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We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and
Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its perfor-
mance can be substantially improved by determining the tensors using an eigenvalue solver as
opposed to the power method used in CTMRG. We also generalize the variational uniform matrix
product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D trans-
fer matrices and discuss similarities with the corner methods. These two new algorithms will be
crucial to improving the performance of variational infinite projected entangled pair state (PEPS)
methods.

I. INTRODUCTION

Two-dimensional (2D) tensor networks are ubiquitous
in many-body physics1. They occur naturally in the
context 2D classical many-body systems as representa-
tions of partition functions2–8 and can represent ground
states, finite temperature states and the time evolution
of 1D quantum systems, e.g. for systems with local in-
teractions in terms of Trotter-Suzuki decompositions9–17.
Additionally, they occur in the context of tensor prod-
uct state (TPS)18–21 or projected entangled pair state
(PEPS)22 representations of 2D quantum systems and
boundaries of 3D classical systems. Most 2D tensor net-
works of interest do not allow exact solutions and can
only be studied approximately, and a copious array of
numerical tensor network methods have been developed
over many decades for their study2–8,13,15–17,22–36.

Methods for contracting 2D tensor networks fall
roughly into two main categories, which we refer to as
“coarse graining methods” and “boundary methods.”
Examples of coarse graining methods are tensor renor-
malization group (TRG)27 and extensions such as sec-
ond renormalization group (SRG)30, higher order ten-
sor renormalization group (HOTRG)33, and tensor net-
work renormalization (TNR)34–36. A common feature
of these methods is that the local degrees of freedom
are combined and truncated, so the Hilbert space of the
network is explicitly changed at each step. For bound-
ary methods, a matrix product state (MPS) is used as
an ansatz for the environment, and this MPS is op-
timized in various ways. Boundary methods include
the density matrix renormalization group (DMRG) algo-
rithm6,13,15,23,24,26,29, the corner transfer matrix renor-
malization group (CTMRG) algorithm3–5,7,8, the time
evolving block decimation (TEBD) algorithm16,17,28,37,
the time dependent variational principle (TDVP)38,39,
etc. Boundary methods have certain advantages: they
are optimized iteratively instead of optimized layer by
layer like most coarse graining methods, the form of the
environments can make it much easier to calculate arbi-
trary correlation functions, and they appear to be very

well-suited for performing PEPS calculations22,40–44.

The history of modern boundary methods goes back
to Nishino’s application of DMRG to calculating fixed
points of transfer matrices6. Soon after, Nishino and
Okunishi created the CTMRG algorithm7,8 by combin-
ing the corner transfer matrix (CTM) method of Bax-
ter3–5 and White’s DMRG algorithm23,24. CTMRG was
initially introduced as a powerful numerical tool for con-
tracting 2D classical partition functions. In addition, it
has been used extensively in TPS/PEPS calculations of
3D classical and 2D quantum systems, where it is used to
approximate the contraction of 2D tensor networks that
arise in those calculations. CTMRG was used as the con-
traction method in the original TPS calculations19–21,45.
An MPS-based boundary method was used for the orig-
inal finite PEPS calculation22 while iTEBD, an MPS-
based power method, was used to perform the original
infinite PEPS40,41 calculations. Since then, PEPS cal-
culations in the thermodynamic limit have mostly been
performed using CTMRG as the contraction method, and
a variety of advancements have been made to the method
over recent years in that context43,46–53.

Here, we present two new approaches that improve
upon the speed of CTMRG for contracting 2D tensor
networks in the thermodynamic limit. First, we present
a transfer matrix version of the recently introduced vari-
ational uniform matrix product state (VUMPS)54 al-
gorithm for contracting 2D tensor networks. We also
present a new corner method analogous to CTMRG that
better exploits translational invariance by solving for the
environment tensors using a set of fixed point equa-
tions. We present benchmark results for VUMPS and
our new corner method, showing remarkable speedups
over CTMRG, particularly for systems near criticality.
Our benchmarks include a variety of both 2D statistical
mechanics models and 2D quantum systems represented
as PEPS.
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II. PROBLEM STATEMENT

We are interested in the approximate numerical con-
traction of infinite 2D tensor networks. For simplicity,
throughout the paper we will focus on tensor networks
on an infinite square lattice with a single site unit cell.
We are agnostic about where the tensor network comes
from: it could be a 2D classical partition function, the
norm of a PEPS, etc.

For concreteness, we are interested in evaluating the
contraction of the following tensor network

κMN ≡ Tr

...
...

...
...

. . .

. . .

. . .

. . .

T T T T

T T T T

T T T T

T T T T

. . .

. . .

. . .

. . .

...
...

...
...

(1)

(for readers unfamiliar with tensor networks, we refer
them to Ref. 55 for an introduction). In Eq. (1), we work
directly in the thermodynamic limit, i.e. the number
of lattice sites in the horizontal and vertical directions,
M,N , approaches∞. Tr[...] denotes two traces, one over
the open horizontal indices and another over the open
vertical indices. If the network represents a 2D classical
partition function, the fourth-order tensor T is related to
the local Boltzmann weight (possibly up to a local tensor
renormalization) and κ is defined to be the “partition
function per site,”5 related to the free energy per site.
If the network is the evaluation of the norm of a PEPS,
each tensor T is the bra and ket PEPS tensor at each site
contracted over the physical index56, and κ is the norm
per site.

We are also interested in calculating observables such
as expectation values of local operators or correlation
functions. In terms of the tensor network, these are rep-

resented as impurity sites, such as:

〈XY 〉 = Tr

...
...
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...
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. . .
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T T T T
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T T T T

. . .
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. . .

...
...

...
...

/ κMN

.
(2)

We want a contraction method that makes it easy to cal-
culate arbitrary correlation functions, since they show
up in e.g. calculating structure factors or summing
Hamiltonian terms in variational PEPS ground state
optimizations42–44. For this reason we focus on MPS
boundary methods, which make it much easier to calcu-
late arbitrary correlation functions. It is more challeng-
ing in methods like TRG/TNR where all of the tensors
at each layer must properly be kept track of, and cal-
culating arbitrary correlation functions on the lattice is
potentially very complicated.

Here we will also define the row-to-row transfer matrix,
which is simply a single infinite row of the tensor network:

. . . T T T T . . .

. (3)

The row-to-row transfer matrix is an infinite, transla-
tionally invariant matrix product operator (MPO). We
also define the column-to-column transfer matrix as an
infinite column of the tensor network:

...

T

T

T

T

...

. (4)

For MPS boundary methods, the evaluation of dia-
grams like Eq. (1)–(2) is performed by finding the leading
up and down eigenvectors of the row-to-row transfer ma-
trix portrayed in (3) and the leading left and right eigen-
vectors of column-to-column transfer matrix portrayed
in (4). Exact MPS representations of these eigenvectors
are in general infinitely large, but for many 2D tensor
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networks representing physical many-body systems good
MPS approximations exist (in some cases provably57).
We refer to these uniform MPS fixed points as the up,
down, left and right boundary MPSs, and call their MPS
tensors respectively AU , AD, AL and AR. As an example,
the fixed point equation for the top MPS is as follows:

. . . AU AU AU AU
. . .

. . . T T T T . . .
≈

κM . . . AU AU AU AU
. . .

(5)

where κ is the partition function or norm per site defined
in Eq. (1). At the fixed point, analogous equations to
Eq. (5) should be satisfied by the other boundary MPSs.

Once the boundary MPSs are obtained, local observ-
ables and correlations functions can be computed effi-
ciently. For example, the expectation value of a local ob-
servable can be calculated from the up and down bound-
ary MPSs as follows:

〈X〉 =

. . . AU AU AU AU AU
. . .

. . . T T TX T T . . .

. . . AD AD AD AD AD
. . .

. . . AU AU AU AU AU
. . .

. . . T T T T T . . .

. . . AD AD AD AD AD
. . .

. (6)

These networks can then be contracted efficiently28. Ar-
bitrary correlation functions can also be computed effi-
ciently using fixed point boundary MPSs42.

There are many different approaches to obtaining the
four boundary MPS fixed points of the row-to-row trans-
fer matrix (3) and column-to-column transfer matrix
(4). In the next section, we review one very com-
monly used contraction method, the corner transfer
renormalization group (CTMRG) algorithm of Nishino
and Okunishi3–5,7,8, and describe two new proposals, one
based on the recently proposed variational uniform ma-
trix product state (VUMPS) algorithm54, and one that
we refer to as the fixed point corner method (FPCM),
which is like CTMRG but solves for the boundary ten-
sors using a series of fixed point equations.

III. ALGORITHM OVERVIEW

One strategy for evaluating Eq. (1)–(2) involves finding
a single boundary MPS eigenvector at a time. The infi-
nite time evolving block decimation (iTEBD) of Orús and

Vidal16,17,28 is an example of this strategy. In iTEBD, a
power method is used to find the fixed point MPS eigen-
vector by repeatedly applying a row-to-row or column-
to-column transfer matrix to a starting MPS. In this
work, one of the strategies we propose also focuses on
solving for a single MPS eigenvector for each direction
at a time. Instead of iTEBD, we propose using the
recently introduced variational uniform matrix product
state (VUMPS) algorithm54, which can be viewed as an
improvement on the infinite density matrix renormaliza-
tion group (iDMRG)23,24,29 where an MPS is optimized
directly in the thermodynamic limit instead of grown
site-by-site to reach the thermodynamic limit. VUMPS
was originally applied to finding ground state approxima-
tions of 1D and quasi-1D quantum states, where it was
shown to substantially improve the computational per-
formance over iTEBD and iDMRG. In analogy to how
Nishino introduced the transfer matrix DMRG (TMRG)
method as an extension of applying DMRG to finding
the fixed point MPS approximation of the transfer ma-
trices of partition functions6, in Section III A we show
how VUMPS can be applied to find the fixed point of
infinite uniform transfer matrices.

Another strategy for finding the boundary MPSs is to
attempt to find all four MPSs at once. An example of this
approach is the corner transfer matrix (CTM) method of
Baxter3–5, and its improvement by Nishino and Okunishi
called the corner transfer matrix renormalization group
(CTMRG)7,8. In the CTMRG algorithm, all four bound-
ary MPSs are iteratively optimized. We give a brief re-
view of CTMRG in Section III B. One of the new meth-
ods we propose in this work, which we refer to as the
fixed point corner method (FPCM) and is explained in
Section III C, also solves for all four MPS fixed points
at once. Like CTMRG, FPCM uses CTMs, but solves
for the CTMs and MPS tensors using a series of fixed
point equations (which were originally written down by
Baxter3–5).

A. VUMPS for contracting infinite 2D tensor
networks

Here, we present the application of the recently pro-
posed VUMPS algorithm54 to finding MPS fixed points
of infinitely large, translationally invariant transfer ma-
trices. Essentially, we apply VUMPS to the problem of
directly finding fixed points of the form shown in Eq. (5).

We now present VUMPS for obtaining the top fixed
point MPS of the network. We would like to find the
uniform MPS satisfying Eq. (5). In VUMPS, we use the
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mixed canonical form of the MPS, so Eq. (5) becomes:

AL
U AL

U AC
U AR

U AR
U

. . .

T T T T T

. . . ∝

. . . AL
U AL

U AC
U AR

U AR
U

. . .

. (7)

In the mixed canonical gauge, for the state to be (ap-
proximately) translationally invariant the tensors must
satisfy the relations:

AL
U CU ≈ AC

U ≈ CU AR
U

(8)

where the singular values of the matrix CU are the
Schmidt values of the uniform MPS. Note the inequal-
ities in Eq. (8), since the relationships will not generally
all simultaneously be satisfied exactly during the opti-
mization. How accurately they are satisfied will relate
to how translationally invariant the state is, and should
be satisfied to very high accuracy at the fixed point of
the VUMPS algorithm. Additionally, AL

U and AR
U are

isometric tensors satisfying:

AL
U

ĀL
U

=

(9)

AR
U

ĀR
U

=

(10)

at all times. Any uniform MPS can be turned into
this form, for example with the algorithm introduced in
Ref. 28 in the context of iTEBD or with the algorithm
introduced in Ref. 1 and expanded on in Appendix B 1.

The VUMPS algorithm proceeds by repeating the fol-
lowing steps until convergence:

1. Solve for the environments:

EL T

AL
U

ĀL
U

≈ κL EL

(11)

T

AR
U

ĀR
U

ER ≈ κR ER

(12)

where κL ≈ κR up to errors in Eq. (8).

2. Solve for zero-site and single-site tensors:

CU

EL ER ≈ λC CU

(13)

AC
U

EL T ER ≈ λAC AC
U

(14)

where λAC/λC ≈ κL/R near or at the fixed point.

3. From AC
U and CU found in step 2, find new MPS

tensors AL
U and AR

U satisfying Eq. (8). Techniques
for numerically solving these equations are de-
scribed in the original VUMPS proposal in Ref. 54.

The VUMPS algorithm proceeds by repeating steps 1–
3 until convergence. Convergence can be measured, for
example, by the change in the singular values of C from
step to step. Another measure for the convergence that
can be used is the norm of the residual BU :

BU =

AC
U

EL T ER

− κL AL
U

CU

EL ER

(15)
(or the analogous right version), similar to the gradient
discussed in Ref. 54.

For finding the fixed point of a row-to-row or column-
to-column transfer matrix Hermitian about the horizon-
tal, this scheme maps directly to the original VUMPS
proposal54, and the algorithm solves for both the top and
bottom fixed points, which are just Hermitian conjugates
of each other. For a Hermitian row-to-row transfer ma-
trix, the fixed points environments EL, ER are related to
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the fixed points of the boundary MPS tensors AL, AR

used in the CTMRG ansatz (which we review in Sec-
tion III B), the gauged MPS tensors AL

U , A
R
U are related

to the fixed points of isometric projectors used to renor-
malize the CTM environment (i.e. the eigenvectors of
the product of the four CTMs), and the center tensor CU

is related to the product of CTMs CLUCUR. This corre-
spondence is discussed in more detail in Ref. 1. A similar
correspondence between the fixed point of CTMRG and
the fixed point of DMRG applied to Hermitian transfer
matrices was pointed out by Nishino and Okunishi6–8.

For contracting 2D statistical mechanics partition
functions and calculating the norm of a PEPS, trans-
fer matrix VUMPS is in fact simpler than the original
proposal, because we do not in general have to be con-
cerned about summing Hamiltonian terms which can lead
to divergences if the fixed point is not calculated prop-
erly54,58, and methods such as Arnoldi can be directly
employed to find the fixed points. One may have to be
more careful contracting networks that involve sums of
local operators, such as when calculating structure fac-
tors or gradients of PEPS. See Ref. 42–44 for approaches
to contracting such networks, where the environments
calculated from the norm of a PEPS are used to aid in
the contraction.

In general for a non-Hermitian network, to get the en-
vironment for calculating local observables, one must ad-
ditionally solve for the bottom fixed point (and in order
to calculate arbitrary correlation functions, the left and
right fixed point MPSs as well). For a network that isn’t
“very asymmetric,” the top fixed point can be used as a
good starting point for the bottom fixed point MPS. It
is also important to note that in the case of symmetry
breaking, one should take care that the fixed points in
different directions are all compatible, in the sense that
they correspond to the same symmetry-broken states.

For non-Hermitian networks, the method we propose
here is analagous to iTEBD, where each of the four
boundary MPSs is solved for in separate optimizations
(although in iTEBD the fixed points in each direction
are obtained with power methods, which was shown to
be slower than VUMPS in Ref. 54). An alternative ap-
proach from the one proposed here is to solve for two
opposing fixed points in the same optimization (for ex-
ample both the top and bottom fixed points of the row-to-
row transfer matrix). This is approach has been used in
the context of applying DMRG to non-Hermitian transfer
matrices (TMRG)13,15,26,31,32,59–63. It would be interest-
ing to generalize the transfer matrix VUMPS algorithm
to solving for both fixed points at once, but we do not
explore that here.

B. Corner transfer matrix renormalization group
(CTMRG) review

In this section we review the corner transfer matrix
renormalization group algorithm, which was originally

introduced by Nishino and Okunishi and extended in a
variety of other works in the context of PEPS calcula-
tions. The general ansatz used for the environment in the
corner transfer matrix renormalization group (CTMRG)
algorithm is as follows:

CLU AU

AL T

CURAU

ART

CRDAD

ART

CDL AD

AL T

. (16)

The matrices {Ci} in Eq. (16), known as the corner
transfer matrices (CTMs), were originally introduced by
Baxter for studying 2D classical statistical mechanics
problems3–5,7. The CTMs represent approximations of
the infinite corners of the tensor network. The bound-
ary MPS tensors {Ai} in Eq. (16) represent approxi-
mations of the half-row transfer matrices (HRTMs) and
half-column transfer matrices (HCTMs). In our nota-
tion, CLU denotes the CTM approximating the upper
left corner of the network, AL denotes the left HRTM of
the network, AU denotes the upper HCTM of the net-
work, etc. We refer to the set of tensors {Ci, Aj} as the
environment of the 2D tensor network.

The CTMRG algorithm is thought of in terms of con-
tracting row-to-row transfer matrices and/or column-to-
column transfer matrices composed of tensor T into the
environment, either simultaneously in multiple directions
or sequentially in specified directions (depending on de-
tails of the renormalization scheme).

If the row-to-row and column-to-column transfer ma-
trices of the network are absorbed into the environment
indefinitely, then the environment tensors would grow ex-
ponentially in size, so some sort of truncation scheme is
required. The truncation is referred to as renormaliza-
tion. This renormalization of the enlarged environment
is performed by introducing projectors into the network.
There are multiple methods available for how to grow
the lattice as well as how to choose the projectors. We
will start by describing how these projectors are chosen
for tensor networks with reflection symmetries, where the
ansatz in Eq. (16) can be constrained.

1. Symmetric CTMRG review

To get some intuition for how CTMRG works, it is
useful to discuss the case in which the network tensor T
is Hermitian about all reflections (about the horizontal,
vertical and diagonals, in other words Tlurd = T̄ruld =
T̄ldru = T̄drul

64). This is the case for many statistical
mechanics models. In this case, we can constrain the
environment tensors in the ansatz in Eq. (16) to satisfy
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AU = AR = AD = AL ≡ A, CLU = CUR = CRD =
CDL ≡ C, and additionally impose C = C† and As =
(As)†65. Eq. (16) becomes:

C A

A T

CA

AT

CA

AT

C A

A T

. (17)

This is the CTMRG case that was covered in the initial
proposal of Nishino and Okunishi7,8 (though extensions
to the asymmetric case were discussed). The CTMRG al-
gorithm consists of obtaining the projector by “growing”
the corner transfer matrices C by absorbing surround-
ing network and environment tensors and performing a
Hermitian eigendecomposition, and we summarize the al-
gorithm here:

1. Obtain the projector from a Hermitian eigendecom-
position of the grown corner transfer matrix66:

C A

A T ≈ U D

Ū

(18)

where we use the convention that the indices of the
tensor in the diagram are ordered clockwise, ex-
cept when the complex conjugate is taken in which
case the ordering is reversed. In Eq. (18), the ten-
sor network on the left side is contracted, reshaped
into a Hermitian matrix, a Hermitian eigendecom-
position is performed, and the bond dimension is
truncated according to the eigenvalues. D is a di-
agonal matrix storing the largest magnitude (real)
eigenvalues. U is the matrix of the orthonormal
eigenvectors associated with the largest eigenvalues
D reshaped into an isometric tensor. U satisfies
(Us)†Us = I (using Einstein summation conven-
tion) or diagramatically:

U

Ū

=

. (19)

2. Renormalize the grown environment. The new
CTMRG environment is obtained by absorbing a

row and column of the tensor network in each di-
rection into the environment. The renormalization
is performed with the projector Us(Us′)†, which
diagramatically is:

Ū

U

. (20)

The projector Eq. (20) is inserted into the grown
boundary environment at every link in the environ-
ment, and grown environment tensors are renor-
malized to obtain the new environment tensors.
The new environment tensors C ′ and A′ are ob-
tained as follows:

C ′ =

C A

A T

Ū

U

(21)

A′ = A T

U

Ū

. (22)

Of course, from Eq. (18), we can trivially see that
C ′ = D, but the more general form of Eq. (21) will
be useful when we discuss generalizing to situations
where the tensor network is comprised of asymmet-
ric tensors T , and when we discuss our new fixed
point corner method.

The CTMRG algorithm essentially involves iterating
steps 1 and 2 until convergence (for example, measured
by the difference in the eigenvalues of the corner transfer
matrices between steps), where one must make sure to
normalize the HRTMs, HCTMs, and CTMs at each steps.

Extensions to networks with other types of symmetries
are straightforward. If the network is Hermitian about
the horizontal and vertical directions but not the diagonal
directions, we can impose AU = AD ≡ A (where A = A†)

and AL = AR ≡ B (where B = B†), and CLU = C†UR =

CRD = C†DL ≡ C (where C = C† if the gauge is chosen
properly). In that case, a generalization of Eq. (18) can
be used to obtain projectors for the left/right direction
and up/down direction using the left and right singular
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vectors respectively obtained from the SVD of one of the
grown corners.

If the tensor network is not Hermitian about either a
horizontal or vertical reflection, a simple Hermitian eigen-
decomposition like that shown in Eq. (18) will not suffice,
and a more involved scheme must be invoked. In general,
the projectors used will not be isometric, and there will
be different projectors for renormalizing each direction
(left, up, right, and down). We refer readers to Ref. 50
for a discussion of applying CTMRG to the case when
the network is Hermitian about a single direction. In the
next section, we will discuss strategies for generalizing
CTMRG to fully asymmetric tensor networks.

2. Asymmetric CTMRG review

When the tensor network does not contain reflection
symmetries as discussed in the previous section, in gen-
eral there is not a unique way for choosing the projector
and a variety of methods have been proposed. In the pre-
vious section, we discussed methods where the network
was renormalized in all four directions at once. Here, we
will focus on what is called the “directional” approach,
where a single direction of the network is renormalized
at a time, and a single CTMRG step constitutes cycling
through the different directions. This approach makes
the discussion easier, and is well-suited for PEPS calcu-
lations49,51.

In the directional approach, the “left move” involves
contracting just the column-to-column transfer matrix
into the left environment, and renormalizing with a pro-
jector which we will call P s

L[P−L ]s
′

or diagramatically:

P−L

PL

. (23)

P−L denotes the approximate left inverse of PL, in other

words they satisfy [P−L ]sP s
L ≈ I or diagramatically:

PL

P−L

≈

. (24)

Using the projector in Eq. (23), the left move is shown
below:

C ′LU =

CLU AU

P−L

(25)

A′L = AL T

PL

P−L
(26)

C ′DL =

CDL AD

PL

. (27)

The diagrammatic notation we use for the tensors in the
projector is suggestive, identifying them as MPS tensors.
This notation will prove useful later on when we present
our new algorithms. The up, right and down moves are
simply rotated versions of the left move.

The projectors (i.e. Eq. (23)) are obtained from the
current guess for the environment, and in general the
choice is not unique. Many methods for obtaining these
projectors have been proposed over the years7,46–51. In
this work, for asymmetric CTMRG, we will use the
method that is most commonly used in modern infinite
PEPS calculations, the one proposed in Ref. 51. We sum-
marize the left move of that asymmetric CTMRG method
here:

1. The first step of the left move of the CTMRG
method proposed in Ref. 51 is to perform the fol-
lowing QR decompositions:

CLU AU

AL T

CURAU

ART

CDL AD

AL T

CRDAD

ART

≈

RT
U QT

U

RD QD

(28)

2. Next we obtain the tensors PL, P
−
L from RU and

RD obtained in previous step. This is done us-
ing a method we will refer to as “biorthogonaliza-
tion” which was originally proposed in the context
of transfer matrix DMRG (TMRG) in Ref. 31 and
32. The first step of the biorthogonalization proce-
dure is to perform the following SVD:

RT
U

RD

≈

Σ2
L Q̄L

WL (29)
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where the second line is obtained by taking the

SVD Rs
D[Rs

U ]T = WLΣ2
LQ
†
L and truncating accord-

ing to the singular values to the desired bond di-
mension.

3. Finally, we obtain PL, P
−
L :

PL = RT
U QL Σ+

L

(30)

P−L = RD W̄L Σ+
L (31)

Note that it may be necessary for stability to use
a pseudoinverse of ΣL, where we denote the pseu-
doinverse with Σ+

L .

In Appendix A we discuss technical details about the
stability of this method as well as some new alternatives.
In the next section, we discuss a transfer matrix version of
the variational uniform matrix product state (VUMPS)
algorithm introduced in Ref. 54.

C. New fixed point corner method (FPCM)

Here we present a new corner method, which we refer
to as the fixed point corner method (FPCM), which is
similar to the CTMRG algorithm but solves for environ-
ment tensors in terms of fixed points.

1. Symmetric FPCM

We start with the simplest version of our new fixed
point corner method (FPCM), when the network is com-
prised of a tensor T that is Hermitian about all reflec-
tions. In this case, we use the same ansatz for the
environment as we would use for the fully symmetric
CTMRG algorithm, which we mentioned previously in
Section III B 1 and repeated here:

C A

A T

CA

AT

CA

AT

C A

A T

. (32)

As before, we also impose that C = C† and As = (As)†.
For this network, the FPCM proceeds as follows:

1. Isometrically gauge the uniform MPS composed of
tensor A. Using A, find the isometric tensor U and

(positive) symmetric matrix C ′ satisfying:

C ′ A ∝ U C ′

. (33)

This is performed with a new uniform MPS gauging
method described in Appendix B 1.

2. Obtain the new MPS boundary tensor A and the
new CTM C using U found in step 1. This is done
by numerically solving the following fixed point
equations (in practice using an iterative method
such as Arnoldi):

C ′ A

Ū

∝ C ′

(34)

A′ T

U

Ū

∝ A′

(35)

(note that Eq. 34 may or may not be different from
how C ′ was solved for in step 1 but this alternative
fixed point equation may give an improved CTM).

Then, steps 1 and 2 are repeated until convergence. We
should point out that the boundary MPS tensor A solved
for using the fixed point equation Eq. (35) may only be
symmetric up to errors in the accuracy that the fixed
point is solved to, and it may be useful to symmetrize
the tensor explicitly during the optimization.

Note that a similar set of fixed point equations for
numerically solving for boundary MPSs were discussed
previously in Ref. 1. We would also like to point out
that obtaining the isometry as proposed in Eq. (33) can
be viewed as a translationally invariant version of the so-
called “simplified one-directional 1D method” discussed
in Ref. 50. More generally, the tensor U can be viewed
as a translationally invariant version of the projector ob-
tained in CTMRG.

Note that the following fixed point equation can be
used to obtain a more accurate CTM C:

C ′

A T

A

Ū

U ∝ C ′

. (36)
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A similar fixed point equation for the CTM was discussed
previously in Ref. 42 and 44.

We also note that in practice, we find performing a few
steps of CTMRG per step of the FPCM can help improve
the convergence of the algorithm and obtain a more ac-
curate fixed point environment. One can therefore think
of FPCM as a way to speed up a CTMRG implementa-
tion, by performing a step of FPCM periodically during
the CTMRG algorithm to help speed up convergence. In
that case, it is important to solve for an improved CTM
with Eq. (36) so that the best possible CTM is used for
the CTMRG step.

In the next section, we will describe a generalization
of this algorithm to asymmetric tensor networks.

2. Asymmetric FPCM

The asymmetric version of FPCM is not as straight-
forward as the symmetric version, analogous to the case
for CTMRG. Our strategy is to determine translational
invariant analogues of the CTMRG projectors shown in
Eq. (25)–(27), and then determine the environment ten-
sors {Ci, Aj} from fixed point equations.

We use the same ansatz as that used for the asymmet-
ric CTMRG algorithm (as presented in Sec. III B 2):

CLU AU

AL T

CURAU

ART

CRDAD

ART

CDL AD

AL T

. (37)

Using this ansatz for the environment, the left move of
FPCM consists of the following steps:

1. “Biorthogonalize” the top and bottom MPSs com-
prised of MPS tensors AU and AD. Using AU/D,

we find PL, P
−
L along with a new set of C ′LU , C

′
DL

satisfying:

C ′LU AU ∝ PL C ′LU

(38)

C ′DL AD ∝ P−L C ′DL (39)

where PL, P
−
L satisfy Eq. (24). There are mul-

tiple possible methods for finding tensors PL, P
−
L

and C ′LU , C
′
DL that satisfy Eq. (38)–(39), and the

choices are not unique. The method we use is de-
scribed in detail in Appendix B 2.

2. Obtain the left HRTM and CTMs using the gauged
MPS tensors PL, P

−
L found in step 1. This is done

by numerically solving the following fixed point
equations (in practice using an iterative method
such as Arnoldi):

C ′LU AU

P−L

∝ C ′LU

(40)

A′L T

PL

P−L

∝ A′L

(41)

C ′DL

PL

AD

∝ C ′DL

(42)

(Eq. (40) and (42) may be redundant, depending
on what method for obtaining PL, P

−
L is used).

Steps 1–2 constitute the left move of the asymmet-
ric FPCM algorithm. For a single step of FPCM, the
lattice is rotated, and the other directional moves are
performed. For example, one could follow a conventional
ordering of the directional CTMRG and next perform the
up move, then the right move, and then the down move.
In practice, we don’t find that the ordering makes a no-
ticeable difference in the performance of the algorithm.
Note that a similar set of fixed point equations for the
CTMs, HRTMs, and HCTMs were discussed by Baxter
in the context of his CTM method5.

The CTMs can be obtained in an alternative way from
the corner transfer fixed point equations show in Fig. 1
(which are generalizations of Eq. (36), the symmetric cor-
ner transfer fixed point equation). We find that obtaining
the CTMs with these equations leads to a more accu-
rate environment than those found in Eq. (40) and (42),
but are of course more computationally expensive. Find-
ing more accurate CTMs is important for calculating ac-
curate observables. In addition, like in the symmetric
FPCM case, we find that in practice the accuracy of this
procedure is improved by alternating between steps of
FPCM and CTMRG, which we will discuss more in Sec-
tion IV. In that case, it is particularly important to get
the most accurate CTMs possible by solving for them
with the fixed point equation in Fig. 1.

The algorithm looks very similar to the VUMPS al-
gorithm when the network is Hermitian about a certain
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Figure 1. Fixed point equations for the CTMs.

direction (horizontal or vertical), in which case a pair of
tensors PL, P

−
L can be chosen to be isometric. However,

like in CTMRG, the CTMs are used explicitly, not the
center matrix of VUMPS/iDMRG, and the corners can
be seen roughly as “square roots” of the center matrix.
This is discussed in more detail in Ref. 1.

The leading cost of this algorithm, the calculation of
the new boundaries, is O(χ3d2) where χ is the bond di-
mension of the boundary, and d is the bond dimension
of the network (assuming the fixed point is calculated in
a sparse way with an iterative method such as Arnoldi
and for simplicity assuming a large χ limit). This is
the same leading cost as single-site VUMPS or single-
site iDMRG. The cost of CTMRG, following the most
standard schemes, is generally a full eigendecomposition,
singular value decomposition, or QR decomposition of
some part of the grown boundary. Since the boundary is
grown from a bond dimension χ to a bond dimension χd,
these decompositions lead to a scaling of the algorithm
of O(χ3d3), so asymptotically both (single site) VUMPS
and our new corner method scale better than traditional
CTMRG in the network bond dimension.

Even so, each step of traditional CTMRG can be much
faster than the new schemes presented, because of the
fixed points that we must calculate (note that avoiding
the use of fixed point equations was one of the original
motivations for the development of CTMRG as an alter-
native to DMRG7,8). However, we will see in Section IV
that solving for the environment tensors with fixed point
equations leads to a large speedup in total convergence

time, because substantially fewer steps are needed for
convergence.

The speedup of VUMPS and FPCM over CTMRG is
particularly pronounced for networks with small gaps.
One way to understand this is that the original CTMRG
can be viewed as a power method, where only a single
(or pair of) row-to-row and/or column-to-column trans-
fer matrices are absorbed into the environment at a time,
and the projectors are only determined in a local way.
The new schemes properly exploit the translational in-
variance of the system, and iterative methods such as
Arnoldi are known to be much faster than power meth-
ods for finding eigenvectors of matrices with small gaps
(and the gaps of the transfer matrices are expected to be
related to the gap of the system67). In addition, the pro-
jectors that are used for renormalization in the FPCM
are obtained from the current guess for the entire (trans-
lationally invariant) boundary, not just a set of local ten-
sors.

IV. RESULTS

Here, we present benchmark results for the methods
described in the previous section: CTMRG, transfer ma-
trix VUMPS, and the new fixed point corner method
(FPCM). We benchmark the 2D classical ferromagnetic
Ising model in Section IV A, the 2D classical XY model in
Section IV B, the 2D quantum spin-1/2 Heisenberg model
in Section IV C, and the chiral Resonating Valence Bond
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(RVB) PEPS in Section IV D.

For all of the examples shown, the networks are on the
square lattice and have a single-site unit cell, and all ten-
sors used are dense. Calculations were performed with
a single BLAS thread. To obtain a consistent compar-
ison between different methods, the starting boundary
states are chosen to be small (usually with bond dimen-
sion 2), the methods are run until convergence with the
small bond dimension, and then the bond dimension is
increased to the final one (CTMRG is used to grow the
bond dimension for the FPCM, and the bond dimension
growth scheme introduced in Ref. 54 is used for VUMPS).
Most of the calculations were performed using the Ex-
treme Science and Engineering Discovery Environment
(XSEDE)68 with Intel Math Kernel Library (MKL), ex-
cept calculations in Fig. 3, which were performed on a
laptop with OpenBLAS. Fixed points are calculated us-
ing the Arnoldi method as implemented in ARPACK.

A. 2D classical Ising model

In Fig. 2, we present benchmark results for the
isotropic 2D ferromagnetic classical Ising model. The
MPO comprising the partition function for this model
has a link bond dimension of d = 2, and the tensor can
be taken to be real and symmetric about all rotations and
reflections. The environment tensors we use for all meth-
ods are restricted to being real. For CTMRG and the
FPCM, in the ansatz in Eq. (16), we impose AU = AR =
AD = AL ≡ A and CLU = CUR = CRD = CDL ≡ C,
and additionally impose As = (As)T and C = CT . For
VUMPS, in Eq. (7), we impose [AR

U ]s = ([AL
U ]s)T and

CU = CT
U . Additionally, when we calculate observables,

we set the bottom fixed point MPS equal to the top fixed
point MPS. For CTMRG, we find the projector to renor-
malize the boundary using a symmetric eigendecomposi-
tion, which is fast and numerically very stable.

From Fig. 2, we see that as we approach the critical
point of the 2D classical Ising model, the performance
improvement of VUMPS and our new fixed point cor-
ner method (FPCM) over CTMRG increases. This can
be understood by the fact that the boundary tensors
for the new methods are obtained by solving fixed point
equations (in practice with Arnoldi and Lanczos meth-
ods), which are known to be faster than power methods
for finding extremal eigenvectors of matrices with small
gaps. This indicates that these new methods are better
suited for studying systems close to or at criticality, e.g.
in combination with the theory of “finite entanglement
scaling”69–72.

In Fig. 3, we present results for the 2D ferromagnetic
classical Ising model in a non-unitary basis. In other
words, we introduce the following “gauge transforma-

tions” on the links of the tensor network:

T →

Y

X T X−1

Y −1

. (43)

These gauge transformations, for random complex non-
unitary matrices X and Y , artificially break the rotation
and reflection symmetries of the Ising model partition
function. Gauge transformations like these can be intro-
duced during a PEPS optimization if explicit symmetries
are not enforced, even if the state being targeted is ex-
pected to be rotationally symmetric. The environments
we use for all methods are complex.

In Fig. 3(a), we show results for the asymmetric
CTMRG method proposed by Corboz et al. in Ref. 51
and reviewed in Section III B 2. In Fig. 3(b), we show
results for performing a step of the FPCM introduced in
Section III C 2 every five steps of the CTMRG method of
Corboz et al., which leads to substantially improvements
in convergence time. Here, for the FPCM steps we use a
pseudoinverse cutoff of 1×10−7 to ensure stability of the
algorithm, which we find is only necessary in early steps
when the bond dimension is being increased. Note that to
obtain full precision for the fixed point environments for
this example, it was important to calculate SVD in the
biorthogonalization step of CTMRG with the LAPACK
routine gesvd as opposed to the routine gesdd. We dis-
cuss this point and other details about the stability of
the CTMRG method for this example in Appendix A.

Note that we found that the asymmetric FPCM
method as presented in Section III C 2 alone has a ten-
dency to “get stuck,” i.e., not find the most accurate fixed
point environment for a given bond dimension. It is pos-
sible that a modification of the method itself can fix this
problem, but we find that as presented, the method is
very simple and numerically stable, and combining with
CTMRG is very effective and robust. We speculate about
the reason why combining FPCM with CTMRG may
help improve the accuracy of the fixed point found with
FPCM at the end of Appendix B 2.

We also note that the asymmetric versions of CTMRG
and FPCM are more computationally demanding and the
convergence in general is not as good as the symmetric
versions of the algorithms. Improving these methods by
finding better techniques for obtaining the projectors is
an interesting area of further research.

B. 2D classical XY model

In Fig. 4(a), we present results for contracting the par-
tition function for the 2D classical XY model. Because
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(a) (b)

(c)

Figure 2. Plots (a) and (b) show the error in the magnetization for the isotropic 2D classical Ising model as a function of
computation time at two temperatures near criticality, where (b) is closer to criticality than (a). The network has a bond
dimension of d = 2, and a boundary MPS bond dimension of χ = 600 is used. A fully symmetric CTM ansatz is used for
CTMRG and the FPCM, and full symmetry is exploited in VUMPS. The speedup of VUMPS and the corner method over
CTMRG increases as one gets closer to criticality. Stars indicate the environment tensors have reached a fixed point, and
data points beyond those points are numerical fluctuations and were not shown in order to simplify the plot. Plot (c) shows
convergence time as a function of inverse temperature above criticality, β/βc − 1, for the 2D classical Ising model. For all
data points, a boundary MPS bond dimension of χ = 600 is used. All data is converged to an error in the magnetization of
< 2×10−9. The inset shows the ratio of the convergence time of CTMRG and VUMPS with respect to the FPCM convergence
time (note the log scale).

the lattice degree of freedom is continuous for this model,
the MPO tensor comprising the partition function can
only be constructed approximately, though to high ac-
curacy. The XY model has been studied previously with
transfer matrix DMRG (TMRG)73. Additionally, related
models have been studied previously with CTMRG74,75.

The construction we use for the partition function is de-
scribed in Ref. 76 and 77, where HOTRG was used to
contract the partition function, and we refer readers to
those references for details on constructing the MPO for
this model. We use an inverse critical temperature 10%
below the critical point estimated in that reference, and
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(a) (b)

Figure 3. Plots of error in magnetization for the isotropic ferromagnetic 2D classical Ising model at β/βc − 1 = 10−3 with
random non-unitary gauge transformations introduced on the horizontal and vertical links, as shown in Eq. (43). This artificially
breaks the lattice symmetry in order to test each method on an asymmetric network. Plot (a) shows results for the asymmetric
CTMRG algorithm by Corboz et al. in Ref. 51 and plot (b) shows results for the FPCM introduced in this work combined
with the CTMRG algorithm used in (a).

use an approximation for the MPO with a link bond di-
mension of d = 25. We use zero applied magnetic field,
and at this temperature the model is expected to be
gapped. Since the U(1) symmetry cannot be broken at
any finite temperature, we expect the magnetization to
be zero.

The MPO tensor comprising the partition function is
real and symmetric about reflections about the diago-
nals of the network, but not symmetric about the x and
y axes. The environment we use for all methods is re-
stricted to being real. For CTMRG and the FPCM, in
the ansatz in Eq. (16), we impose AU = AT

R = AD =
AT

L ≡ A, CLU = CUR ≡ C, and CDL = CRD ≡ D, and
additionally impose C = CT and D = DT . For VUMPS,
in Eq. (7) we don’t impose any symmetries, but when
we calculate observables, we set the bottom fixed point
MPS equal to the transpose of the top fixed point MPS
(such that the environment is invariant under a rotation
by π).

For CTMRG, we obtain the projectors using a symmet-
ric diagonalization of the grown corner. For FPCM, we
obtain the fixed point projectors by isometrically gaug-
ing the boundary MPS. Additionally, like for the asym-
metric FPCM calculation performed in Section IV A, we
find it is best to alternate between steps of FPCM and
CTMRG instead of performing FPCM alone, and the re-
sults shown are obtained by performing a few steps of
CTMRG per step of FPCM. We see that VUMPS per-
forms noticeably worse than the FPCM, likely because
the ansatz we use for the VUMPS calculation does not
exploit the lattice symmetry as well as the CTM ansatz.
Like with the Ising model, we expect the improvement of
the FPCM compared to CTMRG to become even more

pronounced closer to the critical point.

C. 2D quantum Heisenberg model

In Fig. 4(b), we present results for contracting a PEPS

approximation (D =
√
d = 5) to the ground state of the

2D quantum Heisenberg model. The PEPS tensor was
optimized using the conjugate gradient method described
in Ref. 44. We plot the error in the energy relative to the
energy obtained from Monte Carlo simulations78.

The PEPS tensor is complex and symmetric (not Her-
mitian) about all rotations and reflections, which was
a symmetry imposed in the optimization. Therefore,
the MPO tensor that comprises the tensor network for
the norm of the PEPS is also complex and symmetric
about all rotations and reflections. The environments
we use for all methods are necessarily complex. For
CTMRG and the FPCM, in the ansatz in Eq. (16), we
impose AU = AR = AD = AL ≡ A, CLU = CUR =
CRD = CDL ≡ C, and additionally impose C = CT . For
VUMPS, in Eq. (7) we don’t impose any symmetries79,
but when we calculate observables, we set the bottom
fixed point MPS equal to the top fixed point MPS (not
the conjugate of the top fixed point, as we would do if the
MPO was Hermitian as opposed to complex symmetric).
The CTMRG algorithm we use is a modification of the
one from Ref. 51, where the symmetry of the network is
exploited wherever possible. The FPCM method we use
is a modification of the asymmetric version presented in
Section III C 2 where the symmetry of the network is ex-
ploited wherever possible. Additionally, we use a modifi-
cation of the uniform MPS biorthogonalization procedure
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(a) (b)

(c)

Figure 4. (a) Plot of magnetization for the 2D classical XY model, for network bond dimension d = 25 and boundary MPS
bond dimension χ = 50. (b) Plot of error in energy (compared to Monte Carlo results) for the 2D quantum Heisenberg model.

The network bond dimension is d = 25 (or PEPS bond dimension D =
√
d = 5), and the MPS boundary bond dimension

χ = 100. (c) Plot of error in the norm (where the “exact” results is taken to be an extrapolation of the norm in the limit of a
large environment bond dimension) of the chiral RVB PEPS. The network bond dimension is d = 9 (or PEPS bond dimension

D =
√
d = 3), and the boundary MPS bond dimension is χ = 800.

in Appendix B 2, where we first gauge the MPSs isomet-
rically before we biorthogonalize them. As previously
mentioned in Sections IV A–IV B, we find for the FPCM
that it is best to perform a few steps of CTMRG per step
of the FPCM, which we find improves the accuracy of the
fixed point environment.

D. Chiral resonating valence bond PEPS

In Fig. 4(c), we present results for contracting a chiral
resonating valence bond (RVB) PEPS. The chiral RVB
PEPS state was introduced as a chiral extension of the
traditional nearest neighbor RVB PEPS80,81. As in the
previous works on this model, we choose λ1 = λ2 =
λchiral = 1, where λ2 = λchiral = 0 would correspond

to the non-chiral nearest neighbor RVB state. We refer
readers to those previous works on this model for details
on its derivation and physics.

The PEPS tensor (and therefore double layer MPO
tensor) for this model is complex and Hermitian about
the horizontal, vertical and diagonal reflections of the
lattice. For CTMRG and the FPCM, in the ansatz in
Eq. (16), we impose AU = AR = AD = AL ≡ A and
CLU = CUR = CRD = CDL ≡ C, and additionally im-
pose As = (As)† and C = C†. For VUMPS, in Eq. (7)
we do not impose any symmetries82. When we calcu-
late observables, we set the bottom fixed point MPS ob-
tained from VUMPS equal to the complex conjugate of
the top fixed point MPS. For CTMRG, the projectors are
obtained with a Hermitian diagonalization of the grown
corner, and for FPCM, the fixed point projectors are ob-



15

tained by isometrically gauging the boundary MPS.

Again, we see an improvement in performance of the
FPCM and VUMPS over CTMRG, but the FPCM per-
forms better than VUMPS (we believe for this case be-
cause the symmetry of the network is exploited better
in the CTM ansatz). Again, we perform a few steps of
CTMRG per step of the FPCM, which we find improves
the convergence time.

V. CONCLUSION AND OUTLOOK

We presented two new approaches for contracting in-
finite 2D tensor networks, such as 2D classical partition
functions and 2D quantum states represented as a PEPS.
One approach uses the recently proposed VUMPS algo-
rithm to obtain boundary MPSs that approximate the
infinite environment of the tensor network. The other
approach uses the CTM ansatz like CTMRG, but im-
proves upon CTMRG by solving for the boundary tensors
with fixed point equations, which we refer to as the fixed
point corner method (FPCM). With careful benchmark-
ing, we compared these new approaches to CTMRG for
a variety of systems, which is currently the most widely
used method for contracting 2D tensor networks in in-
finite PEPS calculations. We found that both methods
improve upon the performance of CTMRG, though for
certain models, the improvement is more pronounced for
FPCM as opposed to VUMPS.

We showed that the improvement upon CTMRG is
particularly pronounced as models approach criticality,
as exemplified by our benchmarking of the 2D classical
Ising model. This can be explained by the fact that,
as the gap of the model closes, so too does the gap of
the transfer matrix. By solving for the boundary ten-
sors with fixed point equations, methods such as Arnoldi

and Lanzos can be used, which are known to perform bet-
ter than power methods for finding extremal eigenvectors
of matrices with small gaps. Even though each step of
the new approaches we present can be slower than each
step of CTMRG, substantially fewer steps are required
to reach fixed points leading to an overall improvement
in the performance.

We are convinced that these new methods directly im-
prove the performance of current state of the art infinite
PEPS optimization techniques, where the contraction
of the network is the most computationally expensive
step. When combined with recently introduced varia-
tional methods for optimizing PEPS43,44, we expect that
significant improvements can still be made to existing
PEPS algorithms.
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47 P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev.

B 81, 165104 (2010).
48 P. Corboz, J. Jordan, and G. Vidal, Phys. Rev. B 82,

245119 (2010).
49 P. Corboz, S. R. White, G. Vidal, and M. Troyer, Phys.

Rev. B 84, 041108 (2011).
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R. Orús, Phys. Rev. B 92, 035142 (2015).
53 P. Corboz, Phys. Rev. B 93, 045116 (2016).
54 V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman,

F. Verstraete, and J. Haegeman, Phys. Rev. B 97, 045145
(2018).
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Appendix A: Some comments on the numerical
stability of the asymmetric CTMRG method

In this section, we discuss the stability of the CTMRG
algorithm introduced in Ref. 51 (and reviewed in this
work in Section III B 2). We also discuss slight alterna-
tives to that method and discuss their relevance for the
efficiency and stability of the asymmetric CTMRG algo-
rithm.

We begin by pointing out an equivalent form of the
algorithm of Ref. 51:

1. We first define the half system transfer matrices

C
(1)
U and C

(1)
D :

CLU AU

AL T

CURAU

ART

CDL AD

AL T

CRDAD

ART

≡

C
(1)
U

C
(1)
D

(A1)

To obtain the projectors, we use the same biorthog-
onalization procedure as was used in Eq. (29)–(31).

We take the following SVD of C
(1)
D C

(1)
U :

C
(1)
U

C
(1)
D

≈ Σ2
L

V̄L

UL

. (A2)

In other words, we take the SVD C
(1)
D C

(1)
U =

ULΣ2
LV
†
L . Eq. (A2) is approximate because we

truncate according to the singular values down to
the desired bond dimension for the renormalized
environment.

2. Now we obtain PL, P
−
L as follows:

PL = C
(1)
U

VL Σ+
L

(A3)

P−L = C
(1)
D ŪL Σ+

L

(A4)

This alternative for the left move obtains the same ten-
sors PL,P−L but skips the step of calculating the QR

decomposition of C
(1)
U , C

(1)
D , making it computationally

more efficient.

For both the method of Ref. 51 and the equivalent form
above, it may be important to perform a pseudoinverse
of the (sqaure root) of the singular values obtained in
the biorthogonalization. Because of the (pseudo)inverse,
it is important to calculate the singular values to high
accuracy. However, this can become challenging because
to obtain an environment with high accuracy, a large
bond dimension must be used and therefore small sin-
gular values will appear. In practice, we found that a
higher precision for the environment could be obtained
by calculating the SVD with the LAPACK routine gesvd
as opposed to the routine gesdd.

A comparison of the fixed point spectrum that needs
to be inverted during the asymmetric CTMRG method
of Ref. 51 when the SVDs are performed with gesvd and
gesdd is shown in Fig. 5. In that figure, we plot ΣL,i, the
diagonal entries of ΣL calculated in Eq. (29) or Eq. (A2),
for cases when CTMRG is run using either gesvd or
gesdd. The spectrums are calculated from fixed point
environments of the 2D classical Ising model with a non-
unitary change of basis (as described in Section IV A)
with a bond dimension for the environment of χ = 160.
In practice, we found that using gesdd to calculate the
SVD could lead to a less precise fixed point environment
when many small singular values were present, because
the small singular values were not calculated accurately
and therefore a pseudoinverse cutoff (i.e. 5 × 10−8) was
required to ensure the CTMRG algorithm was numeri-
cally stable.

Alternative methods can be used to improve the con-
ditioning of the matrix that must be inverted during the
biorthogonalization procedure. If the conditioning is im-
proved, the biorthogonalization is less sensitive to the
way that the SVD is computed. One method was men-
tioned in Ref. 51, which is to biorthogonalize the grown
CTMs of the environment (as opposed to the half system
transfer matrices). As mentioned in Ref. 51, this method
is not as accurate as using the half system transfer ma-
trices. An alternative method to obtain the CTMRG
projectors which is as accurate as using the half system
transfer matrices but improves the conditioning of the
inverse required in the biorthogonalization is as follows:

1. We start by taking the SVD of the half system
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transfer matrices:

CLU AU

AL T

CURAU

ART

CDL AD

AL T

CRDAD

ART

≈

SUUU V̄U

SDV̄D UD

≈

FLU FUR

FDL FRD

(A5)

where we define F s
LU ≡ Us

US
1/2
U , F s

UR ≡ S
1/2
U (V s

U )†,

F s
RD ≡ Us

DS
1/2
D , and F s

DL ≡ S
1/2
D (V s

D)†. Here, one
can truncate these equations according to the sin-
gular values, which can improve the computational
cost of the algorithm.

2. The next step is to obtain the tensors PL, P
−
L .

Again, we use the same biorthogonalization pro-
cedure as was used in Eq. (29)–(31). However, this
time we biorthogonalize the tensors FLU , FDL:

FLU

FDL

≈

Σ2
L Q̄L

WL (A6)

where the second line is obtained by taking the

SVD F s
DLF

s
LU = WLΣ2

LQ
†
L and truncating accord-

ing to the singular values to the desired bond di-
mension.

3. Again, following the biorthogonalization procedure,
we obtain PL, P

−
L as follows:

PL = FLU QL Σ+
L

(A7)

P−L = FDL W̄L Σ+
L (A8)

For stability of the algorithm, it may be neces-
sary to set a pseudoinverse cutoff for ΣL, where
we use the notation Σ+

L to denote the pseudoin-
verse. We found this was particularly relevant in
the early steps of the algorithm, during bond di-
mension growth.

We found it could be important to reorthogonalize the
tensors PL,P−L (i.e. repeat the biorthogonalization pro-

cess on PL,P−L a few times) in order to improve the accu-
racy of the projectors obtained. Note that with this new

Figure 5. Comparison of spectrums that need to be inverted
to perform the biorthogonalization in different versions of the
asymmetric CTMRG algorithm. Note that what is plotted,
ΣL,i, are the square root of the singular values that are cal-
culated during the biorthogonalization. See the main text for
details.

CTMRG method, it is natural to compute both the left
and right projectors in a single step to save computation
time (by directly biorthogonalizing the tensors FUR and
FRD to obtain the right move projector).

The advantage of this alternative method for obtain-
ing the projectors is that it improves the conditioning
of the inverse required in the biorthogonalization, which
in practice means the method is more numerically sta-
ble (not as sensitive to the choice of SVD algorithm that
is used). The improvement of the conditioning is shown
in Fig. 5. The new CTMRG method is more computa-
tionally expensive than the one from Ref. 51 (and the
simplified version shown at the beginning of this section)
because of the extra SVDs that are computed. Alter-
nating between steps of this new asymmetric CTMRG
method and steps of FPCM leads to similar speedups in
convergence times as those shown in Section IV A.

Appendix B: Algorithms for gauging uniform MPSs

1. New algorithm for isometrically gauging a
uniform MPS

Starting with a uniform MPS comprised of the MPS
tensor A, we would like to find the gauge in which the left
fixed point of the MPS transfer matrix is identity from
bra to ket (the “canonical” gauge). In other words, we
would like to find U and C which satisfy:

C A ∝ U C
(B1)
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U

Ū

=

. (B2)

A method for finding the orthogonal gauge for a uni-
form MPS was first proposed in the context of the iTEBD
algorithm28 and involves a pseudoinverse of the matrix C
to solve for U . Unfortunately, this means that U is gen-
erally only approximately isometric, and the accuracy up
to which this “pulling through” equation can be satisfied
may be limited for a MPS with small singular values.

We now present a fast, robust and highly accurate al-
ternative, where U is constrained to be isometric and no
explicit matrix inversions are used. Similar to previous
methods, we start by finding the left fixed point which
we suggestively call C2 of the MPS transfer matrix:

C2 A

Ā

∝
C2

. (B3)

From properties of the transfer matrix, we know that
C2 is a positive Hermitian matrix (up to numerical er-
rors). We obtain C by taking the square root of C2 (for
example by performing a Hermitian eigendecomposition
of C2 and taking the square roots of the positive eigen-
values). We now obtain our initial U by performing the
following polar decomposition:

C A = U P
(B4)

where U is read off as the isometry obtained from the po-
lar decomposition, and P is the positive Hermitian ma-
trix obtained from the polar decomposition. |C − P | is
taken to be our initial error in the gauging. Because we
took a square root of C2, our initial error may be limited
to the square root of machine precision, i.e. O(10−8). If
higher precision is required, we repeat the following steps
until convergence:

1. Get a new corner matrix C from the mixed transfer
matrix of A and Ū by approximately solving for the
leading eigenvector of the fixed point equation:

C A

Ū

∝ C

. (B5)

2. Get a new U ′ using the new C from step 1. First,
take the (left) polar decomposition of C to get
C = QC ′, where C ′ is positive and Hermitian.

Then, obtain the new U ′ from a polar decompo-
sition similar to before, i.e.,

C ′ A = U ′ P ′

. (B6)

We measure the error of the current iteration as |C ′−P ′|,
and repeat steps 1 and 2 until a desired tolerance is met.

2. New algorithm for “biorthogonalizing” two
MPSs

We now describe how to “biorthogonalize” two uniform
MPSs (with single-site unit cells) that are respectively
comprised of MPS tensors AU and AD. By biorthog-
onalize, we mean that we wish to gauge transform AU

and AD to gauges in which in one direction the fixed
point of the mixed MPS transfer matrix formed from the
two uniform MPSs is the identity matrix from bra to ket.
In other words, we would like to gauge transform AU and
AD so that they satisfy:

CLU AU ∝ PL CLU

(B7)

CDL AD ∝ P−L CDL (B8)

where PL and P−L are tensors satisfying

PL

P−L

≈

. (B9)

If As
D = (As

U )† (possibly after fixing a gauge degree of
freedom), one can use the approach introduced in Ap-
pendix B 1, or use the iTEBD algorithm from Ref. 28.
In that case, PL and P−L can be chosen to be isometries,

such that [P−L ]s = (P s
L)† and (P s

L)†P s
L = I.

If AD is not the conjugate of AU , then in general PL

and P−L won’t be isometries, and there are multiple pos-
sible approaches for satisfying Eq. (B7)–(B8). The ap-
proach we use is the following:

1. We start by getting the left fixed point CL of the
mixed transfer matrix of AU and AD:

CL AU

AD

∝

CL

. (B10)
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2. We now take the SVD of CL = ULΣ2
LV
†
L . We define

CLU ≡ ΣLV
†
L and CDL ≡ ULΣL and define PL, P

−
L

as follows:

PL ≡ CLU AU C+
LU

(B11)

P−L ≡ CDL AD C+
DL . (B12)

Here, C+
LU = VLΣ+

L and C+
DL = Σ+

LU
†
L, where Σ+

L
denotes the pseudoinverse of ΣL.

This procedure can be viewed as a simple fixed point
formulation of biorthogonalization procedure introduced
by Huang31,32,63 in the context of non-Hermitian trans-
fer matrix DMRG (TMRG) and originally applied to
CTMRG by Corboz et al.51.

In practice, we find that PL, P
−
L from Eq. (B7)–(B8)

may not satisfy Eq. (B9) well enough. If this is the case,
we can perform a procedure that we refer to as “reorthog-
onalization.” For reorthogonalizing PL, P

−
L we perform

the following steps (which are essentially just the steps
listed above applied to biorthogonalizing PL, P

−
L ):

1. Calculate the dominant left fixed point of the mixed
MPS transfer matrix of PL, P

−
L calculated from

Eq. (B7)–(B8) above:

YL PL

P−L

∝
YL

. (B13)

2. Take the SVD of YL = UΣ2V †, defining YLU =
ΣV † and YDL = UΣ. Then, update P s

L →
YLUP

s
LY

+
LU , [P−L ]s → Y +

DL[P−L ]sYDL, CLU →
YLUCLU , and CDL → YDLCDL.

These steps can be repeated a number of times. Typi-
cally, a small number of repetitions (5 to 10) is advanta-
geous for improving the accuracy of the biorthogonaliza-
tion. It is interesting to point out that a similar concept
of reorthogonalization is used in standard Krylov sub-
space methods.

Additionally, we will describe an alternative biorthog-
onalization method that we have tested with the asym-
metric FPCM. One could first gauge transform the MPSs
comprised of AU and AD isometrically from the left (for
example using the method described in Appendix B 1)
to obtain the isometries which we will call AL

U and AL
D.

Then, the biorthogonalization procedure can be applied
to the isometries AL

U , A
L
D to obtain what would in general

be a different set of PL, P
−
L and CLU , CDL in Eq. (B11)–

(B12). Although this seems to improve the condition-
ing of the inverse, we found that using this method in
the FPCM led to numerical instabilities of the FPCM
at larger bond dimensions that were not fixed by setting

a pseudoinverse. However, we found that this isometric
gauging can work when there are symmetry constraints
between the top and bottom MPSs (for example in the
Heisenberg model example in Section IV C). A similar
instability was noticed by Huang in Ref. 31, where a sub-
space expansion technique was proposed in the context of
TMRG to improve the stability. It would be interesting
to see if an analgous subspace expansion could be used
in the context of FPCM.

In general, it is clear that gauge transforming the MPSs
comprised of AU and AD before performing the biorthog-
onalization can lead to different fixed point projectors
PL, P

−
L , which can affect the accuracy and stability of

FPCM. As we have mentioned in the main text, in prac-
tice we found it worked well to alternate between steps
of FPCM and CTMRG. We believe that the steps of
CTMRG may help to find “good” gauges of the HRTMs,
HCTMs and CTMs, leading to better projectors obtained
from the biorthogonalization. For a more in-depth dis-
cussion of biorthogonalizing uniform MPSs and other
possible strategies for fixing the gauge, we refer readers
to Ref. 32.
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