased due to the new
decay channel available to these highly excitonic polari-
tons, indicating a greatly decreased lifetime. Figure 6(d)
shows the point where the peak momentum of the popu-
lation matches the crossing point. The assumption that
the LP lifetime is dependent upon the cavity fraction
clearly breaks down for this k‖ range, beginning around

5.5 µm−1.

VIII. CONCLUSIONS

We have shown that excitonic polaritons usually con-
sidered part of the exciton reservoir exhibit much longer
transport distances than previously expected. Rather
than being almost entirely stationary, this portion of
the exciton reservoir moves distances comparable to the
much lighter and more photonic polaritons. We have
also shown that there is a significant population of these
excitonic polaritons with momentum backscattered to-
ward the original pump spot. Since past work has clearly
shown a mostly stationary exciton reservoir, this result
indicates three separate categories are needed for parti-
cles in the LP mode: normal polaritons with relatively
low k‖, stationary reservoir excitons at very high k‖, and
highly mobile bottleneck excitons in between. These mo-
bile excitons must be considered when attempting to iso-
late polaritons from the reservoir (see Appendix B for
an analysis of densities in a ring geometry). They also
affect the potential profile felt by typically observed po-
laritons at low k‖. As discussed above, this unexpectedly
large exciton flow explains much of the blue shift of the
polariton energy seen in Ref. 24; the presence of many
of these bottleneck excitons also can explain the large
homogeneous line broadening seen in that study. In ad-
dition, recent studies41 have shown that independent of
any exciton flow, the increase of the barrier height in the
traps used in Ref. 24 could lead to quantum confinement
effects that can be dominant at low density and photonic

detuning.
Long-range motion of excitons has been seen in other

experiments, through different mechanisms. In the case
of spatially indirect excitons in coupled quantum wells42,
excitons moved over hundreds of microns due to their
extraordinarily long lifetime, of the order of tens of mi-
croseconds. In other recent work43, exciton-polaritons
were seen to move hundreds of microns in a surface-wave
geometry, in which the optical mode had no k‖ = 0 state,
but instead a built-in velocity of propagation. In the
present case, the long-distance transport appears to be
simply the result of longer-than-usual lifetime (due to
the high cavity Q of our samples), low disorder, and the
high velocity of the bottleneck excitons compared to the
thermalized polaritons. Future work could be done to
determine the details of the observed long-range trans-
port and of the mobile excitons, as well as the origins
of the backscattering effect. Potentially, the effect seen
here of enhanced transport of excitons in a microcavity
could be used to design room-temperature organic and
inorganic devices such as solar cells with long-distance
exciton transport.
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Appendix A: Determining the Lower Polariton
Detuning

In the long-lifetime sample used in this study, the up-
per polariton is not resolvable by directly imaging the
PL, nor by reflectivity measurements. This makes deter-
mining the resonant position, coupling strength, and de-
tuning more difficult than simply finding the point on the
sample where the splitting between lower and upper po-
laritons is smallest. One method used to get around this
difficulty is measuring the LP mass and the LP energy
at various detunings. Because the cavity and other layer
thicknesses are wedged by the growth process, varying
the position on the sample also changes the detuning. As-
suming that the exciton energy varies very little, the LP
mass and energy can be used to find all of the other nec-
essary parameters. However, it has large error bounds on
the resonant position (resonant LP energy) and coupling
strength, and therefore is not well suited to finding the
absolute detuning values. This method was the primary
one used in past work, and accounts for the parameters
reported in those works, resulting in large uncertainty in
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the reported absolute detuning values (though the rela-
tive detunings are much more reliable).

A complementary method is photoluminescence exci-
tation (PLE). Once the general vicinity of resonance is
known, a PLE measurement can be used to find the up-
per polariton energy near resonance. This method is also
imprecise for determining the resonant position, but pro-
vides a reliable and bounded measurement of the cou-
pling strength. The full splitting between the lower and
upper polariton bands at k‖ = 0 (typically called Ω) was
found to be 15.9 meV, with a lower bound of 15.2 meV
and an upper bound of 16.7 meV.

For this study, the PLE measurement was combined
with a method similar to the first. It differs in that,
instead of finding the mass with a parabolic fit of the
dispersion near k‖ = 0, a fit of the full theoretical LP
dispersion was used at various detunings. By fitting the
measured LP dispersion at a set of different detunings,
accounting for the changes to the cavity and exciton en-
ergy due to the changing sample thicknesses, and using
the coupling strength provided by PLE, all of the other
necessary parameters can be determined. This method
gives much more tightly constrained values for the detun-
ing at any position on the sample than the more simple
fit using the LP mass.

The overall change from previous work can be approx-
imated by simply using 1597.3 meV as the resonant LP
energy, rather than 1600.4 meV as previously reported.
This shifts the detuning at the previously reported reso-
nant position to δ ≈ 8 meV. This is the primary detuning
used in this work. The other detuning in this work was
previously reported as δ ≈ −4 meV, but is now reported
as δ ≈ 2 meV. The previously reported energy splitting
(Ω) of 14.6 meV must also be replaced with the more
precisely measured value of 15.9 meV.

Appendix B: Application to Ring Pump Geometry

The contribution of any LP above the inflection point
was unaccounted for in Ref. 24 due to the use of an
objective with NA = 0.28. In addition, the values for the
cavity fraction, based on the detuning, were somewhat
incorrect (see Appendix A). In this section, we will apply
the measured exciton distribution above the inflection
point to the ring pump geometry in order to help explain
the extremely high interaction strength reported in that
work.

First, a fairly simple adjustment can be made to the re-
ported exciton-exciton interaction (gxx) strength by con-
sidering the corrected detuning. The polariton-polariton
interaction strength (gpp) can be related to the exciton-
exciton interaction by the exciton fraction (fexc) of the
polaritons of interest:

gpp = (fexc)2gxx. (B1)

Additionally, the value for gpp can be written as the ratio
of the energy shift to the polariton density. The polariton

density is found by relating the total number of emitted
photons to the LP lifetime, which is in turn related to
the cavity fraction (fcav) of the polaritons of interest (see
Section IV). Putting it all together gives

gpp =
∆E

npol
=

∆E

nph
τpol

∆t

=
∆E∆tfcav

nphτcav
(B2)

where ∆E is the energy blue shift, npol is the polari-
ton density, nph is the emitted photon density, ∆t is the
integration time for photon detection, τpol is the polari-
ton lifetime, and τcav is the cavity lifetime. Now if we
consider a correction to the cavity and exciton fractions,
and combine Equations B1 and B2, a corrected exciton-
exciton interaction strength g′xx can be expressed as

g′xx =
g′pp

(f ′exc)2
=

gpp

(f ′exc)2

f ′cav

fcav
= gxx

(
fexc

f ′exc

)2
f ′cav

fcav
, (B3)

where the primes indicate the corrected values. Applying
this to the results in Ref. 24 brings the value for gxx down
from 1.74 meVµm2 to about 0.54 meVµm2.

In order to correct for the excitons above the inflection,
we must consider the two separate contributions to the
energy blue shift by the polaritons and the bottleneck
excitons:

∆E = ∆Epol + ∆Eexc = gppnpol + gxxfexcnexc. (B4)

The effective exciton density of the bottleneck excitons
is given by nexc, and has already been adjusted for their
very high exciton fractions. In Ref. 24, the exciton den-
sity was assumed to be negligible. Using this assumption,
and the relation given in Equation B1, we get

gxx =
gpp

(fexc)2
=

∆E

npol

1

(fexc)2
, (B5)

where the full energy shift is attributed to the measured
polariton density. If instead we only attribute the shift
from the polaritons to the polariton density, we get the
corrected interaction strength

g′xx =
∆Epol

npol(fexc)2

=
∆E −∆Eexc

npol(fexc)2

=
∆E

npol(fexc)2
− g′xxfexcnexc

npol(fexc)2

⇒ g′xx

(
1 +

nexc

npolfexc

)
=

∆E

npol(fexc)2
.

(B6)

The last line in the above expression is simply the orig-
inal gxx, which assumed a negligible exciton population.
Thus, we can rearrange this for a simple relationship be-
tween the original and the corrected interaction strength
values:

g′xx = gxx

(
1 +

nexc

npolfexc

)−1

. (B7)
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FIG. 8. (a) The profiles obtained by simulating the same
experimental data used in Figure 4 for both the bottleneck
excitons (above the inflection point) and the polaritons (below
the inflection point). (b) A cross section of the resulting ring
profile for both the excitons and the polaritons using a 40
µm diameter ring. (c) The exciton profile in two dimensions
used to obtain the blue solid curve in (b). (d) The polariton
profile in two dimensions used to obtain the red dashed curve
in (b). The white dashed circles in both (c) and (d) mark the
boundaries of the simulated ring. The relative numbers for
all parts of this figure have been adjusted for the approximate
exciton fractions, giving effective exciton numbers for each
population.

In order to find this correction, we only need to know
the ratio of bottleneck excitons to polaritons at a given
detuning in the ring geometry. To begin, we consider the
profile for the exciton population shown in Figure 4(b)
and a similarly derived profile for the polaritons below
the inflection. These profiles are both shown in Figure
8(a), with the values adjusted for the approximate av-

erage exciton fractions of each population (taken to be
0.92 and 0.74 for the populations above and below the
inflection, respectively).

These profiles were found for what was essentially a
point source, and give radial slices of the 2D profiles.
The next step is to consider a series of radially symmetric
profiles in two dimensions, each centered at even intervals
around the perimeter of a circle, producing a ring. The
resulting cross sections are given in Figure 8(b) and the
2D profiles are given in Figure 8(c) and (d), all for a ring
with a diameter of 40 µm. By integrating a small region
in the center for both the polariton and exciton reservoir
distributions, we can extract a ratio of excitons to po-
laritons for various ring diameters (shown in Figure 9).
By using the value for a 40 µm diameter ring, similar to
that used in Ref. 24, we get the ratio nexc

npolfexc
= 2.4. By

combining this correction with the detuning correction,
we arrive at a new value for gxx of 159 µeVµm2. While
this corrected value is still very high, it is at best an up-
per bound. In this work, we only carefully considered
the exciton population up to |k‖| ' 5.5 µm−1. Mean-
while we have also shown evidence of a backscattered
population at much higher in-plane momentum. The ex-
istence of some excitons at these momenta at such large
distances from the pump suggests that a population may
be present at momenta greater than any that we probed
in this work. In addition, other recent work41 has shown
that the quantum confinement from a ring trap leads to
non-negligible blue shifts of the ground state in the cen-
ter of the trap. Accounting for this effect would further
decrease the reported interaction strength.
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FIG. 9. The ratio of exciton (above the inflection point) to
polariton (below the inflection point) number vs. ring diam-
eter for distributions similar to and including those shown in
Figure 8(c-d). The numbers were both adjusted for the ex-
citon fraction, giving a ratio of effective exciton populations.
The numbers were obtained by integrating over a circle with
5 µm radius in the center of the ring profiles.
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