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Experiments and simulations in solid-state high harmonic generation often make use of the dis-
tinction between interband and intraband currents. These two contributions to the total current
have been associated with qualitatively different processes, as well as physically measurable signa-
tures, for example in the spectral phase of harmonic emission. However, it was recently argued [P.
Földi, Phys. Rev. B 96, 035112 (2017)] that these quantities can depend on the gauge employed
in calculations. Since physical quantities are expected to have gauge-independent values, this raises
the question of whether the decomposition of the total current into interband and intraband con-
tributions is physically meaningful, or merely a feature of a particular mathematical representation
of nature. In this article, we explore this apparent ambiguity. We show that a closely related issue
arises when calculating instantaneous band populations. In both the case of inter/intraband currents
and in the case of instantaneous band populations, we propose definitions that are gauge-invariant,
and thus allow these quantities to be calculated consistently in any gauge.

I. INTRODUCTION

The strong field of a pulsed laser can drive extremely
nonlinear currents in a solid, leading to the emission of
high-order harmonics of the fundamental frequency that
can span the visible spectrum and extend into the ex-
treme ultraviolet [1]. The process can take place in a wide
range of materials, from dielectrics to semiconductors to
semimetals, and can leave the material undamaged [2–7].
Strong field and attosecond science in condensed matter
is an extension of the long-standing field of high har-
monic generation, which was for many years confined to
gas-phase atoms and molecules [8]. Solids remain a new
area of this field, in which some basic questions remain
unanswered, while others may not even be precisely de-
fined.

In that respect, as part of the search for an underlying
physical picture of the harmonic generation process, ex-
perimentalists and theorists alike have focused much at-
tention on the division of the total current into interband
and intraband processes. This conceptual separation is
appealing in part because the interband picture bears a
strong similarity to the well-understood gas-phase model
[7, 9, 10], while the intraband picture is qualitatively dif-
ferent and for the most part unique to the solid state
[6, 11]. Experiments have access to the complex ampli-
tude of the emitted harmonics, which reflects the coher-
ent sum of the interband and intraband contributions,
whatever their relative weight may be. For now, a clean
separation is only possible in calculations; any conclu-
sions about the dominance of one mechanism or the other
relies on a comparison with theoretical predictions of the
interband and intraband spectra [2, 6, 7, 10–16]. Re-
cently, however, Földi showed that this separation may
be gauge-dependent [17]. That is, a different choice of
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the gauge, which should leave all physical quantities un-
changed, leads to different values for the interband and
intraband currents. However, the total current, which
relates to the experimentally observed harmonic spec-
trum, is not gauge-dependent. This raises the question
of whether this conceptual decomposition of the current
is physically meaningful. Is the interband current an ob-
servable?

Other quantities may also be easy to calculate, but
hard to access in experiments. An example is the in-
stantaneous band population. In the strong-field physics
of solids, simulations often show a transient conduction
band population that oscillates with the applied field,
but mostly returns to the valence band at the end of the
pulse. The fraction of the population remaining in the
conduction band at the end of the pulse depends on the
band structure and the pulse shape, as well as the de-
phasing time constant [18]. While this final population
is gauge-independent, the transient population dynam-
ics during the laser pulse’s illumination can be subject
to a gauge-dependence that is analogous to that of the
inter- and intra-band currents, as we will show below.
This raises the question of the significance of the instan-
taneous band populations. Can such a quantity be pre-
cisely defined, particularly given that in the presence of
a strong driving field the instantaneous eigenstates are
the dressed states, which are not the same as the field-
free eigenstates? The question is all the more compelling
given that some attosecond-probe experiments appear to
measure precisely this quantity [19].

The aim of the present article is to create gauge-
invariant definitions of these quantities of interest. We
start by identifying the Hermitian operators correspond-
ing to the instantaneous band populations, and to the
interband and intraband currents. Once defined, we de-
rive their gauge-dependent transformations, which en-
sures gauge-invariant physical predictions. While we pri-
marily focus on the commonly used velocity and length
gauges, our definition is equally valid in any other gauge.
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This paper is organized as follows. In Section II, we
introduce the theoretical formalism and the details of our
numerical calculations. Section III discusses an intuitive,
but problematic, approach to defining interband and in-
traband currents as well as band populations. In Section
IV, we provide a more rigorous definition of the instan-
taneous band population, as a Hermitian operator. We
then calculate the gauge-transformation of its matrix el-
ements. Section V similarly describes the interband and
intraband currents in terms of Hermitian operators, with
corresponding gauge transformations. The improved def-
initions of these quantities yield gauge-invariant predic-
tions. Finally, in Section VI, we show that our definitions
give reasonable physical descriptions, and we discuss the
choices made in coming to this formulation.

II. THEORETICAL APPROACH

For a single particle in a one-dimensional periodic po-
tential, V0(x+ a0) = V0(x) with a lattice constant of a0,
the Hamiltonian in the absence of the laser field is

Ĥ0 =
p̂2

2
+ V0(x̂). (1)

Here and throughout this paper we use atomic units, ex-
cept where other units are specified. The eigenstates of
this Hamiltonian can be labeled by a band index, n, and
the crystal momentum, k:

Ĥ0|φnk〉 = εn(k)|φnk〉. (2)

The energies, εn(k), trace out the band structure, and
the Bloch functions, expressed in the position basis, have
the property 〈x|φnk〉 ≡ φnk(x) =

√
a0
2π e

ikxunk(x), where
unk(x+a0) = unk(x) is periodic and normalized over one
unit cell.

As a model system, we use the previously studied
Mathieu potential, V0(x) = −V0 [1 + cos(2πx/a0)], with
V0 = 0.37 and a0 = 8 atomic units [20–24]. We solve
the Time-Independent Schrodinger Equation (TISE) in
the position basis, with periodic boundary conditions, to
find the field-free eigenstates (Bloch states). These are
then used as the basis for calculations of the time dy-
namics in a driving laser field. Figure 1 shows the band
structure as a function of crystal momentum for the first
five bands. The black circle in the center of the band with
index n = 1 represents the initial condition for simula-
tions: |φ1,k=0〉, a single electron at the Γ-point in band-1.
Roughly speaking, bands 1 and 2 can be thought of as the
valence band and the first conduction band, respectively.
However, our calculation considers band-0 to be unoccu-
pied, as well as all other k-points in band-1. While this
simplification does not represent the reality of valence
bands, it allows a comparison with previous reports and
has no effect on the conclusions of this work.

The effect of a laser field, which we treat here within
the dipole approximation, leaves freedom with respect
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FIG. 1. Band structure for the Mathieu potential, showing
the lowest five bands, labeled with their band indices, as a
function of crystal momentum in the first Brillouin zone. The
black circle in band 1 shows the initial condition for our simu-
lation. Orange and blue arrows/circles illustrate the dynamics
as described in the velocity and length gauges, respectively.
Both gauges describe the time-dependent wavefunction as a
superposition of Bloch states at a particular crystal momen-
tum, but in the velocity gauge the crystal momentum is fixed,
while in the length gauge it oscillates with the vector poten-
tial.

to the gauge chosen, since the field can be divided non-
uniquely between a scalar potential, Φ, and a vector po-
tential, A. In the length gauge, the field is incorporated
exclusively through the scalar potential,

Φ(l)(x, t) = −F (t) · x
A(l)(t) = 0, (3)

where F (t) represents the electric field. In the velocity
gauge, the situation is reversed,

Φ(v)(x, t) = 0

A(v)(t) = −
∫ t

−∞
F (t′)dt′. (4)

The Hamiltonian, including the interaction with the light
field, under the dipole approximation, can be written in
any gauge, labelled with superscript (g), as

Ĥ(g) =
1

2

[
p̂+A(g)(t)

]2
+ V0(x̂)− Φ(g)(x̂, t). (5)

Note that when the field and the (velocity gauge) vector
potential are both zero (that is, before or after the pulse),

the Hamiltonian reduces to Ĥ0 in both the velocity and
length gauge.

Hermitian operators corresponding to observables
transform between the two gauges according to [25–27],

Ô(v) = e−iA
(v)x̂Ô(l)eiA

(v)x̂, (6)
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and the wavefunctions are related by

|ψ(v)〉 = e−iA
(v)x̂|ψ(l)〉. (7)

More generally, wavefunctions and operators are trans-
formed from gauge (g1) to gauge (g2) by the unitary op-
erator

Û(g1)→(g2) ≡ e
i[A(g2)−A(g1)]x̂. (8)

In this article, we choose to equate the field-free opera-
tor for our quantities of interest with the operator’s rep-
resentation in the length gauge. While this is not the
only possible choice, we will provide a justification be-
low, and show that this definition gives reasonable phys-
ical predictions. Starting from the length gauge, then,
the transformation to any other gauge, (g), is described
by

Û ≡ Û(l)→(g) = eiA
(g)x̂. (9)

In each gauge, the vector potential dictates a time-
dependent transformation. As long as wavefunctions and
Hermitian operators transform via the unitary opera-
tor of Eq. 9, expectation values remain unchanged by
the gauge transformation. In other words, the different
gauges all represent the same physics.

We solve the Time-Dependent Schrödinger Equation
(TDSE) in the field-free basis numerically. We write
wavefunctions in gauge g as

|ψ(g)(t)〉 =
∑
n

∫
BZ

dk c
(g)
nk (t)|φnk〉. (10)

The amplitudes, c
(g)
nk (t), depend on the gauge. For nu-

merical simulations, the laser field is defined by A(v)(t) =
A0 cos4(ω0t/2nc) cos(ω0t), where A0 = 0.3 is the peak
vector potential, nc = 11 is the number of cycles in the
pulse, and a fundamental frequency of ω0 = 2πc/λ, with
c the speed of light and λ = 3.2 µm the wavelength.
Our parameters are identical to those used by Wu et
al. [20, 21]. While several other approaches, notably
that of Földi, use density matrices rather than wave-
functions, the underlying physics is identical aside from
the ability to treat mixed states and decoherence. Our
treatment of gauge-dependence in coherent calculations
applies to both types of calculation, and the operator
definitions that we propose are valid for either. The
gauge-dependence of specific decoherence models is an-
other matter, and was the subject of a recent article[28].

In the presence of the laser field, the Hamiltonian ex-
pressed in the field-free basis acquires off-diagonal ele-
ments that couple the Bloch states. This coupling is de-
termined by the matrix elements of the momentum oper-
ator in the velocity gauge, or by the matrix elements of
the position operator in the length gauge. The resulting
set of coupled differential equations for the coefficients,

c
(g)
nk (t), takes a different form in each gauge. In the ve-

locity gauge,

i
∂

∂t
c
(v)
nk =

[
εn(k) +

1

2
A(v)2

]
c
(v)
nk +A(v)

∑
n′

pnn′(k)c
(v)
n′k.

(11)
The momentum operator only couples states with the
same k-value, 〈φnk|p̂|φn′k′〉 ≡ pnn′(k)δ(k − k′), meaning
that the initial crystal momentum, in the velocity gauge
description, remains constant even under the influence of
the laser field.

In the length gauge,

i
∂

∂t
c
(l)
nk = εn(k)c

(l)
nk + iF

∂

∂k
c
(l)
nk +F

∑
n′

ξnn′(k)c
(l)
n′k. (12)

The position matrix elements likewise contain a part
that mixes states of the same k-value, denoted ξnn′(k),
which, for non-degenerate states, is given by ξnn′(k) =
−ipnn′(k)/(εn(k)− εn′(k)). However, the position oper-
ator additionally contains a differential term that cou-
ples neighbouring k-values, and leads to the acceleration
theorem: a state initially having k = k0 evolves into
states with k(t) = k0 + A(v)(t). The acceleration theo-
rem illustrates an important difference between these two
gauges: in the velocity gauge, the crystal momentum re-
mains fixed, while in the length gauge, the evolution of
the wavefunction in the laser field leads to an oscillation
of the electron’s crystal momentum. This is illustrated
by the coloured circles and arrows in Fig. 1. We will
show that these two pictures are connected by the func-
tions ∆nm(k1, k2), defined below, which make a precise
connection between states spanning several bands at a
given point in the Brillouin zone and states of a single
band with a different k-value.

III. DEFINITIONS BASED ON BAND INDICES

In this section we discuss an intuitive yet problem-
atic procedure for defining band populations and in-
ter/intraband currents, in which the band indices of co-
efficients are used to identify band-dependent quantities.
This procedure is known to give gauge-dependent results
[17]. In subsequent sections, we will attempt to improve
upon these definitions.

Solving the Schrödinger equation in either gauge gives
the time-dependent coefficients of the basis states, and
thereby the wavefunction. In particular, the coefficients,

c
(g)
nk (t), are associated with the state |φnk〉, and, accord-

ing to the Born rule, their modulus squared seems to
represent the probability of finding an electron in that
particular state. This reasoning implies that the instan-

taneous band population in band n is
∫
dk|c(g)nk |2. While

this seems reasonable, we now show an example where in-
terpreting this quantity as an instantaneous band popula-
tion is problematic, particularly since its value is gauge-
dependent. The problem here is identical to the well
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known issue of using the squared moduli of the ampli-
tudes of field-free eigenstates to denote their probabil-
ities [29]. Nonetheless, applying this definition to the
conduction band population, we find the time-dependent
results shown in Fig. 2a, for the velocity gauge (orange)
and length gauge (blue).

Both gauges describe a transient population that oscil-
lates and nearly completely returns to the valence band
at the end of the pulse. Both calculations agree on the
final population that remains in the conduction band at
the end of the pulse. However, in the velocity gauge, the
transient conduction band population is much larger, as
much as 40%, and it is peaked at the (velocity gauge)
vector potential maxima, whereas in the length gauge
the apparent conduction band population is peaked at
the vector potential zeros. Also, whenever the vector
potential (Fig. 2c) is zero, indicated by vertical dashed
lines, the two gauges agree. This is to be expected since
the unitary transformation (Eq. 9) is the identity in that
case. But in general, the two calculations provide very
different pictures of the transient conduction band popu-
lation, and whenever the vector potential is non-zero, it
is not clear which one to trust. In the recent literature, it
appears that both quantities have been reported [19, 30–
33]. It would be desirable to find a gauge-independent
formulation of the instantaneous band population.

Turning now to the current, we can express it simply
in terms of the kinematical momentum, and expand its
expectation value in terms of Bloch states,

j(t) = −〈ψ(g)(t)|p̂(g)kin|ψ
(g)(t)〉

= −
∑
n

∫
BZ

dk|c(g)nk |
2〈φnk|p̂(g)kin|φnk〉

−
∑

n,n′ 6=n

∫
BZ

dkc
∗(g)
nk c

(g)
n′k〈φnk|p̂

(g)
kin|φn′k〉, (13)

noting that in the velocity gauge the kinematical momen-

tum is p̂
(g)
kin = p̂+A(g), where p̂ refers to the canonical mo-

mentum. The summation over all basis states has been
split into a summation over terms involving the same
band indices (intraband) and a summation over terms
involving different band indices (interband). Figure 2b
shows the interband current, so defined, as calculated in
the velocity (orange) and length (blue) gauges. While it
seems reasonable to use this decomposition as a defini-
tion of interband and intraband currents, this formula-
tion again proves to be problematic, in close analogy to
the above treatment of band populations.

Figure 2b shows the interband current, defined as the
second summation in Eq. 13, as calculated in the veloc-
ity (orange) and length (blue) gauges. As in the case of
the instantaneous conduction band population, the two
calculations give very different results. We note that the
corresponding intraband term in the velocity gauge (not
shown) is nothing but the vector potential with its sign
flipped, since the initial crystal momentum is k0 = 0,
where the group velocity in each band vanishes. However,
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FIG. 2. Dynamics calculated using definitions based on band
indices, illustrating the problematic gauge-dependence that
arises from this formulation. (a) Conduction band popula-
tion, defined as the squared modulus of the time-dependent
coefficients, calculated in the velocity and length gauges. The
region on the right side is magnified in the vertical dimension
by a factor of ten. (b) Interband current, defined as the second
summation in Eqn. 13, calculated in the velocity gauge and
length gauge. The total current, which is gauge-independent
provided one makes the transformation p̂(g) = p̂ + A(g), is
shown in black for reference. (c) Velocity gauge vector poten-
tial as a function of time. Vertical dashed lines in all plots
indicate the zeros of this vector potential.

for non-zero initial crystal momenta, or in the length
gauge where crystal momentum is time-dependent, this
first summation of Eq. 13 is a more complex function
of time, and can contribute to high-order harmonics. Of
course, the intraband current, defined this way, is also
gauge-dependent.

Importantly, the total current, shown in black, is
gauge-independent as long as the kinematical momen-
tum is used. Since the total current is what gives rise
to the measured harmonic spectrum, there is no question
that it is a physically meaningful quantity, and its gauge-
invariance is expected. However, as long as the treat-
ment of interband and intraband currents depends on the
gauge, it is not clear that these are physical quantities.
In the next two sections, we will provide improved for-
mulations that give reasonable and gauge-invariant pre-
dictions.
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IV. BAND POPULATIONS

In this section we propose a gauge-invariant definition
of the instantaneous band populations. Our approach
is to identify its corresponding Hermitian operator. We
then transform it with the proper unitary operators to
make it gauge-independent. Before proceeding, we con-
sider the general question of the population of any quan-
tum state, |S〉. The probability to find a system in this
state is evidently the squared modulus of the projection
of the system’s state onto |S〉. Another way to say this
is that it is the expectation value of a Hermitian op-
erator (an observable), namely the projection operator,

Π̂S ≡ |S〉〈S|.
Likewise the operator representing band population is

an operator that projects onto all the states within a
given band, m,

Π̂m =

∫
BZ

dqΠ̂mq ≡
∫
BZ

dq|φmq〉〈φmq|, (14)

where Πmq is the projection onto a single eigenstate,
|φmq〉, of the field-free Hamiltonian. Since this opera-
tor was defined without reference to a gauge, nor a field,
we refer to it as a “field-free operator”. The expectation
value of Π̂m represents the band population, and Eq. 9
provides its transformation. In a gauge (g) the operator
transforms as

Π̂(g)
mq = e−iA

(g)x̂Π̂mqe
iA(g)x̂, (15)

and its matrix elements, needed to compute the expec-
tation value, in the field-free basis are

〈φnk|Π̂(g)
mq|φn′k′〉

= 〈φnk|e−iA
(g)x̂|φmq〉〈φmq|eiA

(g)x̂|φn′k′〉
= U†mn(q, k)Umn′(q, k′). (16)

The matrix elements of the transformation operator
can be shown to be

Umn(q, k) = δ(k +A(g) − q)∆mn(k +A(g), k), (17)

where we have introduced the function

∆nm(k1, k2) ≡ 〈unk1 |umk2〉, (18)

which is the overlap integral of the periodic parts of the
Bloch wavefunctions within one unit cell. While the total
wavefunctions, |φnk〉, are all mutually orthogonal, this is
not true for the periodic parts, |unk〉. Whenever k1 = k2,
the function ∆nm(k1, k2) reduces to a Kronecker delta
function, δnm, but not otherwise. This is a statement
of the fact that, at a particular value of the crystal mo-
mentum, k = k0, the periodic functions form a com-
plete orthonormal set, unk0(x), within the Hilbert space
of a single unit cell. But a different choice of k leads to
a different set of functions, which will be mutually or-
thogonal, but need not be orthogonal to the functions of
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FIG. 3. Squared modulus of the functions, ∆n,1(0, k), plotted
over ten Brillouin zones of reciprocal space, for (a) the lowest
seven bands and (b) for the lowest three bands. These indi-
cate the degree to which each periodic function, at k = 0, is
required to represent a wavefunction with crystal momentum
k in band 1.

the first set. This can be seen in Fig. 3, which shows
|∆n,1(0, k)|2, as a function of k for different bands, n.
At k = 0, ∆11(0, 0) = 1 while all other matrix elements
are zero. However, as k departs from zero, neighbouring
bands become important (Fig. 3b), and as k increases
(over several Brillouin zones), higher-lying bands have
the largest contributions (Fig. 3a).

The ∆ functions of Eq. 18, pictorially represented in
Fig. 3, have been used previously in the solid-state lit-
erature [34]. They give a sense of how many bands are
required at one k-point (e.g. the Γ-point) to express the
periodic part of the wavefunction at a different point in
reciprocal space. In this sense, they provide a connection
between the two gauges: the many occupied bands at a
single fixed k in the velocity gauge map onto a smaller
number of bands at a different k + A(t) in the length
gauge. Even in the case of adiabatic evolution in the
length gauge, where population is not transferred be-
tween bands, the motion of the charge in k-space maps
onto increasingly high-lying bands in the velocity gauge
(see Appendix B).

From the Dirac delta function of Eq. 17, we imme-
diately see that in the velocity gauge the operator that
reports the population of the state with crystal momen-
tum q in bandm involves matrix elements with a different
crystal momentum, q−A(g), and may involve matrix ele-
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ments in all bands. This is why band populations appear
to be very different when calculated in the two gauges.

Finally, the matrix elements of the band projection
operator, found by integrating the wavevector q over one
Brillouin zone, are[
Π̂(g)
m

]
nn′,kk′

= ∆∗mn(k+A(g), k)∆mn′(k+A(g), k)δ(k−k′).
(19)

The expectation value of this projection operator rep-
resents our proposed formulation of instantaneous band
populations. Whenever A(g) = 0, as is always the
case in the length gauge, this expression is simple since
∆∗mn → δmn and ∆mn′ → δmn′ , making the operator di-
agonal, with non-zero elements only in the subspace with
band-index m. For non-zero vector potentials, however,
the operator is non-trivial, and it mixes different bands.

Figure 4a shows the conduction band population cal-
culated using Eq. 19 in the velocity gauge (dashed or-
ange) and length gauge (filled blue). The two calculations
overlap exactly, showing that this definition indeed gives
a gauge-invariant value of the instantaneous band popu-
lation. The conduction band population exhibits sharp
peaks at the vector potential zeros (near the peaks of
the electric field), shown more clearly in Fig. 4b. The
sharpness of these peaks is in part due to the fact that
the valence band is only occupied at a single value of k.
A filled valence band will lead to broader transient peaks
in the conduction band population. The maximum tran-
sient population transfer is about 5%, much lower than
the 40% described by the previous velocity-gauge calcu-
lation of Fig. 2a. We also note that, since the trans-
formation operator for the length gauge is the identity
operator, the length gauge calculations of Figs. 4a and
2a are identical. We will revisit this fact in Section VI.

V. INTERBAND AND INTRABAND
CURRENTS

Having considered the band populations during the
pulse, and the closely related projection operators, we
are in a position to revisit the question of interband
and intraband currents. As before, we start by identify-
ing a Hermitian operator, and then determine its gauge-
dependent transformation. To do this, we again make use
of projection operators to define the field-free operators

ĵra = −
∑
n

Π̂np̂kinΠ̂n (20)

and

ĵer = −
∑

n,n′ 6=n

Π̂np̂kinΠ̂n′ . (21)

The expectation values of these operators, in the absence
of any applied fields, reproduce precisely the two summa-
tions shown in Eq. 13. However, when a field is applied, a

gauge must be chosen and the operators transformed ap-
propriately. The transformation to the length gauge is,
again, trivial and leaves the decomposition unchanged.
However, when transforming the operator to the veloc-
ity gauge, we must transform not only the momentum
operator, but also the projection operators. By simply
dividing the current according to the terms shown in Eq.
13, we perform the required transformations on the mo-
mentum operator (p̂(g) = p̂+A(g)) and the wavefunctions
(Eq. 7), but we fail to take into account the transforma-
tion of the projection operators.

The gauge-transformed intraband current operator is

ĵ(g)ra = −
∑
m

∫∫
BZ

dqdq′Π̂(g)
mq(p̂+A(g))Π̂

(g)
mq′ . (22)

Its matrix elements are[
ĵ(g)ra

]
nn′,kk′

= −
∑
mll′

∆∗mn∆ml∆
∗
ml′∆mn′

×
[
pll′(k) + δll′A

(g)
]
δ(k − k′), (23)

where the arguments of the functions, ∆, are understood
to be ∆ab ≡ ∆ab(k+A(g), k). As before, the ∆ functions
come from the gauge-transformed projection operators,
and mix the bands whenever the vector potential is non-
zero.

Likewise, for the interband current, we have

ĵ(g)er = −
∑

m,m′ 6=m

∫∫
BZ

dqdq′Π̂(g)
mq(p̂+A(g))Π̂

(g)
m′q′ , (24)

whose matrix elements are[
ĵ(g)er

]
nn′,kk′

= −
∑
mm′

ll′

∆∗mn∆ml∆
∗
m′l′∆m′n′

×
[
pll′(k) + δll′A

(g)
]
δ(k − k′), (25)

where the summation omits terms with m = m′. Fig-
ures 4c and d show the interband current calculated using
Equation 25 in the velocity gauge (dashed orange) and
length gauge (solid blue). Here again, the agreement be-
tween the two calculations shows that our definition is
gauge-invariant.

VI. DISCUSSION

We have proposed new formulations for the interband
and intraband currents, as well as the instantaneous band
populations. This was done by identifying Hermitian op-
erators corresponding to each of these, and then apply-
ing a gauge-dependent unitary transformation. We have
shown that the resulting operators give gauge-invariant
predictions for these quantities, providing a possible res-
olution to the issue of gauge-dependence. In addition to
this, our formulation allows all of these quantities to be
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FIG. 4. Gauge-invariant dynamics. (a) Conduction band
population, defined using Eq. 19, as a function of time for
velocity and length gauge, which overlap. (b) Magnified view
of the conduction band population, showing transient peaks
at the vector potential zeros, as well as high-frequency os-
cillations. (c) Interband current, defined using Eq. 25, as a
function of time for velocity and length gauge. (d) Magnified
view of interband current showing that the two gauges agree
within numerical acuracy.

computed from any gauge. In particular, the velocity
gauge may present advantages regarding computation in
some cases [25].

The harmonic spectrum for the strongly driven Math-
ieu potential, calculated entirely in the velocity gauge,
is shown in Fig. 4. The total current (black line) dis-
plays the previously discussed double plateau. The dif-
ficulty in retrieving interband and intraband informa-
tion was noted by Wu et al. [20], who suggested an
approach involving projection onto Houston states. We
agree with their approach and conclusions, however, since
they project onto a time-dependent basis, they effectively
change gauges and derive a new equation of motion for
the wavefunction. We discuss this further in Appendix
A. Our approach allows us to consider the separation
into interband (not shown) and intraband (red line) con-
tributions, entirely in the velocity gauge. Furthermore,
it is possible to make finer divisions of the current. For
instance, we may define the interband current between
bands one and two as ĵ12 = Π̂1p̂kinΠ̂2 + h.c., whose spec-
trum is shown as the blue shaded region. This current
accounts for the first plateau. Likewise, the summed in-
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Harmonic Order

Sp
ec
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FIG. 5. Harmonic spectrum for the strongly driven Mathieu
potential. The black line shows the spectrum of the total
current. The red line shows that of the intraband current,
which makes a negligible contribution for harmonics above the
seventh order. The blue shaded region shows the spectrum of
the interband current due to transitions between bands one
and two. Likewise, the pink shaded region shows the spectrum
of the combined interband currents due to transitions between
bands one and thre, and bands one and four. All quantities
shown are calculated in the velocity gauge.

terband currents from band one to bands three and four,
ĵ13 + ĵ14, shown as the pink shaded region, account for
the second plateau. The relation of these plateaus to
interband dynamics was previously argued based on the
energy ranges at play and the intensity scaling [21, 22],
but here we can compute the interband dynamics directly
even though our calculation is in the velocity gauge.

It is worth noting that the gauge-invariant quantities
that we defined coincide with the earlier problematic def-
initions in the length gauge (those of Section III). In
our definitions, the field-free operators are transformed

by the unitary operator eiA
(g)x. However, in the length

gauge, since A(l) = 0, our approach leaves the field-free
operator unchanged. But could a different choice have
been made? In particular, could we not have chosen
a definition such that the velocity gauge operator cor-
responds to the field-free operator? Yes, such a choice
could have been made, and the transformations of Eq. 8
would ensure gauge invariance. The resulting population
operator in gauge (g) would be

e−i[A
(g)−A(v)]xΠ̂mqe

i[A(g)−A(v)]x, (26)

to be compared with our proposed definition, Eq. 15.
What, then, justifies the choice to associate the length
gauge operator with the field-free operator? While we
are not aware of any hard and fast justification for our
choice, we suggest two possible arguments here, the first
esthetic and the second an appeal to reasonableness.
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Esthetically, the alternate definition of Eq. 26 de-
fines the operator in gauge (g) by making reference to
the vector potential in that gauge and in gauge (v), as
well as referencing the field free operator. Thus, in any
gauge, this alternate definition must always refer back
to the velocity gauge. In contrast, our proposed defini-
tion, Eq. 15, describes the operator in gauge (g) only in
terms of the field free operator and the vector potential
in that gauge. Perhaps more importantly, our definitions
give reasonable answers, matching the understanding de-
scribed in the literature. Figure 5 shows that our gauge-
invariant formulation explains the two plateaus in the
harmonic spectrum as arising from different interband
currents, consistent with previous arguments. A more
straightforward example is the response of the system to
a constant electric field. For a sufficiently weak field, one
expects an adiabatic evolution of the wavefunction within
a single band, together with Bloch oscillations in the in-
traband current. Appendix B shows that this behaviour
is captured by our definitions, but not by alternative for-
mulations like Eq. 26.

The questions we addressed in this article attempt to
define instantaneous band-dependent quantities in the
presence of a driving field. Yet the bands themselves
are, in some sense, a field-free concept. A considera-
tion of laser-dressed states is therefore an important part
of this discussion. Laser-dressed states can be defined
in various ways, either as instantaneous eigenstates of
a Hamiltonian, which will depend on the chosen gauge,
in a cycle-averaged (Floquet) way, or otherwise [18, 35–
37]. Here, we have not touched on these issues, aside
from the Houston states, which are the instantaneous
eigenstates of the velocity gauge Hamiltonian. In atomic
and molecular systems, the dressed states have played an
important role in resolving unphysical anomalies in cal-
culations, which are often gauge-dependent [36, 37]. We
may then expect such considerations to shed further light
on questions of, for example, instantaneous state popu-
lations in a laser field. We leave a detailed consideration
of dressed states, as they relate to gauge-dependence, for
future study.

To conclude, we have proposed a formulation of in-
stantaneous band populations, and interband and intra-
band currents, which gives gauge invariant predictions.
Our approach was to define Hermitian operators corre-
sponding to these quantities, which can be done without
making reference to a field or a gauge. These field-free
operators are then transformed by the well-known uni-
tary operator that connects gauges and ensures gauge
invariance. We have demonstrated numerically that this
gives identical results in the velocity and length gauges,
and that these results are consistent with the commu-
nity’s use of these terms. The results give these impor-
tant quantities a more rigorous definition, which, by re-
moving the gauge-dependence, establishes that these are
physically meaningful.
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Appendix A: Relation to Houston States

Houston states have played an important role in the
development of solid-state physics. They were originally
proposed as approximate solutions of the length gauge
Hamiltonian in a constant electric field [38]. Later, they
were employed by Krieger and Iafrate to find an analyt-
ical formulation of the TDSE in the velocity gauge [39].
This latter approach, starting from the velocity gauge,
was used by Wu et al. to make the separation between
interband and intraband currents [20]. They showed that
when the TDSE in the velocity gauge is solved in the ba-
sis of Houston states, the simple decomposition according
to band indices gives sensible results. Indeed, it has long
been noted that there is a close connection between the
Houston state basis, and gauge transformations. In this
Appendix, we address this connection.

In velocity gauge calculations, the Houston states are
defined as

|φ̃nk0〉 = e−iA
(v)x|φnk(t)〉, (A1)

where k(t) = k0 + A(v), and the vector potential is un-
derstood to be that of the velocity gauge. We make two
important remarks on these states. First, we note that
the crystal momentum (on the right side of the equa-
tion) acquires a time dependence, which is a consequence
of the acceleration theorem. Thus, the states |φnk(t)〉
can be thought of as “accelerated Bloch states”. They
are eigenstates of H0, albeit with a time-dependent crys-
tal momentum. Second, the phase factor that multiplies
this state is precisely the unitary transformation that de-
scribes a gauge transformation, U†. Thus, the Houston
states defined by Eq. A1 can be thought of as the veloc-
ity gauge representation of accelerated Bloch states. In-
deed, the original treatment by Houston did not include

the transformation operator, e−iA
(v)x, since it employed

the length gauge.
Considering the TDSE in the Houston-state basis, nu-

merically, one solves for the complex amplitudes of the
basis states:

〈φ̃nk0 |ψ(v)〉 =
{
〈φnk(t)|eiA

(v)x
}
·
{
e−iA

(v)x|ψ(l)〉
}

= 〈φnk(t)|ψ(l)〉. (A2)

That is to say the coefficients describing the Houston
states in the velocity gauge are identical to those de-
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scribing accelerated Bloch states in the length gauge. It
is thus not surprising that the coupled differential equa-
tions describing these coefficients end up being essentially
identical to the length gauge Schrödinger equation. In-
deed, one arrives at the same differential equations in the
length gauge by using an accelerated frame [12].

The approach of using a Houston-state basis does allow
a decomposition into interband and intraband currents,
however it involves a change in the differential equations
employed, effectively requiring a return to the length
gauge. In this sense, it does not directly address the issue
of gauge-dependence. Also, it does not take advantage
of the potential computational benefits of the velocity
gauge. Our approach allows the TDSE to be solved en-
tirely in the velocity gauge using the field-free basis, and
still allows an unambiguous determination of interband
and intraband currents. Furthermore, by defining quan-
tities as Hermitian operators, we provide a more rigorous
formulation, which is equally valid in any gauge.

Appendix B: Description of Bloch Oscillations in
Velocity Gauge

The gauge-invariant definitions that we have proposed
are chosen by first identifying the Hermitian operators
corresponding to the observables of interest. This does
not require us to think about a gauge, or even a field for
that matter: currents or band populations are quantities
that can be associated with the state of a system even
in the absence of a field. Once these Hermitian opera-
tors are defined, gauge-invariance comes from the unitary
transformation of Equation 9. This is the thought pro-
cess that leads to the definitions in Eqs. 15, 22, and 24.
However, as noted above, the choice of a gauge-invariant
definition based on a field-free operator is not unique.
In this appendix, we use the simple case of Bloch oscil-
lations to argue that our proposed definitions coincide
with the commonly accepted and discussed behaviours
of band populations and currents.

The definitions that we propose cause the length-gauge
operator to be equal to the field free operator. An alter-
nate definition for the instantaneous band population is
described by Eq. 26, which instead causes the velocity
gauge operator to coincide with the field-free operator.
One can likewise put forward an alternate definition for
the intraband current,

e−i(A
(g)−A(v))x̂ĵrae

i(A(g)−A(v))x̂, (B1)

and for the interband current,

e−i(A
(g)−A(v))x̂ĵere

i(A(g)−A(v))x̂. (B2)

All of these alternate definitions also give gauge-invariant
answers, like the ones we propose. However, the dynam-
ics they describe do not match common expectations for
an electron in a constant electric field. In a constant elec-
tric field, one expects an electron to evolve adiabatically
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FIG. 6. Dynamics of the Mathieu potential in a static electric
field, comparing our proposed definitions (in blue) with the
alternate definitions of Eqs. 26, B1, and B2 (in orange). (a)
Interband and intraband currents. Bloch oscillations can be
seen, and the Bloch period is shown. (b) Band populations
as a function of time. In the proposed definition, the popu-
lation remains in band 1 throughout, reflecting the adiabatic
evolution of the state.

within a single band (for sufficiently low field), undergo-
ing Bloch oscillations.

Figure 6 shows the dynamics of the Mathieu potential
in a constant field, comparing our proposed definitions to
the alternate definitions of Eqs. 26, B1, and B2. The con-
stant field of −7.93 × 10−4 turns on exponentially, with
a time constant of 4.1 fs, in order to avoid non-adiabatic
excitation of higher bands. The initial condition is the
same as in the previous calculations, a single electron in
band 1 at k = 0.

In Fig. 6a, the proposed definition of the intraband
(dashed blue) clearly exhibits Bloch oscillations, while
the interband (solid blue) current is zero, as expected.
The current described by the alternate definitions (in or-
ange) is noticeably different. Most importantly, the al-
ternate definitions describe Bloch oscillations as an inter-
band current, contrary to the community’s understand-
ing. The band populations described by our proposed
definitions also match the common understanding. In
Fig. 6b, we see that the proposed definitions (blue) de-
scribe a population that remains entirely in band 1, with
the other band populations remaining zero. This de-
scribes the adiabatic evolution of the electron within a
single band. On the other hand, the alternate definition
shows that the population moves from band 1 to bands 2
and 3, and eventually to higher-lying bands (not shown).
The numerical results of Fig. 6 show that our proposed
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definitions give the correct results in a simple case where there is a consensus on the expected physical behaviour.
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