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Color centers in diamond are a promising platform for quantum technologies, and understanding
their interactions with the environment is crucial for these applications. We report a study of spin-
lattice relaxation (T1) of the neutral charge state of the silicon vacancy center in diamond. Above 20
K, T1 decreases rapidly with a temperature dependence characteristic of an Orbach process, and is
strongly anisotropic with respect to magnetic field orientation. As the angle of the magnetic field is
rotated relative to the symmetry axis of the defect, T1 is reduced by over three orders of magnitude.
The electron spin coherence time (T2) follows the same temperature dependence but is drastically
shorter than T1. We propose that these observations result from phonon-mediated transitions to a
low lying excited state that are spin conserving when the magnetic field is aligned with the defect
axis, and we discuss likely candidates for this excited state.

I. INTRODUCTION

Solid state defects are attractive candidates for quan-
tum technologies because they can have long spin co-
herence time and can be integrated into nanofabricated
devices. However, interactions with phonons can lead
to spin decoherence. Color centers in diamond with ex-
ceptionally long spin coherence time have been identi-
fied, such as the nitrogen-vacancy center (NV−), and
these are promising candidates for a wide range of ap-
plications including quantum sensing1, quantum infor-
mation processing2–5, and quantum networks6–8. More
recently the negatively-charged silicon vacancy center in
diamond has been demonstrated to have better optical
homogeneity, but poor spin coherence at 4 K because of
a phonon-mediated orbital relaxation process9,10. We re-
cently demonstrated that the neutral charge state of the
silicon vacancy center (SiV0) can be implanted with high
conversion efficiency, it exhibits excellent optical coher-
ence with more than 90% of its emission into a nearly
transform-limited zero-phonon line which does not ex-
hibit any spectral diffusion, and it displays long spin co-
herence times at temperatures up to 20 K11. These prop-
erties make it an ideal candidate for a single atom quan-
tum memory in a quantum network. However, we also
observed that at temperatures above 20 K both T1 and
T2 decrease exponentially with temperature11,12. Under-
standing the origin of this process is crucial for extending
the operation range of SiV0 to higher temperatures, to
enable new applications in quantum information process-
ing and nanoscale sensing.
In this manuscript we investigate the spin-lattice re-

laxation of SiV0 in detail. The exponential temperature
dependence of T1 above 20 K is consistent with an Or-
bach process13–15 with an activation energy (Ea) of 16.8
meV, and we observe that the relaxation rate has a sharp
dependence on the angle (θ) of the magnetic field (B) rel-

ative to the symmetry axis of the defect (Fig. 1a). As the
angle of the magnetic field is rotated away from the crys-
tallographic axis of SiV0 by just 5 degrees, T1 decreases
by almost two orders of magnitude. T2 follows the same
temperature dependence as T1 but at a rate that is three
orders of magnitude faster when the magnetic field is
aligned with the defect symmetry axis.

We propose that the strong intrinsic anisotropy in
the spin-lattice relaxation of SiV0 and the significantly
shorter spin coherence time originate from phonon-
mediated transitions to an excited state that are spin-
conserving when the magnetic field is aligned with the
quantization axis of the center. This is fundamentally
similar to previous observations in SiV− at 4 K, in which
a fast orbital relaxation (T1,orbital = 38 ns) is spin-
conserving but spin-dephasing, giving rise to a relatively
long T1,spin = 2 ms, while T2 is limited by the orbital
relaxation rate9,16. For SiV−, spin relaxation arises from
differing spin-orbit coupling in the two low-lying orbital
states, and when the external magnetic field is aligned
with the SiV− axis, this spin relaxation is suppressed,
leading to T1,spin ≫ T1,orbital. However, in a large off-
axis magnetic field, the eigenstates mix, and the spin
relaxation rate increases rapidly with angle16.

The identity of the state at 16.8 meV implied by the
activation energy is unknown. Likely candidates are a
low-lying singlet state or a triplet vibronic mode17. For
both candidates, we develop models that explain the ob-
served suppression of spin relaxation when the magnetic
field is aligned with the quantization axis, the temper-
ature and orientation dependence of T1, and the ratio
between T1 and T2. We show that a model incorporating
a singlet excited state closely reproduces our data, and
we outline the physical requirements for a triplet excited
state that would account for the observations.
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FIG. 1. (a, top) Ball and stick model of SiV0. Gray spheres
are carbon atoms. The interstitial Si atom (blue sphere) and
split vacancy (red spheres) are aligned along the 〈111〉 direc-
tions in the diamond lattice, and the magnetic field (B) forms
angle θ with the defect axis. (a, bottom) Ground state SiV0

spin levels at B = 0. (b,top) Ground state spin levels at mag-
netic fields such that the Zeeman energy is large compared
to the zero field splitting, gµBB ≫ D. (b, bottom) Magnetic
field dependence of spin levels with B ‖ [111]. Arrows indicate
the magnetic field required for each spin transition to match
the 9.7 GHz resonator mode. (c) Pulsed ESR spectrum of
SiV0 (zero field splitting, D = 0.94 GHz or 33.5 mT) mea-
sured at X-band frequency (9.7 GHz) with the magnetic field
slightly misaligned from [111] by θ = 2.6◦. Four sets of peaks
correspond to ms = 0 ↔ +1 and ms = −1 ↔ 0 transitions
for two inequivalent orientations.

II. METHODS

Two high purity {110} diamonds grown by chemical
vapor deposition were studied. The first diamond (D1)
was doped during growth with boron (& 1017 cm−3) and
silicon (∼ 1017 cm−3) and subsequently HPHT annealed,
resulting in a SiV0 concentration of 4 · 1016 cm−318. The
silicon precursor was isotopically enriched with 90% 29Si,
and all measurements in D1 were conducted on a 29Si hy-
perfine line. The second diamond (D2) was doped during
growth with boron (∼ 1017 cm−3) and implanted with
28Si (6.3 · 1015 cm−3), and was previously described in
reference11. After implantation and annealing, the re-
sulting SiV0 concentration was 5.1 ·1015 cm−3 within the
implanted region. Pulsed X-band (9.7 GHz) electron spin
resonance (ESR) was performed in a dielectric volume
resonator (Bruker MD5) with a quality factor of 5000
(see Appendix A)19. In all experiments the microwave
power was chosen so that the excitation pulse bandwidth
was greater than the bulk linewidth of spin transitions
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FIG. 2. Arrhenius plot of the temperature dependence of T1

(blue) and T2 (red) for SiV0 in D1 (circles) and D2 (squares)
for two inequivalent orientations with B ‖ [111]. [111]: θ =
2.6◦ (D1), θ = 0.8◦ (D2) and [1̄11̄]: θ = 106.9◦ (D1), θ =
108.7◦ (D2). Lines correspond to the best fit of Eq. 2.

(∼ 1 MHz). T2 was measured using a standard two-pulse
Hahn echo sequence with an initial 100 ms green laser
pulse (532 nm, 200 mW) to optically enhance the spin
polarization. At 5 K, we achieve 11.5% optical spin po-
larization into ms = 0 (Fig. 1c). T1 was measured using
a three-pulse inversion recovery sequence20.

III. RESULTS

A. Temperature dependence of T1 and T2

The ground state spin Hamiltonian is given by18:

Ĥ = Ŝ
†D̃gŜ + µBŜ

†g̃B, (1)

with electron spin S = 1, zero field splitting tensor (D̃g)
with axial part Dg = 0.94 GHz (at T = 4.8 K), electron
g tensor (g̃) with parallel and perpendicular components
g‖ = 2.0042 and g⊥ = 2.0035 respectively, and the Bohr

magneton, µB. The D̃ and g̃ tensors are both aligned
along the 〈111〉 directions. With the field aligned along
[111], there are two inequivalent orientations (Fig. 1c):
one orientation aligned with the field, θ = 0◦ ([111], outer
ESR peaks), and three equivalent orientations aligned off-
axis, θ = 109.5◦ ([1̄1̄1], [11̄1̄],[1̄11̄], inner ESR peaks).
We performed time-resolved measurements of spin re-

laxation and decoherence for both inequivalent orienta-
tions. At low temperatures, T1 and T2 are constant
(Fig. 2). In sample D2, we previously reported that
the SiV0 low temperature T2 is dominated by spec-
tral diffusion from the 1.1% abundance of 13C nuclei,
T2 = 0.954± 0.025 ms11. By contrast, the SiV0 density
in D1 is large enough that T2 is limited by instantaneous
diffusion, T2 = 0.48 ± 0.03 ms (see Appendices B,C)21.
At low temperature, T1 is constant, T1 = 46 ± 2 s (D1)
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TABLE I. Summary of the rate prefactors, AT1,T2
(θ), ex-

tracted from fitting the curves in Fig. 2.

Sample AT1
(θ = 0◦) AT1

(θ = 109◦) AT2
(θ = 0◦, 109◦)

(103s−1) (103s−1) (103s−1)

D1 2.10± 0.28 378± 33 1260± 152

D2 0.3± 0.02 365± 53 1180± 210

and T1 = 45± 4 s (D2), similar to previous observations
of NV−22.
Above 20 K, both T1 and T2 decrease exponentially

with increasing temperature. In this regime the two
inequivalent orientations exhibit similar T2 but signifi-
cantly different T1. T1 and T2 exhibit the same Arrhenius
slope (the slope of the log of the rate vs. inverse temper-
ature) for both orientations. The data (T1,[111], T1,[1̄11̄],
T2,[111], T2,[1̄11̄]) were fit according to the equation:

1

T1,2
=

1

Tsat
+AT1,T2

(θ) e−Ea/kT , (2)

where Tsat is the saturated decay time at low tempera-
ture, AT1,T2

(θ) is the orientation-dependent rate prefac-
tor, Ea is the activation energy, and kT is the thermal
energy. Ea = 16.8±1.5 meV for all curves, but AT1,T2

(θ)
varies significantly (Table I).
Unlike T1, T2 exhibits a weak orientation dependence.

However, since T2 displays the same activation energy as
T1, the two decay times likely result from the same phys-
ical process. This is surprising since T2 is not T1-limited;
T2 is 4000 times shorter than T1 when θ = 0◦. We can
rule out that the decoherence is caused by magnetic noise
from nearby centers because we do not observe a density
dependence in T2 when comparing samples D1 and D2,
and we are unable to extend T2 with further dynami-
cal decoupling (see Appendix D)11. Moreover, numer-
ical simulations of ensemble dipolar interactions fail to
account for the observed temperature dependence of T2

(see Appendix C).

B. Orientation dependence of T1 and T2

We measured the detailed orientation dependence of
T1 and T2 at 30 K (Fig. 3), where the Orbach process
dominates spin relaxation. At a magnetic field of ∼ 3400
G (Fig. 1b), the Zeeman frequency (9.7 GHz) is much
larger than the zero field splitting (0.94 GHz). The rela-
tive orientation of the field was varied by rotating the
crystal about a 〈110〉 axis from θ = 0◦ (B ‖ D) to
θ = 90◦ (B ⊥ D). The ESR spectrum (Fig. 1c) was
measured to determine orientation to within 1◦. The re-
laxation time exhibits dramatic anisotropy, and as the
crystal is rotated away from θ = 0◦, spin relaxation be-
comes clearly biexponential (Fig. 3). Near θ = 0◦, T1
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FIG. 3. (a) Orientation dependence of T1 (blue dots) and
T2 (red dots) in sample D1 at T = 30 K, measured on the
ms = 0 ↔ +1 transition. Lines show the theoretical orien-
tation dependence of the two characteristic spin relaxation
times T1,a (solid line) and T1,b (dashed line), and T2 (long
dashed line) for an Orbach process with an excited singlet
state. (b) Selected decay curves with their corresponding fits
(red) showing the biexponential behavior of T1 at particular
orientations (θ), indicated by vertical dashed lines in (a). The
dashed box indicates the region where an additional measure-
ment was made with finer time resolution, shown in the inset.

drops rapidly, and rotating by just 5◦ increases the re-
laxation rate by almost two orders of magnitude. Near
θ = 55◦, the decay is a single exponential with a short
timescale that is insensitive to small rotations. Beyond
55◦ the two timescales diverge, differing by over 3 orders
of magnitude at θ = 90◦ (Fig. 3b).

C. Model for the Orbach process

We propose a model that captures the four salient
features of the data: (1) the strong anisotropy of T1,
(2) the biexponential nature of T1, (3) the temperature
dependence of T2, and (4) the large ratio between T1

and T2. Generically, an Orbach process is a two-phonon
process15 that connects the ground state spin sublevels
ms = −1, 0,+1 through an excited state (|Ψ〉) with am-
plitudes t−1, t0, and t+1, respectively (Fig. 4a). The
amplitudes (t−1, t0, and t+1) are overlap parameters be-
tween the ground triplet states and the excited state,
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tms
= 〈ms |Ψ〉 (see Appendices G,H). This gives rise to

three possible relaxation rates between pairs of ground
state spin sublevels ms ↔ ms′ = −1 ↔ 0, 0 ↔ +1,−1 ↔
+1:

1

T1,ms↔ms′

= C
∣

∣tms
tms′

∣

∣

2
e−Ea/kT , (3)

where C is a constant.

If the excited state Ψ is a singlet (S = 0), it is invariant
under magnetic field orientation, so the behavior of T1

can be captured by considering the mixing of the ground
state (see Appendix G). The mixing of the spin sublevels
in the presence of a large off-axis magnetic field leads to:
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(4)

where
∣

∣t0ms

∣

∣

2
are the overlap parameters at zero magnetic

field. Substituting Eq. 4 in Eq. 3 and solving the 3x3
relaxation rate matrix equation for the ground state spin
(S=1) provides the T1 relaxation times (see Appendix
G). If

∣

∣t00
∣

∣ =
∣

∣t0−1

∣

∣ =
∣

∣t0+1

∣

∣, then Eqs. 3 and 4 predict

that the spin relaxation is isotropic. However, if
∣

∣t00
∣

∣ ≫
∣

∣t0−1

∣

∣ ,
∣

∣t0+1

∣

∣, the spin relaxation is strongly anisotropic
with two characteristic times approximated as:

1

T1,a
=

3

8
C
∣

∣t00
∣

∣

4
sin2(2θ)e−Ea/kT

1

T1,b
=

1

2
C
∣

∣t00
∣

∣

4
sin2(θ)e−Ea/kT .

(5)

In this limit the model captures the observed angular
dependence of the two timescales in T1 (Fig. 3a). By
comparing numerical calculations of the orientation de-
pendence of T1 for different ratios of

∣

∣t00/t
0
±1

∣

∣ (Fig. 4b),
we can place a lower bound on the imbalance between
these rates,

∣

∣t00/t
0
±1

∣

∣ > 100.

We can also predict the effect of this Orbach process
on T2. Customarily, the Orbach process is viewed as
a spin relaxation process15. However, phonon-mediated
transitions to the excited state can also lead to decoher-
ence even when the spin projection is preserved, sim-
ilar to what has been observed for orbital relaxation
in SiV−16. While the spin relaxation rate relies on a
spin flip and therefore the product of the overlap pa-

rameters 1
T1

∝ |tms
|
2 ∣
∣tms′

∣

∣

2
(Fig. 4a, left), the deco-

herence rate depends on the sum of overlap parameters,
1
T2

∝ |tms
|
2
+

∣

∣tms′

∣

∣

2
(Fig 4a, right), if we assume the

spin coherence is completely lost after a single excita-
tion to the excited state Ψ. The angle-dependent ratio
of T1 to T2 will therefore depend on the ratio of overlap
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FIG. 4. (a) Level diagram of the Orbach process with a sin-
glet excited state. Spin relaxation (left) occurs in two steps
through the excited state and depends on the product of the
overlap parameters, while decoherence (right) can arise from
a single step, and depends on the sum. (b) Plot of T1,a (solid
curves) and T1,b (dashed curves) for selected values of

∣

∣t00/t
0

±1

∣

∣

using the extracted rate coefficient C.

parameters. The model predicts (Fig. S5):

T1,a

T2,0↔±1
=

(

|t±1|
2 + |t0|

2
)(

∣

∣t00
∣

∣

2
+ 2

∣

∣t0±1

∣

∣

2
)

3 |t±1t0|
2 . (6)

The orientation dependence of T2 predicted from this
model is plotted in Fig. 3a, where we also included
the effect of instantaneous diffusion in sample D1, and
is plotted in detail in Fig. S7. The anisotropy in T2 is

mostly canceled in the sum |tms
|
2
+

∣

∣tms′

∣

∣

2
. The model

provides the best fit for both the T1 and T2 data when
∣

∣t00/t
0
±1

∣

∣ ≈ 125 (Fig. 3a).
If the excited state Ψ is instead a triplet (S=1), the

overlap parameters cannot be written compactly, but
we analyze this case numerically in (see Appendix H).
Briefly, phonon-mediated orbital relaxation to a vibronic
excited state is generally spin conserving, but differences
in the ground and excited state spin Hamiltonians can
lead to mixing during the time spent in the excited state.
For SiV0 the ground and excited states can have differ-
ent zero field splitting tensors (De and Dg). Since the
Zeeman splitting in these measurements is 9.7 GHz, the
zero field splittings must differ by a comparable scale in
order to reproduce the observed ratio of T1 to T2, and
we find that the data can be qualitatively reproduced
when De ∼ 5− 7 GHz (Figs. S6 and S7b), compared to
the ground state zero field splitting, Dg = 0.94 GHz. It
is unlikely that the zero field splittings differ by such a
large magnitude. Alternatively, the small ratio of T1 to
T2 could also arise from incomplete spin dephasing. If
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the excited state lifetime is short compared to the spin
precession time (τ < π~/EZeeman ∼ 50 ps), then the
spin coherence is partially preserved through a single ex-
citation to Ψ23. A model involving a triplet excited state
would therefore require either that De ≫ Dg or that the
excited state lifetime is short enough to partially preserve
coherence.

IV. CONCLUSIONS

In summary, we have shown that spin relaxation in
SiV0 at high temperature is dominated by an Orbach
process that is strongly dependent on the magnetic field
orientation, and T2 exhibits the same temperature de-
pendence as T1, but at a significantly faster rate. These
observations can be explained by a model for the Orbach
process where the overlap parameters from the ms = 0
and ms = ±1 spin sublevels to a singlet excited state
are drastically different. We note that this is consistent
with the preferential optical spin polarization through
the intersystem crossing into ms = 0 (Fig. 1c)11. Alter-
natively, these observations can be qualitatively repro-
duced by a model with a triplet excited state that either
exhibits a much larger zero field splitting than the ground
state or a very short excited state lifetime. Although
our present results cannot definitively identify the excited
state, detailed spectroscopy can help distinguish between
these two cases. Absorption spectroscopy could elucidate
the vibronic structure24,25, and the nature of the singlet
state can be explored using time-resolved photon correla-
tion measurements and temperature-dependent intersys-
tem crossing rates26,27. At temperatures well above the
activation energy, there should be enough population in
the excited state to observe spin resonance transitions as-
sociated with a different zero field splitting. We have not
observed the existence of additional transitions, but on-
going work includes increasing our sensitivity at higher
temperatures to search for such states.
The strong intrinsic anisotropy in SiV0 stands in con-

trast to prior studies of NV−, in which spin relaxation is
mostly insensitive to the magnetic field orientation28. To
the best of our knowledge, there has not been a detailed
study of the orientation and temperature dependence of
spin relaxation in NV− at high magnetic fields, and it
would be interesting to perform such measurements in
light of our work. Similarly, a more detailed orientation
and temperature dependence of T1,spin in SiV− would
further elucidate analogous spin and orbital relaxation
processes, and recent measurements at dilution refriger-
ator temperatures have started to explore mechanisms
for spin relaxation and decoherence29,30.
These observations point to a particularly intriguing

possibility for high temperature operation if Ψ is a spin
singlet. The small overlap parameters between ms = ±1
and Ψ implies that superpositions of ms = ±1 could
have longer spin coherence time than even the measured
single-quantum T1, as they should be limited instead by

the double-quantum T1 (see Appendix J). Future exper-
iments include double-quantum spin resonance to inter-
rogate the coherence of such superposition states31.
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Appendix A: EXPERIMENTAL DETAILS

Electron spin resonance was performed on a modified
Bruker Elexsys 580 system with a 1.4 T electromagnet
(Fig. 5b). This is done by driving the TE011 mode of
a cylindrical dielectric resonator (ER-4118X-MD5) (9.7
GHz) with an external vector microwave source (Ag-
ilent E8267D). Temperature dependent measurements
were performed in an Oxford CF935 helium-flow cryo-
stat. The microwave excitation channel consists of a vec-
tor microwave source (Agilent, E8267D), a variable gain
solid state amplifier (AR 20S4G11), a protection PIN
diode (Hittite switch), and a variable attenuator (ARRA
P4844-30). This allows for arbitrary waveform control
as well as flexibility in the microwave power delivered to
the resonator which is necessary for handling the range of
quality factors and excitation bandwidths needed across
several samples. The microwave excitation is coupled ca-
pacitively to the resonator through a microwave waveg-
uide terminated with an open-loop antenna and the re-
flected microwaves are returned through a fast Hittite
switch (HMC547) redirecting the microwaves to the de-
tection channel. The reflected microwave signal is sent
through a cryogenic low noise amplifier (Low Noise Fac-
tory, LNF-LNC4 16B) and then through a room tem-
perature low noise amplifier (Bruker). To avoid satu-
rating and damaging the cryogenic amplifier it must be
protected from the microwave excitation during the ring
down period of the resonator. This protection was sup-
plied by the fast Hittite microwave switch, which was
used to couple the reflected microwave excitation out of
the resonator back to the excitation pathway. After the
ring down period the switch is opened up to the cryo-
genic amplifier so that any spin signal outside of the ring
down period is amplified. The amplified signal is sent to
a quadrature detector (Bruker) where it is mixed with
a reference signal from the vector source. The in-phase
(I) and quadrature (Q) signals coming out of the mixer
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are read with a fast digitizing board (Bruker SpecJet).
Triggering in this experiment was controlled with a Pulse-
Blaster ESR-PRO board.
Spin coherence measurements (T2) were made using a

two-pulse Hahn echo sequence with an initial laser pulse
to boost the echo strength by polarizing the spins pref-
erentially into ms = 0 (Fig. 5a). Spin relaxation mea-
surements (T1) were made using a three pulse inversion
recovery sequence (Fig. 5a). First a laser pulse is used to
polarize the SiV0 spins preferentially into ms = 0. After
a small delay to wait for any laser induced noise to die
out, a microwave π pulse is applied to invert the spin
polarization even further away from Boltzmann equilib-
rium. The waiting time in this inverted state (T) is varied
and a two-pulse Hahn echo sequence (π/2 − τ − π − τ -
echo) is used to read out the polarization at the end of
the waiting period. For the strongest signal τ is chosen
to be much smaller than T2.

Appendix B: INSTANTANEOUS DIFFUSION IN

SAMPLE D1

At low temperatures, the coherence time in sample D1
is limited by instantaneous diffusion, which arises when
a microwave pulse induces spin flips on a dense bath of
paramagnetic centers. If we consider a central spin sur-
rounded by its neighbors, then the pulse will induce rota-
tions of the neighbors as well as the central spin. Phase
resulting from the pulse-induced change in the dipolar
magnetic field from the neighbors is not refocused dur-
ing a Hahn echo sequence, limiting the coherence time of
the central spin to T2(ID)

32.
The effect of instantaneous diffusion can be mitigated

by using a smaller rotation angle (θ2) for the second mi-
crowave pulse of a Hahn echo sequence, since the change
in the net dipolar magnetic field scales as sin2(θ2/2).
This results in a proportionally smaller phase accumu-
lated by the central spin and a decoherence rate 1/T2 ∝
T−1
2(ID) sin

2(θ2). Using a smaller rotating angle will en-

hance T2, but it will also decrease the bulk echo signal
by the same factor. In sample D1, the apparent decoher-
ence rate increases linearly with sin2(θ2/2) (Fig. 6). The
data were fit according to the following:

1

T2
=

1

T2(SD)
+

1

T2(ID)
sin2 (θ2/2), (B1)

where T2(SD) is the spectral diffusion decay time. The
fit results in T2(SD) = 0.95± 0.22 ms, most likely arising

from the 1.1% of 13C nuclei11 and T2(ID) = 0.319±0.056
ms.
We note that the Hahn echo spin coherence times re-

ported for sample D1 in Figs. 6, 10c, and 11 (T2 = 0.28
ms) is not the same as the spin coherence time reported in
Fig. 2 in the main text (T2 = 0.48 ms). This arises from
the nonuniform population distribution of SiV0 centers in
this sample over the four inequivalent crystal orientations

([111],[11̄1̄], [1̄11̄], [1̄1̄1]), which has been reported previ-
ously as sample C in reference33. The data in Figs. 3, 8,
10, 11, and 6 is taken using the [1̄11̄] orientation (larger
SiV0 concentration), while the data in Fig. 2 is taken
using the [111] orientation (smaller SiV0 concentration).

Appendix C: DECOHERENCE ARISING FROM

T1-INDUCED SPIN FLIPS OF FAST RELAXING

NEIGHBORS

An alternative hypothesis for the observed tempera-
ture dependence of T2 (Fig. 2 in the main text) and its
relative magnitude with respect to T1 is that rapid de-
phasing arises from dipolar interactions with other SiV0

spins in the bath, such as those misaligned with the exter-
nal magnetic field. We can immediately rule out spectral
diffusion from SiV0 spin flip-flops and instantaneous dif-
fusion mechanisms arising from dipolar interactions be-
tween SiV0 centers since these mechanisms would be in-
dependent of temperature. Instead, we consider the con-
tribution of spectral diffusion arising from the fast T1

relaxation of nearby SiV0 centers34. This decoherence
mechanism is strongest when T1 of the spin bath is com-
parable to the T2 of the central spin under consideration.
In our samples, T2 ∼ 0.5 ms at low temperatures,

which is comparable to T1 ∼ 1 ms of the three equiva-
lent SiV0 orientations misaligned with the magnetic field
(θ ≈ 109◦) at temperatures above 20 K. We numeri-
cally model the contribution to the Hahn echo decay
from these three equivalent off-axis sites for the range
of densities in samples D1 and D235. The electron spin
Hamiltonian describing a pair of SiV0 spins, S1 and S2,
is given by:

Ĥ = ~ω1Ŝ1z + ~ω2Ŝ2z + ~A (r12) Ŝ1zŜ2z

+ V̂2(t),
(C1)

with dipolar interaction between the SiV0 spins

A (r12) = g1zg2zµ
2
B~

−1
(

1− 3 cos2(θ12)
)

r−3
12 , (C2)

where ω1 and ω2 are the transition frequencies of the
spins, r12 is the distance between the spins, θ12 is the
angle between r12 and B, g1z and g2z are the longitudinal
components of the g tensors. For our model we consider
that S1 is a slow relaxing spin (θ = 0◦) whose coherence
time is being measured, and S2 is a fast relaxing spin (θ =
109◦) whose spontaneous T1 flips induce decoherence of

S1. The term V̂2(t) accounts for the fast Orbach spin
relaxation rate of S2 spins by inducing random spin flips
at a rate W . The contribution to the echo signal decay
for S1 is35:

V (2τ) =

[

(

cosh(Rτ) +
W

R
sinh(Rτ)

)2

+
A2 (r12)

4R2
sinh(Rτ)

]

exp (−2Wτ),

(C3)
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1
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 (
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H
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sin 2 (θ2 / 2)

0

1

2

3

4

FIG. 6. Decoherence rates for SiV0 centers in sample D1
measured at 5 K as a function of the rotation angle (θ2) of the
second pulse in a Hahn echo sequence. The linear dependence
confirms that T2 is limited by instantaneous diffusion. The
black curve is a fit according to Eq. 2.

where τ is the inter-pulse delay in a Hahn echo sequence,
W = 1/T1,〈1̄11̄〉 (fast relaxing sites, Fig. 7 blue line),

R2 = W 2 − A2 (r12) /4, and r12 = n−1/3 is the aver-
age inter-spin distance. This expression is averaged over
all angles θ12 and added to the Hahn echo decay that
arises from 13C spectral diffusion alone (T2(SD) = 0.95
ms). The resulting calculated Hahn echo decay times are
shown in Fig. 7 for several SiV0 densities in and above
the range of the two samples studied here, which have
SiV0 concentrations of less than 5 · 1016 cm−3. The den-
sity required to account for the data would need to be 100
times higher. Furthermore, at high temperatures, mo-
tional narrowing should lead to an increase in T2, which
does not qualitatively agree with the observed tempera-
ture dependence (Figs. 2 and 7).

Appendix D: DYNAMICAL DECOUPLING

USING CPMG

We previously reported dynamical decoupling mea-
surements using the Carr-Purcell-Meiboom-Gill sequence
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FIG. 7. Arrenhius plot of simulations of T2 (red lines) re-
sulting from spectral diffusion arising from fast relaxing SiV0

centers. The blue dashed line is a fit of Eq. 2 to the temper-
ature dependence of T1 (blue squares) of fast relaxing SiV0

sites. This fit is incorporated in Eq. C3 to simulate T2 for a
range of defect densities (labels in units of cm−3). The sim-
ulations indicate that for the range of densities studied, the
decoherence arising from spin flips of nearby SiV0 centers is
not significant and is inconsistent with the observed temper-
ature dependence of T2 (red dots).

on sample D211,36. The Hahn echo T2 displays a plateau
below 20 K corresponding to 13C spectral diffusion, but
is limited by an Orbach process above 20 K. We ob-
served that T2,CPMG is unchanged above 20 K and fol-
lows the temperature dependence of T2. However be-
low 20 K T2,CPMG becomes substantially longer than T2

and follows the extrapolated temperature dependence of
the Orbach process. We hypothesize that the CPMG
experiment refocuses slow spectral diffusion that arises
from the 13C nuclei, but it does not refocus fast effects
from the Orbach process, as expected. All of the points
in the CPMG measurement lie along the same curve
T−1
2,CPMG = A exp (−Ea/kT ), where A = 1180± 210 kHz

and Ea = 16.8± 1.5 meV in the entire measured temper-
ature range 5 K - 60 K.

Appendix E: ORIENTATION DEPENDENCE OF

T1 AND T2 MEASURED ON ms = −1 ↔ 0

In the main text we presented the orientation depen-
dence of the T1 and T2 times for SiV0 for measurements
on the ms = 0 ↔ +1 transition. We also repeated the
same measurements on the ms = −1 ↔ 0 transition and
find that it gives a nearly identical orientation depen-
dence (Fig. 8). Since T1,−1↔0 ≈ T1,0↔1, we can con-
clude that

∣

∣t0+1

∣

∣ ≈
∣

∣t0−1

∣

∣. Additionally, because of the 1

θ (degrees)
0 22.5 45 67.5 90
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2
 (
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s
)
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105

101

FIG. 8. Orientation dependence of T1 (blue) and T2 (red)
measured at 30 K on the ms = −1 ↔ 0 transition. The lines
were simulated for the Orbach model with a singlet excited
state using Eqns. G12 and assuming

∣

∣t00/t
0

±1

∣

∣ = 125: (solid
line) T1,a, (dashed line) T1,b, and (long dash) T2.

GHz zero field splitting of SiV0, the measurements on the
ms = −1 ↔ 0 transition were made at a field that was
∼ 300 G larger (when aligned with the [111] direction)
compared to the measurements on the ms = 0 ↔ +1
transition in Fig. 3. This implies that the Orbach process
has a weak dependence on the magnetic field strength.

Appendix F: RATIO OF T1 TO T2

The singlet model predicts that the observed ratio of T1

to T2 in Figs. 2 and 3 is strongly dependent on the ratio
of the overlap parameters at zero field. The analytical
form of this dependence is shown in Eqs. 4 and 6 which
is plotted in Fig. 9. This figure shows that this ratio
is strongly dependent on the orientation of the magnetic
field, indicating that the best way to extract the ratio
of the zero field overlap parameters is by performing a
global fit across all orientations (Fig. 3).

Appendix G: MODEL FOR SPIN RELAXATION:

ORBACH PROCESS WITH A SINGLET

EXCITED STATE

Here we present a detailed analytical derivation of the
spin relaxation of SiV0 for an Orbach process mediated
by a spin singlet excited state. The neutral silicon va-
cancy center has D3d symmetry with a ground spin-
triplet state (3A2g), and the first excited singlet state is
expected to be 1Eg. The splitting between these states
is unknown. At zero magnetic field the triplet and sin-
glet states can mix through spin-orbit coupling assisted
by phonons37–40:
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and 6 for several values of θ.

|3Āms=0
2g 〉 =|3Ams=0

2g 〉+ t00 |1Eg〉

|3Āms=+1
2g 〉 =|3Ams=+1

2g 〉+ t0+1 |1Eg〉

|3Āms=−1
2g 〉 =|3Ams=−1

2g 〉+ t0−1 |1Eg〉

|1Ēg〉 =|1Eg〉+
∑

ms

t0ms
|3Ams

2g 〉,

(G1)

where t0ms
are state mixing coefficients. In the main text

we refer to them as overlap parameters that connect the
singlet and triplet subspaces since t0ms

= 〈3Āms

2g | 1Ēg〉.

The t0ms
coefficients arise from spin-orbit coupling and

thus depend only on the orbital symmetry of the involved
zero-field states, which is independent of the applied mag-
netic field.
The triplet eigenstates in the presence of a magnetic

field can be found using a Wigner rotation to transform
the eigenstates of the zero field splitting term from the
molecular frame to the laboratory frame (the frame in
which the Zeeman interaction is diagonal). This model
assumes that in a magnetic field the eigenstates of the
spin Hamiltonian have mostly Zeeman character and the
zero field splitting term can be neglected (gµBB/h ≫ D).
A general rotation, R, can be expressed in terms of Euler
angles:

R (α, β, γ) = Rẑ(γ)Rn̂(β)Rẑ(α), (G2)

where ~Ω = (α, β, γ) is the set of Euler angles following the
“passive” convention. Under this rotation the irreducible
tensors in the spin Hamiltonian TJ,m transform to ρJ,m
as:

ρJ,m =R(α, β, γ)TJ,mR−1(α, β, γ) =
∑

m′

DJ
m′,m(α, β, γ)TJ,m′ , (G3)

where DJ
m′,m(Ω) is the Wigner matrix of rank J . The

elements of this matrix are:

DJ
m′,m(α, β, γ) = exp(−im′α)dJm′,m (β) exp(−imγ),

(G4)
with

dJm′,m (β) =

∫

θ,φ

dΩ Y ∗
Jm′ (θ, φ) e−

i
~
βJn̂YJm (θ, φ) ,

(G5)
where YJm′ (θ, φ) are the standard spherical harmonic
functions and Jn̂ is the component of the total angular
momentum along n̂ ‖ 〈110〉. Then for J = S = 1:
DS=1

m′,m (α, β, γ) =













1+cos(β)
2 e−i(α+γ) − 1√

2
sin(β)e−iα 1−cos(β)

2 e−i(α−γ)

1√
2
sin(β)e−iγ cos(β) − 1√

2
sin(β)eiγ

1−cos(β)
2 ei(α−γ) 1√

2
sin(β)eiα 1+cos(β)

2 ei(α+γ)













.

(G6)
If we specifically define R as the rotation away from 〈111〉
about the 〈110〉 axis, so that α = ϕ, β = θ, and γ = 0◦

define the orientation of the magnetic field, the mixing
of the transition amplitudes is given by:

tm′ =
∑

m

DS=1
m′,m (ϕ, θ, 0) t0m, (G7)

From this we obtain the transition rates (|tm|
2
) by in-

voking the random phase approximation to neglect the
cross terms (averaging over ϕ). The physical origin of the
random phase approximation can arise from taking an
ensemble average over a bath of phonons that randomly
induce transitions to the excited state through spin-orbit
coupling. The result is:

|tm′ |
2
=

∑

m

〈
∣

∣DS=1
m′,m (ϕ, θ, 0)

∣

∣

2
〉ϕ

∣

∣t0m
∣

∣

2
, (G8)

where 〈
∣

∣DS=1
m′,m (ϕ, θ, 0)

∣

∣

2
〉ϕ =













cos4(θ/2) 1
2 sin

2(θ) sin4(θ/2)

1
2 sin

2(θ) cos2(θ) 1
2 sin

2(θ)

sin4(θ/2) 1
2 sin

2(θ) cos4(θ/2)













. (G9)

In the main text, Eqns. 3 for the overlap coefficients in
the presence of an off-axis magnetic field are obtained by
substituting Eq. G9 into Eq. G8.
Next, the transition rate matrix (Eq. G9) can be used

to model the spin relaxation processes for S = 1 where
the populations P = (P−1, P0, P+1) evolve according to:

dP (t)

dt
= R̃P (t), (G10)
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where the rate matrix R̃ is given by:

R̃m,m′ =C (1− δm,m′)µm−m′

|tm|2 |tm′ |2 −

Cδm,m′





∑

m′′ 6=m

|tm|2 |tm′′ |2 µm′′−m





, (G11)

where δm,m′ is the Kronecker delta function and µ =
exp(hf/kT ) is the Boltzmann factor at T = 30 K and
f = 9.7 GHz. Assuming that

∣

∣t0+1

∣

∣ =
∣

∣t0−1

∣

∣ and µ = 1
(hf ≪ kT ), this results in two distinct rate eigenvalues
λ1, λ2 corresponding to T1,a = λ−1

1 e−Ea/kT and T1,b =

λ−1
2 e−Ea/kT :

T1,a =
2e−Ea/kT

3C |t0|
2
(

|t+1|
2 + |t−1|

2
)

T1,b =
e−Ea/kT

C |t−1|
2
(

2 |t+1|
2
+ |t0|

2
) .

(G12)

Eqns. G12 were used to simulate the angular dependence
of T1 as a function of |t0| / |t±1| in Figs. 3a and 4b. If
we assume that

∣

∣t00
∣

∣ ≫
∣

∣t0±1

∣

∣ then Eqns. G12 reduce to
Eqns. 5.

Appendix H: MODEL FOR SPIN RELAXATION:

ORBACH PROCESS WITH A TRIPLET

EXCITED STATE

The excited state can also be a spin triplet state, such
as a quasilocalized vibronic mode or a low lying electronic
state. For this model we define two S=1 spin Hamiltoni-
ans for the ground state (Ĥg) and excited state (Ĥe) that

differ only in their zero field splitting tensors (D̃g 6= D̃e):

Ĥg = Ŝ
†D̃gŜ + µBŜ

†g̃B

Ĥe = Ŝ
†D̃eŜ + µBŜ

†g̃B,
(H1)

with eigenstates |ms〉g and |ns〉e, respectively. The rate
matrix describing the spin relaxation is given by:

Rm.m′ = C (1− δm,m′)
∑

n

|g〈m | n〉e e〈n | m′〉g|
2
µm−m′

−

Cδm,m′





∑

m′′ 6=m

µm′′−m
∑

n

|g〈m
′′ | n〉e e〈n | m〉g|

2



 .

(H2)
In the triplet model spin flips can occur through any of

the three spin sublevels of the excited state (Fig. 10b),
increasing the complexity of the rate matrix. Spin relax-
ation arises from the overlap between the eigenstates of
the two triplet states, and slight variations in the charac-
ter of the states become important. Thus the zero field

splitting terms for both the ground state and excited
state cannot be neglected when calculating the triplet
state overlap coefficients and the rate matrix (Rm,m′).
For these reasons the analytical solution for the Orbach
model with a triplet excited state is not compact, and
instead we numerically simulate the spin relaxation by
diagonalizing the rate matrix Eq. H2.
In general D̃e can differ from D̃g in either its quantiza-

tion axis, magnitude of the axial component, or magni-
tude of the rhombicity parameter. In the case where the
quantization axis of the excited state is not aligned with
the quantization axis of the ground state (e.g. due to
an E type quasilocalized vibronic mode that breaks D3d

symmetry) the resulting orientation dependence qualita-
tively disagrees with the T1 data. The same disagreement
was found to be true for the case where rhombicity was
introduced into the excited state spin Hamiltonian. How-
ever, the orientation dependence of T1 can be partially
reproduced by assuming that D̃e is axial (no rhombicity)

and also coaxial with the ground state D̃g, thus preserv-
ing D3d symmetry. Focusing on just fitting the T1 orien-
tation dependence (ignoring T2), the closest fit to the T1

data was found with De = 1 GHz. However, this excited
state zero field splitting tensor predicts that T2 ∼ 100
ns, which is inconsistent with the measured values. As
described in the main text, the Zeeman energy is large,
and in order to reproduce the T2 data, De needs to be
comparable to the Zeeman energy, and the T2 data is
reproduced best by the triplet model when De ≈ 5 − 7
GHz (Fig. 11). The simulated orientation dependence
of T1 for this excited state zero field splitting is quali-
tatively similar to the data, but lies outside of the error
bars for both time constants (Fig. 10c). Furthermore,
such a large difference in zero field splitting between the
ground and excited states is unlikely.

Appendix I: ORIENTATION DEPENDENCE OF T2

Our model for the Orbach process predicts a weak ori-
entation dependence of T2. The orientation dependence
fits shown in Fig. 3a utilize the same overlap amplitudes
(t00, t

0
±1) to explain both T1 and T2. The actual expres-

sion used in fitting the T2 dependence in Fig. 3a is given
by:

1

T2,0↔±1
=

1

3
C
(

∣

∣t00
∣

∣

2
+ 2

∣

∣t0±1

∣

∣

2
)(

|t0|
2 + |t±1|

2
)

+

1

T2(ID)
+

1

T2(SD)
,

(I1)

which in addition to the Orbach process also includes
instantaneous diffusion and 13C spectral diffusion mech-
anisms. We used T2(ID) = 0.319 ms and T2(SD) = 0.95
ms in these simulations.
The orientation dependence of T2 is shown in Fig. 11

with the simulated fits according to the singlet (Fig. 11a)
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FIG. 10. (a) Model for the Orbach process of SiV0 with a
singlet excited state. The transition rates (|tms |

2) are de-
termined by spin orbit coupling and depend on the overlap
between the electronic wavefunctions of the ground triplet
state and the excited singlet state. (b) Model for the Orbach
process of SiV0 with a triplet excited state. The transition
rates between the ground state spin sublevels depend on the
overlap between the spin eigenstates of the ground state and
excited state, and must be summed over all spin sublevels
in the excited state. (c) T1 and T2 orientation dependence
from Fig. 3a, plotted against calculated fits from the singlet
(black) and triplet (red) Orbach models: (solid line) T1,a,
(dashed line) T1,b, and (long dash) T2. The singlet model
fit assumes

∣

∣t00/t
0

±1

∣

∣ = 125. The triplet model fit assumes a
coaxial excited state ZFS tensor with De = 5 GHz.
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FIG. 11. Orientation dependence of the SiV0 electron spin
coherence time, T2 (replotted from Fig. 3a). (a) Predicted
orientation dependence using an Orbach model with a singlet
excited state (black curve, Eq. I1) with no free parameters.
Measurements were made on both the ms = 0 ↔ +1 tran-
sition (red points) and the ms = −1 ↔ 0 transition (blue
points) at each orientation. (b) Predicted orientation depen-
dence of an Orbach model with a triplet excited state. The
simulated curves are shown for several values of De (labeled
in units of GHz).

and triplet (Fig. 11b) models, using the t0ms
and C pa-

rameters determined from the T1 data. The singlet model
has no other free fitting parameters, and we plot Eq. I1
for the singlet model assuming that

∣

∣t00/t
0
±1

∣

∣ = 125 as
determined from the fit of the T1 orientation dependence
(Fig. 3a). The singlet model predicts the magnitude of
T2 with reasonable accuracy.
The triplet model has four free parameters, two an-

gles that set the quantization axis of the excited state,
the axial part of the zero field splitting tensor, and the
rhombic part of the zero field splitting tensor. We only
consider the case where the zero field splitting tensor of
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FIG. 12. Simulated orientation dependence of T1/T2 for the
Orbach process at 30 K showing the ms = 0 ↔ +1(black
curve) and ms = −1 ↔ +1 (red curve) coherence times com-
pared to T1,a. The dashed blue line marks where T1 = T2 and
only the ms = −1 ↔ +1 curve dips below this, achieving the
condition T1/T2 < 1.

the excited state is axial and aligned with the symmetry

axis of the defect since this is the case that best produces
the measured T1 orientation dependence (Fig. 10c). The
dependence for several values of De is shown and the best
fit occurs with De ≈ 5−7 GHz. Alternatively, if the spin
does not fully decohere through a single cycle through
the excited state, the magnitude of T2 can be larger than
the simulated values.

Appendix J: DOUBLE QUANTUM COHERENCE

TIME

The Orbach process affects the double quantum tran-
sition (ms = −1 ↔ +1) through the overlap parame-
ters t+1, t−1 and from the anisotropy of T1 (Fig. 3) we
know that

∣

∣t0+1

∣

∣ ,
∣

∣t0−1

∣

∣ ≪
∣

∣t00
∣

∣. It follows that 1
T2,−1↔+1

∝
∣

∣t0−1

∣

∣+
∣

∣t0+1

∣

∣ ≪
∣

∣t0±1

∣

∣+
∣

∣t00
∣

∣ = 1
T2,±1↔0

so that the double

quantum coherence time should be longer at zero field
or with the magnetic field aligned along the defect axis.
Moreover for small angles of the magnetic field the dou-
ble quantum coherence time can be longer than the single
quantum T1 time, even when the single quantum coher-
ence time is much shorter (Fig. 12).
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P. Bushev, and C. Becher, “All-optical control of the
silicon-vacancy spin in diamond at millikelvin tempera-
tures,” (2017), arXiv:1708.08263.

30 D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K.
Bhaskar, R. E. Evans, F. Jelezko, and M. D. Lukin, “The
silicon-vacancy spin qubit in diamond: quantum memory
exceeding ten milliseconds and single-shot state readout,”
(2017), arXiv:1708.08852.

31 B. A. Myers, A. Ariyaratne, and A. C. Bleszyn-
ski Jayich, “Double-quantum spin-relaxation limits to
coherence of near-surface nitrogen-vacancy centers,”
Phys. Rev. Lett. 118, 197201 (2017).

32 J. R. Klauder and P. W. Anderson, “Spectral
diffusion decay in spin resonance experiments,”
Phys. Rev. 125, 912–932 (1962).

33 A. M. Edmonds, “Magnetic resonance studies of point de-
fects in single crystal diamond,” PhD. Thesis, University
of Warwick (2008).

34 W. B. Mims, “Phase memory in electron spin echoes,
lattice relaxation effects in CaWO4: Er, Ce, Mn,”
Phys. Rev. 168, 370–389 (1968).

35 K. M. Salikhov, S. A. Dzuba, and A. M. Raitsimring, “The
theory of electron spin−echo signal decay resulting from
dipole-dipole interactions between paramagnetic centers in
solids,” J. Magn. Reson. 42, 255 – 276 (1981).

36 S. Meiboom and D. Gill, “Modified spin−echo
method for measuring nuclear relaxation times,”
Rev. Sci. Instrum. 29, 688–691 (1958).

37 M. L. Goldman, A. Sipahigil, M. W. Doherty, N. Y. Yao,
S. D. Bennett, M. Markham, D. J. Twitchen, N. B. Man-
son, A. Kubanek, and M. D. Lukin, “Phonon-induced
population dynamics and intersystem crossing in nitrogen-
vacancy centers,” Phys. Rev. Lett. 114, 145502 (2015).

38 M. L. Goldman, M. W. Doherty, A. Sipahigil, N. Y. Yao,
S. D. Bennett, N. B. Manson, A. Kubanek, and M. D.
Lukin, “State-selective intersystem crossing in nitrogen-
vacancy centers,” Phys. Rev. B 91, 165201 (2015).

39 G. Thiering and A. Gali, “Ab initio calculation
of spin-orbit coupling for an NV center in di-
amond exhibiting dynamic Jahn-Teller effect,”
Phys. Rev. B 96, 081115 (2017).

40 M. W. Doherty, N. B. Manson, P. Delaney, and
L.C.L. Hollenberg, “The negatively charged nitrogen-
vacancy centre in diamond: the electronic solution,”
New J. Phys. 13, 025019 (2011).

http://dx.doi.org/ 10.1103/PhysRevLett.119.096402
http://dx.doi.org/10.1098/rspa.1961.0211
http://dx.doi.org/10.1002/pssb.2221170202
http://dx.doi.org/10.1103/PhysRevLett.113.263602
http://dx.doi.org/ 10.1103/PhysRevB.61.12909
http://dx.doi.org/ 10.1103/PhysRevB.77.245205
http://dx.doi.org/10.1038/nmat3182
http://dx.doi.org/10.1103/PhysRevLett.108.197601
http://dx.doi.org/ 10.1016/0009-2614(76)80554-4
http://dx.doi.org/10.1103/PhysRevB.88.165202
http://dx.doi.org/10.1038/nphys2753
http://dx.doi.org/10.1103/PhysRevB.60.11503
http://dx.doi.org/10.1002/pssa.200671403
http://dx.doi.org/10.1140/epjqt/s40507-015-0035-z
http://arxiv.org/abs/1708.08263
http://arxiv.org/abs/1708.08852
http://dx.doi.org/10.1103/PhysRevLett.118.197201
http://dx.doi.org/ 10.1103/PhysRev.125.912
http://dx.doi.org/10.1103/PhysRev.168.370
http://dx.doi.org/ 10.1016/0022-2364(81)90216-X
http://dx.doi.org/ 10.1063/1.1716296
http://dx.doi.org/10.1103/PhysRevLett.114.145502
http://dx.doi.org/10.1103/PhysRevB.91.165201
http://dx.doi.org/ 10.1103/PhysRevB.96.081115
http://dx.doi.org/10.1088/1367-2630/13/2/025019

