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We study a special class of topological phase transitions in two dimensions described by the
inversion of bands with relative angular momentum higher than 1. A band inversion of this kind,
which is protected by rotation symmetry, separates the trivial insulator from a Chern insulating
phase with higher Chern number, and thus generalizes the quantum Hall transition described by
a Dirac fermion. Higher angular momentum band inversions are of special interest, as the non-
vanishing density of states at the transition can give rise to interesting many-body effects. Here we
introduce a series of minimal lattice models which realize higher angular momentum band inversions.
We then consider the effect of interactions, focusing on the possibility of electron-hole exciton
condensation, which breaks rotational symmetry. An analysis of the excitonic insulator mean field
theory further reveals that the ground state of the Chern insulating phase with higher Chern number
has the structure of a multicomponent integer quantum Hall state. We conclude by generalizing the
notion of higher angular momentum band inversions to the class of time-reversal invariant systems,
following the scheme of Bernevig-Hughes-Zhang (BHZ). Such band inversions can be viewed as
transitions to a topological insulator protected by rotation and inversion symmetry, and provide a
promising venue for realizing correlated topological phases such as fractional topological insulators.

I. INTRODUCTION

The notion of a band inversion provides a central
paradigm for the understanding of free fermion topolog-
ical phases [1-3]. A band inversion marks the transition
between two gapped electronic phases in the same sym-
metry class but with distinct topology, and must neces-
sarily lead to a closing of the energy gap [4, 5]. At the
gapless band touching point, where the order of bands is
reversed, the topological index associated with the sym-
metry class changes [6, 7]. As a result, knowledge of the
type of band inversion gives access to information on the
topological distinction between the two phases separated
by a topological phase transition. This is most clearly
exemplified by those band inversions which can be de-
scribed by a single Dirac fermion theory. In such theo-
ries a sign change of the Dirac fermion mass indicates a
change of bulk topology. In two dimensions this defines
the low-energy theory for the quantum Hall transition [8]
and in three dimensions this describes the transition be-
tween a trivial and a topological insulator [9].

In general, when band inversions occur at high-
symmetry momenta, the type of such band inversion
can be indicated by the eigenvalues of spatial symme-
try operators of the bands which invert [3, 10-13]. For
instance, the Fu-Kane formula can be viewed as a sym-
metry indicator for a band inversion transition occurring
at a time-reversal invariant momentum which changes
the Zy topological index [3]. Another example of estab-
lished symmetry indicators are crystal rotation symme-
tries [10, 14, 15]. Two bands characterized by different
crystal rotation eigenvalues have different angular mo-
mentum, which implies that, in two dimensions, an inver-
sion of such bands leads to a change of the Chern number
(assuming the existence of an energy gap on both sides of

the transition). In this paper we study this type of band
inversion, with a particular focus on higher angular mo-
mentum band inversions. Such band inversions mark the
transition to a Chern insulator with higher Chern num-
ber and generalize the transition described by a Dirac
fermion.

Our understanding of Chern insulators and Chern
bands fundamentally relies on their connection to (flat)
Landau levels in a magnetic field [16]; as far as their
topological classification is concerned, Chern bands and
Landau levels are equivalent [17]. To a large extent, it is
this equivalence, and its implications for properties such
as edge state spectrum and Hall conductance quantiza-
tion [18], which has motivated and driven much of the
research on Chern insulating phases. Furthermore, the
connection to Landau levels has been successfully ex-
ploited to, for instance, address the effect of electronic
interactions in partially filled Chern bands, and thereby
explore the possibility of realizing correlated liquid states
akin to fractional quantum Hall states without magnetic
field [19-22]. Here we take a rather different, and in
some sense contrary, perspective on Chern insulators, by
focusing not on isolated Chern bands but instead on the
band inversion transition to the Chern insulating state.
Notably, the low-energy description of such transition,
which can be viewed as a higher angular momentum gen-
eralization of a Dirac fermion transition, exposes a con-
nection to the BCS theory of paired states of fermions in
two dimensions [1]. In particular, this connection, which
was previously recognized in the context p + ip pairing
phases [23], suggests that the transition to a Chern in-
sulator phase can be phrased in terms of pairing of elec-
trons and holes—rather than pairs of electrons. One of
our aims is to examine this connection in more detail.

We are further motivated by the broader aim to find



many-body generalizations of band inversion transitions.
In the search for such many-body generalizations higher
angular momentum band inversions are of particular in-
terest since the bands disperse quadratically at the crit-
ical point of the transition (i.e., when the gap closes and
the bands touch, see Fig. 1). This property, which is pro-
tected by rotation symmetry, leads to a non-vanishing
density of states and implies that—in contrast to band
inversion transitions described by a Dirac fermion—
interactions are likely to affect the nature of the band
inversion [24-32].

In previous work [32] we have argued that, given the
importance of interactions, higher angular momentum
band inversions provide a promising route towards cor-
related fluids of electrons and holes. This argument is
based on the pairing formulation of the Chern band in-
version and was encouraged by the well-established con-
nections between pairing states and fractional quantum
Hall wave functions [1]. In this work we focus attention
on a second possibility for a correlation-driven phase in
the vicinity of the band inversion: the excitonic insula-
tor [33]. The excitonic insulator is defined by the conden-
sation of electrons and holes into exciton bound states,
which can be called excitonic pairing, and is associated
with rotation symmetry breaking [31].

To study higher angular momentum band inversions
in this paper, we take the following approach. After in-
troducing such band inversions from a low-energy per-
spective (Sec. II), we first construct a class of simple
lattice models which realize higher angular momentum
band inversions (Sec. III). In this way we take a first
step towards identifying material systems in which such
band inversions may be observed. We then consider the
effect of interactions and address the mean field theory
of the excitonic insulator (Sec. IV). In doing so, we will
demonstrate that important insight can be gained into
the structure of Chern insulators with higher Chern num-
ber [34-38] (Sec. IVB). In particular, by studying the
transition between the excitonic insulator and the Chern
insulator we are able to demonstrate, without making any
reference to Landau levels, that the higher Chern num-
ber C = m insulator can be viewed as an m-component
C =1 insulator (Sec. IV C). We conclude by describing
time-reversal invariant generalizations of higher angular
momentum band inversion (Sec. V).

II. BAND INVERSIONS AND CHERN
INSULATORS

We begin by introducing a low-energy theory for band
inversion transitions which signal a change of the Chern
number index. To describe a band inversion of this type
it is sufficient to consider two bands, and we thus consider
a system with a filled valence band and an empty con-
duction band, which we study in the vicinity of a band
inversion at k = 0. We define the annihilation operators
of the conductions band and valance band states as ci.
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FIG. 1. Band inversion transition with higher angu-
lar momentum. A band inversion transition with higher
angular momentum in two dimensions separates a trivial in-
sulating phase (A) from a topological Chern insulating phase
(C) with higher Chern number. At the critical point, shown
in (C), the band dispersion is quadratic, in sharp contrast to
band inversion transitions described by a Dirac fermion, for
which it is linear. The non-vanishing density of states of the
former makes interaction effects relevant, making higher an-
gular momentum band inversions promising venues for many-
body generalizations of topological band inversion transitions.

and ckp, respectively, and collect them in the spinor

Cke
= . 1
o= (1) m
Note that the choice of vacuum (i.e., a filled valence
band) implies that ckj, creates holes in the valence band
and can be viewed as a creation operator with respect
to the vacuum. In this sense, 1)y may be compared to a

Nambu spinor of electrons and holes. In terms of 1, and
¢1T< the Hamiltonian can be expressed as

H= Z%T(hkwk, hx = (2?{ ii) . (2)
K

Here ek describes the dispersion of the conduction and
valence band close to the band inversion at k = 0. To
lowest order in momentum the dispersion takes the form
ex = k?/2m* — §, where m* is an effective mass and
0 is the energy difference between the two bands. The
parameter § determines whether the bands are inverted
(6 > 0) or have normal band ordering (§ < 0). This
is schematically shown in Fig. 1, where (A) corresponds
to the uninverted regime and (C) corresponds to the in-
verted regime.

It is important to note that § is not determined or con-
strained by symmetry. This should be contrasted with
systems exhibiting a symmetry-protected degeneracy of
two bands at k = 0, in which case § represents a gap
opening associated with the breaking of a symmetry [24].
Here, on the other hand, we consider a transition between
two phases with the same symmetry but different topol-
ogy. Note further that the inverted regime § > 0 leads to
the notion of an electron-hole Fermi surface defined by
the condition ex = 0 and the wave vector kp = v2m*4.

The coupling of the electron and hole bands is given by
Ay and is constrained by the symmetry properties of the



electron and hole bands. In this work we focus on a class
of band inversion Hamiltonians Ay for which the function
Ay describing the coupling is chiral and characterized by
a definite nonzero angular momentum [. Couplings with
angular momentum [ can expressed in the general form

Ay = Ak, + riky)! (3)

where A is the strength of the coupling (which may be
complex) and k = sgn(l). With Ak given by Eq. (3)
it is straightforward to see that the energy spectrum of
hy, which consists of two branches = Fy with Ey = (812{ +
|Ak|?)'/2, has a full energy gap except for the special case
0 = 0. This shows that ¢ controls the transition between
two gapped phases with different topological character,
as we now explain.

The form of (3) combined with the form of Eq. (2)
suggests a formal connection to the BCS theory of chiral
superconductors in two dimensions [1, 39]. In the latter
case, Ak corresponds to the pairing potential and is asso-
ciated with the breaking of U(1) charge conservation. In
this sense, the class of systems we consider here is very
different, since all terms present in the Hamiltonian of
Eq. (2), including Ay, represent symmetry-allowed cou-
plings between single-particle states. In particular, the
number of conduction band electrons and valence band
holes is not separately conserved. Given the absence of
a broken symmetry one might compare the “pairing” of
particles and holes described by Eq. (2) to proximitized
superconductors [32].

The formal connection of Eq. (2) to chiral supercon-
ductors can nevertheless be fruitfully exploited for the
purpose of analyzing the ground state wavefunction and
its properties. A gapped chiral superconductor in two
dimensions with angular momentum [ is known to have
a topological ground state characterized by a nonzero
Chern number C' = [ [1]. This leads to the conclusion
that hy with Ay given by (3) describes a band inversion
transition from a trivial insulator to a Chern insulator
with Chern number C' = [. These two insulating phases
are separated by a gap closing at 6 = 0 (depicted in Fig. 1
B), with § > 0 corresponding to the Chern insulator, as
shown in Fig. 1 (C). Following the work of Read and
Green [1] the ground state of Eq. (2) can be expressed
in the form

1) = ] [ (e + vacclpren) ) o< e aeclecen|Q) (4)
Ik

where ui and vy are solutions to the equations (e +
Ey)vk + Axux = 0 and Afvk + (Ex — ex)ux = 0 with
constraint |uy |2 +|vk|? = 1, and |2) is the vacuum defined
by a filled valence band and empty conduction band (see
Appendix A). The ground state |®) describes a Chern
insulating phase defined by a “condensate” of electrons
and holes with nonzero angular momentum /. The topol-
ogy of the many-body wavefunction is encoded in pair
correlation function g(r) = [d%k gxe=™*T/(27)? with
gk = Uk/uk. In Sec. IV we study the pair correlation

function in more detail and discuss its connection to the
lattice models introduced in Sec. III.

To address the question how a band inversion of the
type defined by Egs. (2) and (3) can arise, and in par-
ticular which model systems can describe higher Chern
number transitions, it is helpful consider the symmetry
properties of Ay. Since Ay is chiral and carries nonzero
angular momentum, it can only arise when time-reversal
and vertical reflection symmetry are both broken. Fur-
thermore, definite angular momentum implies that the
form of Ay is constrained by rotational symmetry. To
see this, consider the case | = —m, where m is a positive
integer. The Hamiltonian hyx can be expressed as

hy = ex7, + AKY7— + K714, (5)

where 7, ,, . are Pauli matrices and we have defined 74 =
(rz £i7,)/2 as well as ky = k, = ik,. Under rotations
by an angle 6 one has k' — eimekg and, as a result,
one must have 7o — €7, for hy to be invariant under
rotations. We may formulate this in real space by noting
that the Hamiltonian takes the form

h=1.(=0% = 0) + Alr_ (9o /i)™ + 74(0:/1)"],  (6)

where 0, .~ = 0 F i0,. Invariance under rotations im-
plies that the Hamiltonian commutes with the angular
momentum operator L, (i.e., the generator of rotations).
To satisfy [h, L,] =0 L, must have the form

L,=20,— 20, + %TZ, (7)
where z = x + 7y. This leads to the conclusion that the
electron and hole bands must have relative angular mo-
mentum m, i.e., their rotation symmetry quantum num-
bers must differ by m. It is this conclusion which provides
the basis for the construction of the lattice models in the
next section.

Before we come to a discussion of such models, how-
ever, two remarks are in order. First, since the dispersion
of the electron and hole band is chosen as ey, Eq. (2)
has a particle-hole symmetry given by e <+ h and | — —I.
This is a convenient starting point for analysis but it is
not an essential assumption, and in general one expects
this symmetry to be broken by the different band curva-
ture of electron and hole bands. Second, to ensure that
the topology of hy is well-defined for |I| > 1, i.e., that hy
is un-inverted at k — oo, higher order terms in k? should
be added to ey.

III. LATTICE MODELS FOR CHERN BAND
INVERSIONS

In this section we present a construction of simple lat-
tice models which realize band inversion transitions to
Chern insulators with Chern number C' = [. Here [ cor-
responds to the angular momentum of the band coupling
Ay defined in Eq. (3). As demonstrated in the previous



section, the constituent degrees of freedom of such mod-
els are required to have nonzero relative angular momen-
tum and thus transform nontrivially under the symmetry
group of the lattice. Since symmetry plays a central role,
we begin by reviewing the generic symmetry properties of
Chern insulators and Chern bands and then survey the
point symmetry groups compatible with the symmetry
requirements of higher angular momentum band inver-
sions.

Note first that the existence of a Chern insulating state
requires broken time-reversal (T") and mirror (M) sym-
metry, which follows directly from the transformation
property of the Berry curvature under T and M sym-
metry [40]. Here M is a reflection with respect to a ver-
tical mirror plane which inverts one of the coordinates,
e.g., (z,y) — (x,—y). Broken T and M is consistent
with the chiral nature of nonzero angular momentum ex-
citonic pairing described by Eq. (3). When the system
has multiple inequivalent vertical mirror planes all these
reflection symmetries must be broken. As a result, in
what follows broken M symmetry should be understood
as the absence of all vertical mirror symmetry. A simi-
lar result holds for twofold rotations about an axis in the
plane, as the Berry curvature is odd under such rotations.

Chern insulators are compatible with rotation symme-
try and our aim is to construct Chern insulator mod-
els which preserve the rotation symmetry of the lattice.
More precisely, our aim is to construct models which ex-
hibit maximal rotation symmetry. The discrete symme-
try of the crystal lattice sets limits for rotation invari-
ance: in lattice systems with an n-fold rotation symme-
try Cp—2,3,4,6 angular momentum [ is only defined mod n.
As a result, the largest possible angular momentum that
can be distinguished is [ = 43, which implies that the
construction of lattice models for excitonic Chern insula-
tors is limited to C' = +3.

In the context of rotationally invariant Chern insulat-
ing phases it is worth noting that the relation between the
Chern number and angular momentum is also reflected
in the fact that the Chern number can be obtained from
energy band rotation eigenvalues at rotation invariant
momenta (up to multiples of n) [15].

Next, we examine the crystallographic point groups
which may in principle support Chern insulating states
with rotation symmetry. Since we consider layer systems
with a two-dimensional lattice the appropriate symme-
try groups are axial point groups. Admissible symmetry
groups are those which leave an angular momentum [
along the z axis invariant and allow to distinguish dif-
ferent values of [. Consider first the hexagonal groups.
There are three groups which satisfy the first condition:
Cs, Csp, and Csp. The latter, however, only allows to
distinguish [ = 41 and is not of interest. Of the trigo-
nal point groups only C3 and C3; = Sg are compatible
with chiral pairing along the z axis. Since Sg includes
an inversion s-wave and f-wave angular momenta have
distinct symmetry. In systems with tetragonal symmetry
we can only hope to distinguish angular momenta up to
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FIG. 2. Symmetry of orbital states. Graphical repre-
sentation of the symmetry of the orbital degrees of freedom
with integral angular momentum ! = 1,2,3. The p-, d-, and
f-wave states form the basis of the Chern insulator models of
Sec. IITA.

Il = £2. Of the groups which preserve angular momen-
tum along z, given by Cy, Cyp, and Sy, all are sufficient
to protect [ = 2 pairing.

To summarize, the symmetry groups of interest are:
Cs and Cgp, (hexagonal); Sg (trigonal); Cy, Cap, and
Sy (tetragonal). With this knowledge we now introduce
models for systems in these symmetry classes.

A. Orbital angular momentum models
1. The square lattice

We first focus on the square lattice. Since the square
lattice has Cy rotation symmetry angular momentum can
be distinguished up to [ = £2. As a result, the square
lattice can support models for band inversion transitions
up to Chern number C = 42. To obtain such models
it is natural to choose on-site orbital degrees of freedom
with relative angular momentum +2. We thus consider
s-wave and d,,-wave orbitals and define sy and dy as the
electron annihilation operators corresponding to the s-
and d-wave states. (The symmetry of the higher angular
momentum orbitals is shown in Fig. 2.) We write the
Hamiltonian H for this two-band system as

S
H = Z @Lhkg@ka Pk = <d11:> ) (8)
k

where the Hamiltonian matrix hx may be expanded in
Pauli matrices 75 ..

As outlined in the beginning of this section, the form of
hy is determined by the symmetry requirements of a Cy
symmetric Chern insulator and symmetry of the s- and
d-wave states. An elegant and simple way to derive the
form of hy is to formulate the allowed couplings in terms
of lattice harmonic functions, which may be viewed as
lattice analogs of spherical harmonics and describe hop-
pings with distinct symmetry. As an example, the (lowest
order) s-wave harmonic A] given by

& = cos kg + cosky, 9)
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FIG. 3. Square lattice model. Panel (A) shows the two-
orbital square lattice model introduced in Eq. (13), with inter-
orbital nearest neighbor hopping (A1) and next-nearest neigh-
bor (A2) hopping. The onsite orbitals with s- and d-wave
symmetry are represented by (superimposed) black and red
dots. Shown is also the real space structure of the inter-orbital
hoppings defined in Eq. (12) and described by the square lat-
tice harmonics )\ﬁl and )\il of Eq. (10). (B), (C), and (D)
show the spectrum of the square lattice model in the inverted
regime, at the critical point, and in the normal regime, re-
spectively. As parameters we chose § = 0.4¢,0, —0.4¢ and
(A1, Az2) = (0.4¢,0.4¢).

corresponds to the standard nearest neighbor hopping.
Note that due to the discrete symmetry of a lattice the
lattice harmonics are labeled by the finite set of point
group representations (see Table I). The two d-wave har-
monics with d2_,» and d, symmetry are given by

AN = cosk, —cosky, A2 =sink,sink,, (10)
and the p-wave harmonics are given by (A',A\?) =
(sink,,sink,). The symmetry properties and the point
group labels of the lattice harmonics are summarized in
Table I and are shown schematically in Fig. 2.

Using the symmetry of both the orbital basis states
and the lattice harmonics, it is straightforward to con-
struct a Hamiltonian H which satisfies all symmetry re-
quirements and has a gapped ground state. We write
H as a sum of two parts: Hs and Ha. Here Hj de-
scribes both nearest neighbor intra-orbital hopping and
an energy splitting e, — ¢4 of the s and d states, and Ha
describes the (inter-orbital) couplings between the s and
d states. The splitting between the s and d states is con-
veniently parametrized as e —eg = 2t — §, where t is the
nearest neighbor hopping parameter; Hs then takes the
form

Hy = (2t —06—tAp)(sksw — dfh).  (11)
k

The structure of Ha follows from the observation that
d;r(sk transforms as a d, wave. The simplest rotationally
invariant but T- and M-broken coupling then takes the

Symmetry Lattice Square Hexagonal
harmonics (Dan) (Der)

S )\i Alg Alg

Pz, Dy A AE By Eru

dzz,yz, doy )‘i17)‘i2 Big, Bag Eng

fm3_3xy2, fy3_3ym2 )\1{17)\1{2 E. Biw, B2y

TABLE I. Symmetry of angular momentum states. Ta-
ble summarizing the point group symmetry properties of an-
gular momentum basis functions on the square and hexagonal
lattices with (axial) point groups Dap and Degp, respectively.
These groups are the maximal symmetry groups of a two-
dimensional layer. Second column lists the lattice harmonics
with given symmetry. Final two columns lists the symmetry
quantum numbers.

form

HA = Z(ZAl)\ﬁl + AQ}\iQ)dLSk + H.C., (12)
k

where A 5 are both real and the relative phase is respon-
sible for broken 7'. Combining these two terms we arrive
at the form of hy given by

hi = ety + AN T, 4+ AN, (13)

where we defined ex = 2t — § — t){,. The square lattice
model defined by (13) is shown pictorially in Fig. 3 (A).

It is straightforward to verify that hy has a gapped
spectrum for nonzero (§,A;,As) and supports Chern
bands with C' = +2 for 4¢ > § > 0. The parameter §
can be directly identified with the band inversion param-
eter of Eq. (2). The spectrum of (13) is shown in Fig. 3
(B)—(D), corresponding to the inverted regime (6 > 0),
the critical point (§ = 0), and the normal regime (6 < 0).
A more detailed analysis of Eq. (13) from the perspective
of Eq. (2) will be presented below.

2. The triangular lattice

Next, we turn to the triangular lattice, which has six-
fold rotation symmetry and allows to resolve angular mo-
mentum up to | = +3. We introduce s-wave and f-wave
states as on-site orbital degree of freedom and define the
corresponding electron (annihilation) operator as

P = (;‘;) . (14)

As there are two symmetry-distinct f waves, we fix the
symmetry by declaring that fi creates electrons in a
fu3_34y2 orbital state, see Fig. 2.

To determine the form of the Hamiltonian hyx on the
triangular lattice we must first specify the triangular lat-
tice harmonics. To this end, it is helpful to define the



three lattice vectors a;—1 23 as

a; = (COSG’) . 0= (i— 1)2%. (15)

sin 6;

The symmetric s-wave harmonic then takes the form
AL = E?:1 cosk;, where k; = k - a;. The two lowest
order symmetry-distinct f-wave harmonics are given by

3 3
1

M= sin k;, PYp— sin(k; — k;a1), (16

K= K = 575 2tk ki), (10

where the latter corresponds to next-nearest neighbor
coupling (the proportionality constant is chosen for con-
venience). The f waves fi; and fy are identified with
fo3—3zy2 and fys_gye2, respectively. In systems with
hexagonal symmetry both the p waves (A}, A" ) and

the d waves ()\iﬂ)\i’) are degenerate, i.e., they form
partners of a two-dimensional representation. Expressed
in the chiral basis p+ = p, £ip, and dy = dy2_ 2 T idyy,
the triangular lattice p- and d-waves harmonics take the
form

3 3
AN = Zwiil sin k;, Af’ = Zwlﬂ' cosk;, (17)
i=1 i=1

with w = €2™/3 and A\ = (\})*. Note that the p,,
waves (AJ',A}?) are simply obtained via the relation
AL = M +4iAP? ) and similarly for the d waves.

Given the triangular lattice harmonics and their sym-
metry properties, we directly obtain the triangular lattice
analog of Eq. (13) given by

hix = exm> + Al/\lil’ry — Ag)\me. (18)

Here we have defined the difference of on-site energies
€s —eyp as 3t — 6 and ex = 3t — § — tA}, where t denotes
ordinary nearest neighbor hopping. The invariance of hy
under Cy rotations of follows directly from the symmetry
of the f-waves couplings. This may be seen, for instance,
from Fig. 2. Since the f-wave harmonics are odd func-
tions of k, the second term in Eq. (18) is invariant under
T, whereas the third term breaks both T and M. A
schematic representation of the triangular lattice model
of (18), in particular the inter-orbital hoppings described
by Ajg, is shown in Fig. 4 (A). For nonzero (J, Ay, Ag)
the spectrum of hy has a full energy gap and the two non-
degenerate bands are Chern bands with C' = £3 when
4t > 6 > 0. A plot of the energy bands in the inverted
regime, 6 = 0.5¢, is shown in Fig. 4 (B). Note that the
gap is proportional to 6%/2. Below, in Sec. IITA 4, we
discuss the low-energy limit of the transition as function
of § in more detail.

In addition to the model with C' = +3 bands, it is
straightforward to construct a triangular lattice model
with C' = £2 bands. This is achieved by considering s-
orbital and d-orbital states as local degrees of freedom.

Since the two d-wave states (dg2_,2,d,,) are degenerate,
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FIG. 4. Triangular lattice model. Panel (A) shows two-
orbital triangular lattice model introduced in Eq. (18), with
inter-orbital nearest neighbor hopping (A1) and next-nearest
neighbor hopping (Az). In case of the triangular lattice,
the onsite orbitals have s- and f-wave symmetry, and the
real space structure of the inter-orbital hopping, described
by the lattice harmonics )\{:1 and )\lf(l, is schematically shown
on the right. (B) Spectrum of the triangular lattice model
in the inverted regime, i.e., 6 = 0.5¢ > 0, for the parame-
ters (A1, Az) = (1.5¢,1.5t). In inset shows the Brillouin zone
path.

both should be included a priori. Consider the following
model describing the coupling of s and d states, where

dk1,2 annihilate electrons with d2_y2 ,,-orbital symme-
try:
H =Y er(sksx— di,dia) + QD dl_di_

Kk Kk
+ Z A(Aﬁ*s;r(dk, + )\i’ s;r(dk+) +Hce (19)
k

Once more we have defined ex = 3 — A\{ 4+ 6 and the op-
erators dx+ = dxy T idyo correspond to the chiral basis
of the d-wave states; a sum over a = 1,2 is implied. Ob-
serve that the term proportional to A, which couples the
s- and d-states, is fully invariant under rotations. Fur-
thermore, it is invariant under 7" and M. The second
term, on the other hand, which is proportional to 2 and
energetically splits chiral d-waves, breaks T" and M sym-
metry. We may choose this energy scale to be positive
and very large, i.e., Q > 1, and project out the dy_ states
to obtain an effective model for the s and d states. Note
that projecting out the di_ states is consistent with Cg
symmetry and broken 7" and M symmetry. The reduced
two-band model can then be expressed in the form of (8)
with hy given by

hx = exT, + A)\i_ T+ A*)\iJ“ T_, (20)

where 74 = (7, £47,)/2. This Hamiltonian describes a
transition from a trivial insulator to a Chern insulator



with C' = +2 on the triangular lattice. Note that, con-
trary to Eq. (18) or (13), there is only one parameter A
describing the coupling of s- and d-states, which is due
to Cg symmetry.

Clearly, by simply making the replacement d — p in
Eq. (19) this construction directly applies to states with
p-wave symmetry, in which case one obtains a C' = +1
Chern insulator model. Furthermore, the p-wave model
is easily generalized to the square lattice using the square
lattice harmonics [41], leading to the spinless (and lattice-
regularized) Bernevig-Hughes-Zhang (BHZ) model [2].

3. The honeycomb lattice

Up to this point, we have considered onsite orbital de-
grees of freedom with nonzero angular momentum. This
might suggest that the models introduced here require
higher angular momentum atomic-like states (see Fig. 2)
at sites of the crystal lattice. In fact, our construction is
more general, and also applies when effective higher an-
gular momentum states arise as a result of the structure
of the unit cell. More specifically, in crystal lattices with
a nontrivial unit cell, i.e., a unit cell containing multiple
atoms which map to each other under symmetry opera-
tions, one can form symmetrized states within the unit
cell. These symmetrized states transform nontrivially un-
der the symmetry group, in a way that is equivalent to
nonzero angular momentum states. Therefore, the or-
bital states shown in Fig. 2 should be understood in a
more general sense as states of a specific symmetry type,
rather than atomic orbitals.

To illustrate this with an example, we now consider
a simple honeycomb lattice model for spinless electrons.
The honeycomb lattice, which has a triangular Bravais
lattice, consists of two (triangular) sublattices, the A and
B sublattice, and we define the corresponding electron
operators as ay and bx. As before, we collect these in a

spinor
a

The Hamiltonian H is defined as H = >, @Lhkgok with
hy given by

hi = (td — ' BTy + (tdh — ' ST +tu 7. (22)

Here ¢y is a honeycomb lattice harmonic describing near-
est neighbor hopping and is defined as ¢ = Y, e’k di,
where d;—; 23 are the three nearest neighbor bond vec-
tors dj=1,2,3 = (sinb;, cos ;)T /v/3. [The angles 0i=12,3
are the same as in Eq. (15).] Furthermore, the honey-
comb lattice harmonic ¢} = >, e 2*di describes third
nearest neighbor hopping across a hexagon, and the final
term proportional to tg is the Haldane term [16], with
)\il defined in Eq. (16). The three hoppings are shown in
Fig. 5 (B), where arrows indicate T-breaking imaginary
hopping.
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FIG. 5. Honeycomb lattice model. (A) Spectrum of the
honeycomb lattice model defined in Eq. (22) for hopping pa-
rameters (t',tm) = (1.2¢,1.2t); the inset shows the Brioullin
zone path. (B) The honeycomb lattice model is defined by
three hopping parameters t, t', and ty. Here, ¢’ describes
hopping across the hexagon, which is taken to have negative
sign in (22), and ¢ty corresponds to the Haldane term and
describes T-breaking next-nearest neighbor hopping.

To see how Egs. (21) and (22) give rise to states which
have the symmetry of higher angular momentum orbitals
consider the Hamiltonian at k = 0. The Hamiltonian
takes the form hyx—g = (¢t — t')7,, which implies that
the eigenstates are the even and odd linear combinations
ax—o T bx—g. Clearly, the odd linear combination is odd
under all symmetries of the honeycomb lattice which ex-
change the sublattices, and therefore the eigenstates at
k = 0 transform as s and f waves. Now, if we redefine
t' = t—4, then § parametrizes a band inversion transition
of two bands with relative angular momentum [ = 3 at
k = 0. As aresult, Eq. (22) falls in the class of models of
which the low-energy description is captures by Eq. (2).

It is easy to recognize that the Hamiltonian of Eq. (22)
can be viewed as a simple generalization of the Haldane
model introduced in Ref. 16. In the context of the Hal-
dane model, the band inversion transition described by
Eq. (22) can be understood as follows. First, we take
t’ = 0 but choose tx nonzero; this is the Haldane model
and describes a Chern insulator with C' = £1 bands.
Now we turn on and increase ¢’ (which we take positive).
As long as the gap stays open the ground state is a Chern
insulator with C = 41 bands. At ¢’ = ¢ the gap closes
and reopens for ¥ > t. Since this transition is an an-
gular momentum ! = +3 transition, the Chern numbers
must have changed by 4+3 and indeed we find the result-
ing bands to have Chern number C' = F2. (Note that
the sign of C is determined by the sign of ty.) As a
result, neither side of the transition corresponds to the
trivial insulator. A plot of the bands for ¢ > t is shown
in Fig. 5 (A). Note that a large ty leads to a large sep-
aration of bands at K, which can be viewed as a large
mass for the graphene Dirac points.

4. Low-energy limit

In the models presented above, in particular the square
and triangular lattice models, we have made use only of



the lowest order lattice harmonics, i.e., we included the
nearest (or at most next-nearest) neighbor couplings. As
our considerations have shown, for the purpose of con-
structing models with a low-energy description given by
Egs. (2) and (3) this is sufficient. In general, one may in-
clude higher order lattice harmonics of the same symme-
try type, without affecting the essential physics described
by the model.

We now turn to a more detailed analysis of Egs. (13)
and (18) from the viewpoint of higher angular momentum
band inversion transitions. We begin by expanding the
coupling terms of the former [which should be identified
with Ay of Eq. (3)] to lowest order in k, and find for
m=23

Ak o< (A = A)ET + (A1 + Ag)E™, (23)

where m = 2 and m = 3 correspond to Egs. (13) and
(18), respectively. The fact that both k7" and k™ appear
is due to discrete crystal symmetry; the form of Eq. (3) is
only recovered at a fine-tuned point when Ay = As. The
dominant term is determined by the relative magnitude
of |Ay + Ag| and |A; — Ag|, which also determines the
Chern number in the inverted regime. By changing one
of the two parameters A o while keeping the other fixed,
the system undergoes a transition from a Chern number
C = +m phase to a Chern number C' = Fm phase. This
transition occurs via a mass inversion at 2m Dirac points
located on the electron-hole Fermi surface defined by kp
(see Sec. II). Note that this is consistent with the fact
that in a C),-symmetric system the Chern number can
only be determined from the rotation eigenvalues mod
n [15]; here we have 2m = n for m = 2,3 and n = 4,6.

Now, let us address the question whether (13) and (18)
represent the most general form a Hamiltonian consistent
with Cy or Cg rotation symmetry. That is to say, we
ask whether there might be additional terms which can
be added to (13) and (18) while preserving its generic
structure. In the case of Cy symmetry, we can recon-
sider Eq. (12) and observe that in general A; and As
can be complex. This more general Hamiltonian is still
symmetric under C rotations and translates into an ad-
ditional term for the lattice model of Eq. (13) given by
A’l)\ﬁl Ty + A’2/\ﬁ27'y. Expanding this full C4-symmetric
Hamiltonian in small momenta k one finds

Ax ocx Ayk: + AK?, (24)
with Ay given by

From this we conclude that a full account of the
symmetry-allowed couplings leads to a low-energy Hamil-
tonian of the form Eqs. (2) and (3) with Ay given by
(24) in terms of Ay. Only the magnitudes |A. | are im-
portant for the topological classification in the inverted
regime (§ > 0). Clearly, this conclusion holds equally for
the case m = 3 and Cg symmetry; in particular, Eq. (25)
is still valid.

B. Spin angular momentum models

The two-band models constructed in the previous sub-
section all rely on on-site orbital states with integral an-
gular momentum. This property is not strictly required
by Eq. (7), since it only fixes the relative angular mo-
mentum. Therefore, a different approach to engineering
a band inversion with relative angular momentum [ relies
on exploiting the spin degree of freedom. For instance,
two states with spin quantum number j, = +{/2 with
odd [ have relative angular momentum [. Similarly, by
considering states with general spin quantum numbers
l1/2 and l3/2 and engineering couplings between such
states, it becomes possible to realize band inversions with
angular momentum (1 — lz)/2, where 1 5 are both odd.
In this subsection we follow this approach.

In the presence of a spin degree of freedom a mini-
mal model describing a band inversion must have four
bands. We therefore begin by considering a triangular
lattice model with two spin j, = :i:% Kramers pairs. We
introduce the electron operators ckq,y for each Kramers
pair, where {}, = i%, and collect these in a vector cy
defined as

[ ke

Cx = (Ckua> . (26)
Here @ = 1,2 is a flavor index which labels the two pairs.
The Hamiltonian is then defined as H = ), c]thkck with
four-band matrix hi. To describe the couplings between
spin states we introduce a set of spin Pauli matrices
Ogz,y,z» Where o, = *£1 corresponds to 1,{}; we use the
Pauli matrices 7, . to describe couplings in flavor space.
The form of the Hamiltonian hy can be determined us-
ing the same symmetry prescription as before. The sym-
metry of the spin matrices o,y . follows from the trans-
formation properties of the j, = i% spin states, which
are different from the transformation properties of a more
familiar j, = :i:% doublet. In particular, the spin matri-
ces 0, and o, do not transform as the z, y-components
of an S = 1 angular momentum (which transform as p, ,
waves) but instead transform as f waves. This implies
that a rotationally symmetric coupling of the spin states
has f-wave symmetry. We again take ex = 3 — A\f — ¢
and find that a minimal Hamiltonian with Cs symmetry

but broken T" and M symmetry takes the form

hy = x> + b0, + Al)\ﬁlTl-O'x + Agz\fTway. (27)

The first term describes the dispersion ey and energy
difference ¢ of two spin-degenerate bands. Here, we are
interested the regime where these bands remain unin-
verted and therefore set 6 < 0. The second term de-
scribes a Zeeman splitting of the j, = :i:% Kramers pair
states in each band, and as such it breaks T, vertical
reflections, and twofold rotations about in-plane axes;
the Zeeman splitting preserves Cg. For Eq. (27) to de-
scribe a band inversion with angular momentum [ = £3,
we consider the case |b,| > §, which corresponds to an



inversion of a j, = % and j, = —% band with differ-
ent flavor index. The final two terms then describe an
f-wave coupling between the spin species, which is off-
diagonal in flavor space. This coupling gaps out the in-
verted bands and realizes a Chern insulating phase in
the way described by Eq. (2). We note here that the f-
wave coupling of Eq. (27) does not break 7" and can thus
viewed as a form of spin-orbit coupling; we will return
to this observation in Sec. V. This remains true when
considering a slightly more general coupling of the form
(Al)\{il + Ag)\lff)Tanr + h.c., where A;2 are complex.
The latter form should be viewed in the context of the
discussion following Egs. (24) and (25).

Next, consider the case of two Kramers pairs with j, =
i% and j, = i%, respectively. Adopting the notation
= :i:% for the two j, = :I:% states, we can collect the
electron operators in a vector cx given by

cx = (Cps Ckty Ckls Cku)T, (28)

which has the structure of a j = % quartet. Since the

particle-hole pairs c;r( cky and chcm have angular mo-

mentum +2 and —2, respectively, we can seek to engineer
a band inversion between the corresponding bands and
couple these with angular momentum [ = +2 lattice har-
monics. The minimal Hamiltonian which achieves this
has a structure similar to Eq. (27) and takes the form

hy = €x0,T, + b0, + A(Ai*a, + )\if o). (29)

Here 7, = +£1 still describes the two Kramers pairs but
the basis is defined by Eq. (28). As in Eq. (27), the first
two terms are responsible for the band inversion and the
final two terms describe a d wave pairing of the inverted
bands, which is responsible for the energy gap. Recall
that the d waves are degenerate on the triangular lattice,
leading to a single coupling parameter A. Due to the
d-wave nature of the coupling, the ground state of (29)
realizes a Chern insulator with C' = +2. A model related
to Eq. (29) was considered in Ref. 31.

IV. INTERACTIONS AND EXCITONIC
PAIRING

In this section we turn to a more thorough study of
the Chern insulator models introduced in the previous
section. In particular, we address the effect of electronic
correlations on the nature of the band inversion transi-
tion. As explained in Sec. I, the Hamiltonian of Eq. (2)
describes a band inversion transition of non-interacting
fermions. Similarly, the lattice models introduced in the
previous section are free fermion models. To see how
interactions can affect the nature of the band inversion,
consider the critical point defined by § = 0 where the
two bands touch at k = 0. First note that symmetry
protects the quadratic dispersion of the bands at the
touching point, which implies that the density of states
does not vanish. This should be contrasted with a Dirac

fermion transition, characterized by linear dispersion at
the touching point, for which the density of states van-
ishes. Due to the nonzero density of states it is natural
to expect that interactions give rise to correlated states
with an energy gap.

Two different possibilities for correlated states can be
distinguished. The first is the formation of an exci-
tonic insulator defined by the condensation of (conduc-
tion band) electron and (valence band) hole bound states.
The condensation of electron-hole excitons breaks rota-
tional symmetry and is therefore associated with a spon-
taneously broken (discrete) symmetry. The second pos-
sibility is the formation of a correlated liquid of electrons
and holes which does not break symmetries but instead
has fractional quantum Hall topological order [32, 42].
This intriguing second scenario has motivated a previous
study [32], in which we proposed and analyzed a wave
function description for such correlated liquid of electrons
and holes. In this work we focus on the first scenario and
study the excitonic insulator state in the vicinity of the
band inversion. More precisely, we consider the mean
field theory of the excitonic insulator.

We have argued in Sec. II that the description of the
higher angular momentum band inversions is formally
similar to the BCS theory for (higher angular momen-
tum) pairing states of fermions. In case of the former,
however, there is no notion of a broken symmetry in the
absence of interactions. The interaction-driven excitonic
insulator, on the other hand, does break a symmetry and
its mean field theory (at low-energies) is an analog of
BCS theory for s-wave pairing. As a result, the forma-
tion of excitons can be referred to as excitonic pairing
of electrons and holes. As we will demonstrate, the de-
velopment of a mean field theory for excitonic pairing,
in close analogy with BCS theory, gives access to infor-
mation about the structure of the ground state in the
vicinity of the band inversion transition. Most impor-
tantly, this will lead us to the conclusion that the ground
state in the band inverted regime can be viewed as a mul-
ticomponent C' = 1 quantum Hall liquid of electrons and
holes.

It is worth pointing out that the present case of
quadratically crossing bands is different from previously
studied quadratic band crossing models [24, 28-30]. In
the latter, the degeneracy at the touching point is pro-
tected by point group and T symmetry. In contrast, in
the present case the touching point is not symmetry-
protected, but instead defines the critical point of the
band inversion transition parametrized by J; 6 does not
reflect a broken symmetry. A band inversion of this
kind was considered in Ref. 31, which recognized the
importance of interactions when symmetry protects the
quadratic band dispersion and studied the implications
for the topological transition.
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FIG. 6. Dirac points at the topological phase transi-
tion. For the case m = 3 the transition from the topolog-
ical Chern insulating phase to the excitonic insulator phase
is marked by three Dirac points, as shown schematically on
the left. This transition is described by Eq. 30 and occurs
when |Ao| = |A,—3](26)%/2. The Dirac points are located on
a circle with radius kr and are related by threefold rotation
symmetry, as shown on the right. Importantly, the angle at
which the Dirac points are located is determined by the phase
of Ao.

A. Excitonic insulator mean field theory
1. General analysis of the continuum model

To begin, consider the low-energy description of the
square and triangular lattice models of Egs. (13) and
(18). In the analysis that follows we particularize to these
models for illustrative purposes, without loss of general-
ity. Consider furthermore the special case A1 = Ay = A;
according to Eq. (23), for small momenta k this im-
plies Ax ~ A, (ky — iky)™ with m = 2,3. Based on
Eq. (25), we promote A,, to a complex number with
arbitrary phase. In addition, in the small momentum
limit one has e ~ k?/2 — 4. As discussed, the form
of Ak (i.e., an eigenstate of L, with angular momentum
I = —m) is determined by the rotational symmetry of
the system. Importantly, the formation of excitons, i.e.,
excitonic pairing, alters the form of Ay and breaks rota-
tional symmetry. Specifically, in a mean field description
of excitonic pairing Ay becomes

Ax = Do + A (kg — ik,)™, (30)

where m = 2,3 and Aq represents the formation of ex-
citons. We observe that Aj is an angular momentum
I = 0 coupling of conduction and valence band, and since
(30) is a superposition of terms with different angular
momentum, rotational symmetry is broken. In the low-
energy continuum limit the [ = 0 angular momentum
term breaks the emergent continuous rotation symmetry
and lowers the symmetry to Z,,. In particular, Aq trans-
forms as Ag — e Ay under rotations by an angle
0. This establishes a link between the phase of Ay and
rotation symmetry breaking, which is analogous to the
link between the superconducting phase and U(1) charge
conjugation.
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On the lattice, in the case m = 2 the fourfold rotation
Cy is reduced to Cs; in the case m = 3 the rotational
symmetry is lowered from Cg to C'5. In both cases, m = 2
and m = 3, the form of (30) can be derived from a lattice
model mean field Hamiltonian given by hy — hx+Ag7+

0T—-

To examine the implications of (30), in particular the
excitonic term, it is useful to invoke the connection to the
problem of pairing states. In the context of pairing states,
Ay can be interpreted as an s-wave pairing. Assuming
one is in the band inverted regime, this implies a transi-
tion from a Chern insulating phase to a trivial insulator
phase as function of the strength of Ag. This follows from
the fact that s-wave pairing is topologically trivial. The
transition occurs when |Ag| = |A,[kE = |An,|(20)™/2,
where kr is a momentum defined by the condition g, = 0
(see Sec. IT). At the transition the system is gapless, with
three (m = 3) or two (m = 2) Dirac points located
on a circle in momentum space with radius kr. Thus,
the transition is marked by three (or two, in the case of
m = 2) Dirac fermion mass inversions, which is consis-
tent with the total change in the Chern number. This is
shown schematically in Fig. 6 for the case m = 3. Note
that the location of the Dirac points depends on the phase
of Ag: assuming Ag = |Agle?® and A,, real but nega-
tive, the Dirac points are located at angles 8y /m+j27/m
with j =0,1,2.

2. Mean field phase diagram

Having discussed the qualitative features of the exci-
tonic mean field theory, we now turn to a more quan-
titative analysis. To this end, we take the triangu-
lar lattice model of Eq. (18) (the analysis is similar
for the m = 2 square lattice model), in which we set
Ay = Ay = A,,—3, and add an onsite Hubbard repulsion
of the form Hy = Uzj njsnjr, where ng ¢ are the den-
sity operators of the s and f orbitals and the sum is over
sites. A similar mean field theory for a many-body band
inversion of spinful electrons was previously considered
for a C' = £2 transition on the triangular lattice [31].

In momentum space the Hubbard repulsion takes the
form

U
HU = NZZSL_A,_qSkflLfk’—O—qa (31)

q kk’

where N is the system size (i.e., total number of sites).
By performing a mean field decoupling of (31) in the
excitonic channel (see Appendix B for details) one ob-
tains a self-consistency condition for the excitonic order
parameter Ag given by

U

_ T 9
v Sl (32)

Ay =

Here @y are the fermion operators defined in Eq. (14). At
zero temperature Eq. (32) defines the stationary point of
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FIG. 7. Excitonic mean-field theory. Panel (A) shows
the dependence of Ag on U at the band inversion transition
defined by § = 0; since Ag ~ exp(—1/al), we plot InAg as
function of —1/U. Panel (B) shows the U—¢ phase diagram
obtained from the mean field theory of excitonic pairing at
zero temperature. In the inverted regime (6 > 0) the blue
curve shows the phase boundary separating the rotation sym-
metric topological phase from the rotation symmetry broken
phase with nonzero excitonic pairing. The critical interac-
tion strength U., which defines this phase boundary, is ob-
tained from (35). The dashed curve indicates the presence of
a second transition in the vicinity of the symmetry breaking
transition, at U, > U., which separates the symmetry broken
topological phase from the trivial excitonic insulator. In all
calculations the overall energy scale is fixed by setting ¢t = 1
and Aj is set to Az = 1.0.

the free energy density

N
FlA)l == Ex+ UAS, Ex = \/e} + |%k[?, (33)
k

where Yy is defined as Xy = Ag + Ax with Ay =
As(iN + M?).

Solving these equations at zero temperature, we ob-
tain a phase diagram of excitonic pairing as function of
the interaction strength U and the band inversion pa-
rameter 6. The results are presented in Fig. 7, which
we now discuss. We first focus on the case § = 0. In
this case, the non-interacting system is right at the topo-
logical transition and is gapless, with two quadratically
dispersing bands touching at k = 0. As a consequence of
the non-vanishing density of states at the gapless point,
the susceptibility is divergent and one expects a rotation
symmetry broken state with nonzero Ay at infinitesimal
U. More precisely, one expects Ag ~ exp(—1/aU), where
a is a constant reflecting the density of states [24]. This
is confirmed in Fig. 7 (A), where we show In Aq as func-
tion of —1/U for the case 6 = 0. (In all calculations we
choose Az = 0.5¢t.)

We then proceed to the case 6 # 0. For nonzero
0, when the non-interacting system given by hy in Eq.
(18) is gapped, one expects a transition to the rotation
symmetry broken state at finite interaction strength U..
The critical interaction strength as function of § defines
the phase boundary which separates the rotation sym-
metric phase from the rotation symmetry broken phase
with nonzero excitonic pairing. Since the inverted regime
(6 > 0) and the uninverted regime (6 < 0) have different
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dispersion, as is clear from Fig. 1 (A) and (C), the criti-
cal strength U, is expected to be smaller in the inverted
regime. We find that the transition to the symmetry
broken phase is a second order transition in mean field
theory, which implies that a closed form expression for
U, can be obtained by expanding F' of Eq. (B9) in powers
of Ay. Such Landau-type expansion can only have even
powers of Ag and is valid in the vicinity of the transition
when A is small; specifically, one has up to fourth order

F[AG]/N = (U™" = ¢2) Af + caAG. (34)

Then, U, is defined by the condition that the coefficient
of the quadratic term vanishes and we find

B 1 _ 1 1 (ReAk)2
Uc—a7 02—2]\[21;{ 73 |> (35)

where Ey defined in Eq. (B9) is evaluated at Ay = 0.
Figure 7 (B) shows the U—¢ phase diagram obtained by
evaluating U, as function of §. As expected, U, is smaller
in the inverted regime (blue curve) compared to the un-
inverted regime (red curve).

As discussed above in Sec. IVA1, in the inverted
regime defined by 6 > 0 one expects a second transi-
tion as the interaction strength increases. This second
transition is a topological phase transition described by
three Dirac fermions and occurs when |Ag| ~ |Ax—g, |-
One may thus identify a second U/ associated with the
topological phase transition and it is then natural to ask
how U! differs from U.. To get an understanding, we
employ the Landau theory of Eq. (34) and solve for Ag.
Minimization directly yields |Ag| = +/(ca — U~1)/2¢4.
Within this approach the value of U, is determined by
setting this result equal to the value of Ay at which which
the topological transition occurs. Defining the latter as
Ag, we find

U —-U, 1

< = = . 36
Uc (204UCA3)_1 -1 ( )

We have verified that this estimate based on (34) is in
good agreement with the numerically exact result. Since
(2¢,U.A3)~t > 1, Eq. (36) implies that the transitions,
i.e., the symmetry breaking transition and the topological
transition, are in close proximity. This is indicated by
the dashed line in Fig. 7 (B). To understand why (U, —
U.)/U. is small, it is helpful to consider the continuum
description discussed in Sec. IV A1, which is valid for
small §. In this case one has A2 ~ 6% and ¢4 ~ 672, from
which one finds (U! - U,)/U. ~ 6/1Ind. Note that in case
of the square lattice one finds (U, — U,)/U., ~ 1/1né.

The close proximity of the two transitions is an inter-
esting aspect of higher angular momentum band inver-
sions. The fate of these two transitions in an interacting
theory beyond mean field will be an interesting question
to address. Such theory should be formulated in terms of
three flavors of Dirac fermions coupled to a fluctuating
phase of the excitonic order parameter Ay, as suggested
by Fig. 6.



B. Structure of the ground state

Having discussed the quantitative aspects of the ex-
citonic pairing mean field theory, we return to a more
conceptual analysis, which we develop within the low-
energy continuum model. More specifically, we proceed
to examine the structure of the ground state as defined
in Eq. (4). As discussed in Sec. IT (see also Appendix A),
the continuum model ground state is specified in terms
of the function gy and we demonstrate below that the
excitonic pairing term Ag plays a key role in the inter-
pretation of its Fourier transform g(r). This leads to the
conclusion that a theory for the band inversion transition
which includes the excitonic pairing term gives access to
the structure of the electron-hole ground state.

To show this, it is useful to first consider the case Ay =
0, i.e., when rotation symmetry is not broken, and obtain
g(r). We note that the form of gy, and thus ¢(r), changes
across the band inversion transition and thus depends
on 0. We focus on two cases: the critical point of the
transition when § = 0, and the Chern insulating phase
when § > 0. Consider the former case first. Right at the
transition and for small momentum k — 0 one finds that
gk < k?/A(k, — ik,)™. Taking the Fourier transform to
obtain g(r) one obtains

g(r) oc1/2™, (37)

where z = z +1y. Note that since gy is considered in the
small momentum limit, (37) describes the long-distance
behavior of g(r). In this limit g(r) falls off as a power law
as function of the distance between the electron and hole
forming a pair, and this regard the interpretation of (37)
as describing the pairing of electrons and holes with an-
gular momentum [ = —m makes sense. Furthermore, in
Ref. 32 wave argued that many-body Slater-determinant
of (37), defined by (4), can be related to lowest Landau
level wavefunctions at filling factor v = 1/m. This argu-
ment was based on a comparison of the number of zeros
of the many-body wave function, viewed as a function of
one of its variables.

Consider next the band-inverted regime § > 0 (still
taking Ay = 0). In this case the small momentum limit
of gx is given by gi o< §/A*(ky + ik,)™, which implies
that in the long-distance limit g(r) has the form

g(r) oc (z5)" 71/ (38)

As a result, one has that |g| is constant for m = 2 [1]
and |g| ~ |z| for m = 3 at long distances. This long-
distance behavior of g(r) presents a puzzle, since it is
not immediately clear how to reconcile it with the inter-
pretation of g(r) as describing the pairing of electrons
and holes; the electrons and holes cannot be said to be
bound into a pair in a meaningful sense. In contrast,
this is different for the well-known case of an [ = —1
band inversion transition described by a Dirac fermion,
which corresponds to m = 1 in (38). In the case of the
latter, (38) corresponds to the “weak-pairing phase” [1]
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and the many-body Slater determinant of the electron-
hole paired state defines a many-body wavefunction for
the C' = £1 Chern insulator.

To make progress in understanding the higher Chern
number phases in the inverted-regime, we break rotation
symmetry by introducing a nonzero Ay, such that Ay is
given by (30). As explained earlier, the amplitude of Ay
controls a transition from a Chern insulating phase to a
trivial insulator phase, while keeping § fixed. As far as
the topology of the two phases is concerned, this is same
topological transition as the transition controlled by §
(while keeping A¢ = 0). The former, however, is charac-
terized by a critical gapless phase with three linearly dis-
persing Dirac points and as a result, the topological tran-
sition parametrized by Ag is described by m simultaneous
I = —1 band inversions, consistent with a total angular
momentum [ = —m transition. Fach of these [ = —1
band inversions, which are described by a Dirac fermion
theory, is well understood and has g(r) o 1/z. Conse-
quently, the band inversion via three Dirac points reveals
that a higher angular momentum band inversion has the
generic structure of three [ = —1 Dirac fermion transi-
tions, with three flavors of electron-hole pairing states
describing a ¥ = 1 quantum Hall phase.

This argument can be put on a more precise footing
by considering gx for Ay given by (30). In this case one
finds

o
x— 39
DX T+ Ao/Am (39)
which has m first order poles at k,, (n = 1,...,m) rather
than one m-th order pole at k = 0. Defining k1 =

(Ag/Ap)Y™ one has k, = e2*("=1/3; and (39) can be
written as a sum over the three poles > | v, /(ky —kn),
where ~, are the residues. Fourier transforming then
gives the expected form of g(r) for three [ = —1 transi-
tions, with additional oscillatory factors originating from
the nonzero momenta k,,.

A few comments are in order regarding the significance
of rotational symmetry breaking. As explained, the ex-
istence of m Dirac points at three distinct nonzero mo-
menta requires the breaking of rotation symmetry. When
full rotation symmetry is present it forces the three tran-
sitions to all occur at k = 0, which in a sense obscures
the topological structure of the transition, as evidenced
by (38). As far as the topological structure of the transi-
tion between the higher Chern number insulating phase
and the trivial insulator is concerned, the presence of
higher rotational symmetry is not required. In fact, from
the perspective of topology the situation where the three
I = —1 transitions occur at different momenta is more
generic.

A similar reasoning relying on broken rotation symme-
try has been presented by Read and Green in the context
of chiral d-wave pairing [1], which may be compared to
our m = 2 case. In the case of chiral d-wave pairing, Read
and Green showed that by studying the transition to a
trivial s-wave pairing state—in contrast to changing the



chemical potential—the correct edge excitation spectrum
and vortex states of a chiral d-wave superconductor can
be obtained. Since both the edge and vortex modes are
rooted in the topological structure of the phase, this is
another instance where only the more generic transition
described by multiple Dirac fermions (and with broken
rotation symmetry) reveals the true nature of the phase.

C. m-~component C' =1 quantum Hall states

The previous analysis of band inversions with broken
rotation symmetry, in particular the splitting into mul-
tiple [ = —1 band inversions, leads to an important in-
sight regarding the structure of the higher Chern number
phase. It can be stated as follows: Since the transition
is described by m flavors of Dirac fermions, the higher
Chern number phase can be viewed as an m-component
C =1 phase, of which each component is characterized
by a quantum Hall wavefunction for electron-hole pairs
at the Dirac point.

It should be emphasized that here we reach this conclu-
sion based on a theory for the band inversion transition
and do not make reference to the notion of a full Chern
band. This approach is very different from—but may
be compared to—an approach which explicitly addresses
the structure of the Chern band by studying its Wannier
state representation [43]. The latter approach clearly re-
quires knowledge of the full Chern band, as the Wannier
state representation is inaccessible within a (low-energy)
continuum model for the band inversion. Using the Wan-
nier state representation, Ref. 43 showed that a band
with Chern number C' > 1 can be mapped to C layers
of Landau levels, each of which is equivalent to a C' =1
band. Even though the two approaches are different, we
thus see that both point to a characteristic structural
property of higher Chern number bands: they are intrin-
sically multi-component in nature, with the number of
components given by the Chern number C.

The Wannier state representation of bands with higher
Chern number leads to a further important observation
regarding the action of translational symmetry on the
multi-layer quantum Hall systems [43]. Due to the struc-
ture of the Wannier states, one of the two primitive trans-
lations acts as a permutation on the C' layers and thus
acts nontrivially on the layer degree of freedom. This was
shown to have rather drastic consequences when lattice
dislocations are present. In particular, dislocations give
rise to an intricate interplay between geometry and topol-
ogy, resulting in topological degeneracy even for Abelian
states.

Within the framework of the continuum model for the
band inversion transition, we can establish a connection
to this result by considering the effect of the m-fold rota-
tions. As noted earlier, the m-fold rotations give rise to
a residual Z,, symmetry. Furthermore, the m-fold rota-
tions permute the m Dirac points and thus permute the
m C = 1 components. As an example, consider m = 3
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and let ko 1 2 denote the location of the three Dirac points
at the transition, as shown in Fig. 6. The threefold ro-
tation relates these as k, = Ci kg, where n =0,1,2. As
explained in Sec. IV A 1, the three Dirac point momenta
ko 1,2 are determined by the phase of Ag. A U(1) vortex
in the phase of Ay is associated with a 27 /3 rotation and
permutes the Dirac points. This suggests an interesting
field theoretic description of the band inversion transition
in terms of an XY variable Ag and three Dirac fermions,
where proliferation of vortices in the phase of Ag restores
rotational symmetry and leaves the Dirac fermions ill-
defined. We leave the systematic development and anal-
ysis of such field theoretic description of higher angular
momentum band inversions for future studies.

V. TIME-REVERSAL INVARIANT
GENERALIZATIONS

A. Transition from normal to topological insulator

Now that we have introduced a class of Chern insu-
lator models based on the notion of higher angular mo-
mentum band inversions, both the theory and the his-
torical development of topological insulators lead to a
natural question: do there exist time-reversal invariant
generalizations of such models? For the orbital mod-
els of Sec. IIT A the answer is clearly yes, since we may
simply introduce a spin degree of freedom and build a
T-invariant Hamiltonian by combining two copies of hy:
one for the up spins and a time-reversed version of hy for
the down spins. In particular, in the spirit of BHZ [2, 44]

one can define
Hoc = (h * ) (10)
“k

This Hamiltonian describes a transition between a trivial
insulator and a Chern insulating phase in each spin sec-
tor, where the Chern numbers associated with the two
spin species have opposite sign. This can be viewed as a
transition between a normal insulator and a topological
insulator characterized by an integer number of helical
edge modes. The number of helical edge modes is equal
to the angular momentum of the transition.

At low-energies, close to the band inversion transition,
the coupling of the |l = 0,41) and |l = £m,+3) bands
is a diagonal matrix Ay in spin space given by

Ax=A (k@ (41)

i)
with m = 2,3 and k+ = k; +ik,. By construction, this
implies that the transition from normal to topological in-
sulator (or vice versa) is special in the sense that right at
the critical point of the transition (i.e., when the bands
touch) the bands disperse quadratically. As in Sec. IV,
one then expects interaction effects to be important. In
this time-reversal invariant case, the two possibilities for



correlated states are the excitonic insulator and the frac-
tional topological insulator [21, 45-52]. In particular the
fractional topological insulator is an interesting possibil-
ity, and band inversions of the type described by (40) and
(41) are a promising venue for their realization.

The Hamiltonian of Eq. (40) has the property that
it commutes with spin rotations about the z-axis, i.e.,
[Hk,0.] = 0, which implies that S, is conserved. This
property, however, is not guaranteed unless it is man-
dated by appropriate physical symmetries of the system.
For a given symmetry group, the most general Hamilto-
nian allowed by symmetry may have spin-orbit coupling
terms which violate S, conservation. Since such terms
are likely to spoil the form of the coupling Ay at low en-
ergies, and thus potentially destroy the preconditions for
interactions to be important, it is necessary to determine
under what conditions the form of (40) is enforced by
symmetry.

B. Symmetry protection

To examine the symmetry protection of the T-invariant
band inversion, we consider the axial point groups of two-
dimensional layer groups (as in Sec. III) and determine
the constraints each imposes. Importantly, whereas in
Sec. III we only needed to consider symmetry groups
compatible with nonzero chirality, here we must consider
a more general class of axial symmetry groups. These
groups are summarized in Table II, organized by crystal
system and the presence of inversion symmetry.

We start by examining systems with orbital (I) and
spin (j.) degrees of freedom given by (I,5.) = (m,£3),
with m = 2,3, which are simple spinful generalizations
of the models introduced in Sec. IIT A. We then consider
T-invariant generalizations of the models introduced in
Sec. III B, which are constructed from two j, = j:%
Kramers pairs. We conclude by discussing a generalized
Kane-Mele model [53] based on Sec. IITA 3.

1. Systems with (l,j.) = (m,+1) states

Consider the triangular lattice with s and f states (i.e.,
m = 3). We introduce the spin degree of freedom by
defining

H=S 0 1d,, & =[5+ 42
zk: ka k> k (fkT-,l 9 ( )

such that Hy is matrix in orbital and spin space; o, = £1
denotes 1,]. A T-invariant version of Eq. (18) is given
by

7'[k = ExT, + A1>\1{17_y + A2A1{2Tx0—za (43)

which is clearly of the form (40). To determine what
symmetries are sufficient to protect the structure of the
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Hexagonal Trigonal Tetragonal
Inversion Dgp, D3q Dyp
Con Se Can
No Inversion DG, C()'U, Dgh D3, Cgv 1747 041,, Dzd
Cs, Csn Cs C4, Sy

TABLE II. Classification of axial point groups. Table
summarizing the basic symmetry properties of the axial point
groups. The point groups with an inversion symmetry can
protect the structure of the band inversion given by Eqgs. (40)
and (41). Point groups on the second row differ from the first
row by the lack of a twofold rotation perpendicular to the
principal rotation axis; point groups on the fourth row differ
from the third row by the lack of a perpendicular twofold
rotation or a vertical mirror plane.

Hamiltonian, we begin by examining the hexagonal and
trigonal symmetry groups of Table IT with inversion sym-
metry. In the presence of both T" and inversion symmetry
all bands are necessarily twofold degenerate, imposing a
strong constraint on the Hamiltonian.

We first observe that (43) is invariant under all sym-
metries of the hexagonal group Dgp,. In fact, if Dgy, is im-
posed (43) exhausts all symmetry-allowed terms, which
implies that the full group Dgy is sufficient to protect
the band inversion transition. The same is true for the
trigonal group D3q4, which is a subgroup of Dg;. We con-
clude that both Dg; and Dsg protect a T-invariant band
inversion of spinful s and f bands.

Next, consider the symmetry groups Cgp and Sg.
These differ from the previous two groups by the ab-
sence of twofold rotations about axes in the plane. As
a result of the lower symmetry, the Hamiltonian takes a
more general form given by

Hi = ex + (AN + AN )7,
+ (A + AN 0., (44)

where now A; o are complex and we have defined )\I{i =
){1 ii)\ﬁz. Since (44) still commutes with o, the Hamil-
tonian is of the form (40). The effect the of the more
general coupling can be understood by expanding around
the band inversion transition at k = 0. We find

A = (—iA1 £ M)k + (—iA] £ Ak, (45)

which should be compared to the discussion in
Sec. IITA4. We see that the additional couplings only
have an effect on the phase and amplitude of the cu-
bic terms and therefore do not fundamentally alter the
structure of the band inversion. As a result, all symme-
try groups which possess an inversion symmetry provide
sufficient protection for a T-invariant band inversion with
higher angular momentum.

We then proceed to the point groups listed in Table
II which do not have an inversion symmetry. Owing to



the absence of inversion symmetry, additional spin-orbit
coupling terms can be symmetry-allowed. For instance,
in the case of Cg, the following two spin-orbit coupling
terms are generically present in the Hamiltonian:

Hi = t1i(M oy — N20,) + tor, Aoy — AP20,).  (46)

These terms do not commute with o, and, furthermore,
when expanded in small momenta k the first term de-
scribes a linear splitting of the spin species. Such linear
coupling changes the nature of the band inversion, as it
causes the density of states to vanish at the transition.
A similar result is obtained for the symmetry groups Dg
and Cg, which leads to the conclusion that systems gov-
erned by these groups cannot have symmetry-protected
higher angular momentum band inversions.

The point group Dgy, is similar to Dg and Cg, but dif-
fers in an essential way: instead of a twofold rotation
about the principal axis it contains a horizontal reflec-
tion. Since under the latter reflection (o,0y,0.) —
(=04, —0y,0,) the terms of Eq. (46) are symmetry-
forbidden. We therefore find that Dsj;, imposes sufficient
constraints for the protection of the band inversion. This
is not true for the point group Cjsj,, as its admits the cou-
pling Ag7,, which changes the nature of the band inver-
sion transition.

Finally, since the trigonal groups without inversion are
all subgroups of symmetry groups for which protection is
lost, these do not protect the T-invariant higher angular
momentum band inversion.

We conclude this part by noting that a similar analysis
applies to the square lattice Hamiltonian of Eq. (13). Its
T-invariant generalization based on (40) is given by

Hy = ek + Al/\ﬁl Ty + A2/\ﬁ27'xaz. (47)

The form of this Hamiltonian is protected by tetrago-
nal Dy symmetry. Lowering the symmetry to Cy, al-
lows for the additional couplings A’Q/\ﬁ%'y + A’l)\il TeOz,
which have an effect similar to that described by Eq. (45).
When inversion symmetry is lacking, as is the case for
symmetry groups Dy and Cy,, the additional spin-orbit
coupling term A} o, — A0, is activated.

2. Systems with j, = i% doublets

In Sec. IIIB we introduced models for higher angu-
lar momentum inversions of j, = j:% states. To de-
scribe such band inversions, it is necessary to consider
two j, = :I:% Kramers pairs, see Eq. (26). As a result,
a T-invariant generalization can be obtained by impos-
ing T symmetry on the Hamiltonian defined in Eq. (27),
which yields

he = exT: + (AN oy + AN 60), (48)

where A is complex and )\ﬁi = )\1{1 j:z')\ﬁ2 as before. Close
to k = 0 the coupling between the bands is a matrix in
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spin space and reads as

AK?
KT \Aatkd

To determine the symmetry protection it is necessary
to specify the symmetry quantum numbers more pre-
cisely. Here we first assume the presence of inversion
symmetry and focus on the case where one of Kramers
pairs is inversion even and one is odd. This implies that
(48) is invariant under inversion. More specifically, (48)
is invariant under all symmetries of Dg, and represents
the most general form of the Hamiltonian with this sym-
metry. Furthermore, lowering the symmetry to Dsg4, Cen,
or Sg does not give rise to additional terms in the Hamil-
tonian and a result, all symmetry groups with inversion
symmetry protect the structure of the T-invariant band
inversion.

8.  Generalized Kane-Mele model

We conclude this section by discussing the time-
reversal invariant generalization of the honeycomb lattice
model defined in Eq. (22). As discussed, the honeycomb
lattice model can be viewed as the Haldane model with
third-nearest neighbor hopping across the hexagon. This
immediately suggests that a time-reversal invariant ver-
sion is obtained by replacing the Haldane term with the
Kane-Mele spin-orbit coupling term [53]. The Hamilto-
nian then becomes [see Eq. (22)]

Hie = (e —t' Gt )4 + (05 — ' G T- + tsoeM o0 (50)

The structure of this Hamiltonian is symmetry-protected
as long as the symmetry group of the systems is Dgy, or
Cﬁh.

VI. DISCUSSION AND CONCLUSION

In this work we have studied higher angular momen-
tum band inversions in two dimensions. Owing to the
non-vanishing density of states, these higher angular mo-
mentum band inversions provide a promising venue for
realizing many-body generalizations of the topological
phase transitions known from free fermion systems. To
achieve such realizations, two main directions for future
research can be distinguished: the identification of ma-
terials which host higher angular momentum band inver-
sions and a further investigation of the effect of interac-
tions.

The construction of lattice models presented in Sec. 111
is a first and important step towards the identification
of materials which exhibit rotation symmetry protected
band inversions. In particular, we have shown that three
different types of candidate systems can be identified,
which differ in the nature of the microscopic degrees of
freedom. Clearly, one way to realize an inversion of bands



with relative angular momentum m is to consider mate-
rials with local atomic orbital degrees of freedom, such
as d- or f-wave states. As evidenced by an extended Hal-
dane model on the honeycomb lattice, a second possibil-
ity relies on the nontrivial structure of a primitive unit
cell, where wave functions transforming as higher angular
momenta are formed by linear combinations of states at
different sites. A third route relies on spin angular mo-
mentum states in strongly spin-orbit coupled systems.

These systems provide potential avenues towards the
experimental realization of many-body band inversions.
It is important to note that realizing many-body Chern
band inversion transitions requires broken time-reversal
symmetry, which may be challenging to achieve by means
other than proximity to magnetic systems or the pres-
ence of external magnetic fields. In this sense, a fruitful
approach could target the time-reversal invariant gener-
alizations discussed in Sec. V, which rely on the presence
of particular spin-orbit couplings.

A further direction for the future is the more detailed
theoretical study of the effect of electronic interactions
on the nature of the band inversion, focused in particular
on the relative stability of the excitonic insulator phase
and the fractional quantum Hall-type liquid states. In
this regard, the lattice models introduced in this work
provide the basis for numerical studies.

We conclude by pointing out that our work gives rise
to an interesting application in three dimensions, specif-
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ically in the context of topological semimetals. Starting
from the lattice models for higher angular momentum
band inversions, one may introduce a third dimension
and obtain a minimal model for a Weyl semimetal or a
Dirac semimetal. More specifically, in case of the chiral
models one obtains lattice models for Weyl semimetals
with higher monopole charge [10]. In fact, the square
lattice model of Eq. (13) reproduces the double Weyl
semimetal model introduced in Ref. 54. The triangu-
lar lattice models can be promoted to lattice models for
Weyl semimetals with monopole charge C' = 3. The time-
reversal invariant generalizations introduced in Sec. V
can be extended with a coupling in the third dimension
to produce simple lattice models for (band-inversion in-
duced) Dirac semimetals. In this way the T-invariant
model of Eq. (43) gives rise to Dirac points with quadratic
dispersion [55].
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Appendix A: Ground state of Hamiltonian (2)

The Hamiltonian hy of Eq. (2) is diagonalized with
the help of the unitary matrix Uy, which contains the
eigenvectors as its columns, and one has

where Ex = \/ej + |Ak|? is the energy. The matrix Uy
must satisfy Ul Uy = 1, which implies |ug|? 4 |vx|? = 1.
The ratio of uy and vy is independent of the U(1) phase
degree of freedom associated with the eigenvectors and is
given by

v /ux = —(Ex — &)/ A (A2)
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We define normal mode operators k. and g, corre-
sponding to the energy eigenvalues +Fy as

e = (7‘“> = Uty

Ykh (A3)

The normal mode operators for the negative energy states
are given by

'y;r(h = vkclte + ukclth. (A4)

The mean-field ground state |GS) is given by filling all
the negative energy states, i.e., |GS) =[], 'y]ih|0>. Sub-
stituting Eq. (A4) and using the identity ckthh|O> = |0},
the ground state can be written in the following form

|GS> = H(uk + ’UkCLeCkh)|Q>.
k

(A5)

Here |Q) defines a vacuum state obtained by filling all
valence band states: Q) =[], c;r(h|0). Since ¢y creates
holes in the vacuum defined by |€2), it is natural to per-
form a particle-hole transformation on the hole operators
given by

Ckh — CT_kh, Ykh —7 ’YT_kh- (AG)
After particle-hole transformation the normal mode an-
nihilation operators take the form

_ T

Tke = VkC_yp — UkCke
_ i

Y—kh = UkCy, + UkC—kh

and in full analogy with BCS theory one obtains the
ground state by determining the state which is annihi-
lated by all such normal mode operators. A state which
clearly has this property is [ [, YkeY—xn|S2) and one thus
finds the ground state as

1GS) = [ [ (ur + vieeleel 1)1,
k

(A9)
which is precisely (A5) with ¢y, — cT_kh.

Appendix B: Excitonic insulator mean field theory

For the purpose of a mean field analysis it is useful
to express interacting Hamiltonian Hy of Eq. (31) in a
form which can decoupled. To this end we rewrite the
interacting Hamiltonian as

U

AN
Kk

Hy = (Ph T 01) (Pl Toiprcr ) (B1)

with ¢ as defined in Eq. (14). Here N is the system size.
To perform the mean field decoupling of the interaction,
we write the action of interacting system as S = Sg+ Sy

with So = [ d7 Y ¢l (8 + ) and Sy = [ drHy.
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The interacting part of the action is decoupled in terms
of the field Ay as exp(—Sy) = [ DAgexp(—S;[Ao)),
where S};[Ag] is now bilinear in the fermions and given

by S;;[Ag] = fo drH{;[Ag] with

H'[Ao] =200 Y ¢lmapr +ANAZ /U (B2)
k

For the subsequent analysis it is convenient to redefine
the mean field as 2A¢y — Ag.

1. Mean field solution

Integrating out the fermions one obtains the free en-
ergy as a functional of Ag; the saddle-point of this free
energy defines the mean field self-consistency equation,
which is given by

oF U

R Ap— 2
5A, 0 T Ao 2N 2.

(phrater). (B3)
The expectation value is defined with respect to the
ground state of the mean field Hamiltonian

IS
e = (Eli _gkk> , Xk = A+ Ay, (B4)
where Ag = Ajg (i)\{il +)\{:2). Here we have taken A; = Ay
in Eq. (18) and redefined it as A,,—3. The energies
of the mean field Hamiltonian are given by +Fy, =

+4/¢; + |Xk|? and the matrix Uy which diagonalizes the
mean field Hamiltonian is given by

1 -y €k — Ek>
Uy = —— k . B5
« 2Ek(Ek — 5k) (gk — Ex Xk ( )

Substituting this into the self-consistency condition (B3)
one finds

B0= gy N B -

f(E)]- (B6)

where f(e) = (1 + €%¢)7! is the Fermi function. At
zero temperature the self-consistency condition reduces
to Ao = % Zk Re[Ek]/Ek.
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2. Free energy

The free energy itself can be directly evaluated and at
finite temperature T'

:—ZlnCOSh( >+ —=A3,  (B7)

where we have ignored the constant contribution
—(N/B)In4. By taking the derivative with respect to
Ag and setting it equal to zero one recovers the saddle-
point equation (B6).

At zero temperature the free energy takes the simple
form

F[Ag]==> Ex+ NAJ/U. (B8)
k

3. Expansion of free energy in A

To study the phase transition to the rotation symmetry
broken state one may expand the free energy powers of
the order parameter A to obtain a simple Landau theory
for the transition. At zero temperature, the free energy
(B8) can be expanded as

F[Ao]/N = (U™! = ¢2) A§ + cuAG, (B9)

where the expansion coefficients are given by

1 ReAk)
2= 2NZ<Ek B )

o 1 1 (ReAk)2 (ReAk)4

(B10)

Note that since we are expanding around Ay = 0, in
these expressions the energy Ey is evaluated at Ag, i.e.,

Ek = \/e’:‘i + |Ak|2.
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