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Using group theoretic and topological concepts, together with tunneling phenomena, we geometrically design
interfacial wave networks that contain splitters which partition energy in 2, 3, 4 or 5 directions. This enriches
the valleytronics literature that has, so far, been limited to 2-directional splitters. Additionally, we describe a
design paradigm that gives greater detail, about the relative transmission along outgoing leads, away from a
junction; previously only the negligible transmission leads were predictable. We utilise semi-analytic numerical
simulations, as opposed to finite element methods, to clearly illustrate all of these features with highly resolved
edge states. As a consequence of this theory, novel networks, with directionality tunable by geometry, ideal for
applications such as beam-splitters, switches and filters are created. Coupling these novel networks, that contain
multi-directional energy-splitters, culminates in the first realization of a topological supernetwork.

I. INTRODUCTION

A fundamental understanding of the manipulation and
channeling of wave energy underpins advances in electronic
properties, acoustic switches, optical devices, vibration con-
trol and electromagnetism. Guiding waves, splitting and redi-
recting them between channels, and steering waves around
sharp bends, in a robust and lossless manner is of inter-
est across many areas of engineering and physics1–7. Re-
cent advances based upon ideas originating from topologi-
cal insulators8–11, translated to Newtonian wave systems, have
inspired great interest: In particular, geometrically engineer-
ing topological photonic and phononic crystals11,12 to direct
waves along interfaces in a robust tuneable manner has shown
much potential. In this article, we leverage the efforts by the
topological valleytronics community13–28, to design a range of
novel interfacial wave networks. These extend the interfacial
network designs prevalent in the current literature by allow-
ing for more than a 2-way splitting of energy away from a
nodal region. For hexagonal structures there are three distinct
edges which yield up to three sets of edge states12,29; the cur-
rent literature has concentrated upon only one of these. Here
we analyze the remaining two, one of which is topological,
whilst the other is not. Despite that latter state being non-
topological, the large separation in Fourier space between op-
posite propagating modes results in an interfacial wave that is
relatively robust to sharp disorders. To elucidate our princi-
ples with clarity we outline a comprehensive design paradigm
which is in turn utilised to build novel networks.

Recent attempts to leverage the properties of quantum
topological effects to design, so-called, topological power-
splitters, for continuous Newtonian systems30–33 would ben-
efit from a clear design paradigm explaining how to parti-
tion the energy of topological modes. Splitters, and effi-
cient transport around sharp bends, are often achieved using
a different mechanism, that of cavity waveguides in photonic
crystals1–3,6. Given that we are dealing with interfacial waves,
the power-splitting mechanism, espoused herein is an alterna-
tive means to split energy to those found in2,6.

By focusing upon the underlying concepts of time-reversal
symmetric (TRS) valley-Hall insulators19,32,34–38, that do not

(a) (b)

(c) Conventional 2-way
energy-splitter

(d) Geometrically engineered
3-way energy-splitter

Figure 1: Intelligently constructed domain comprised of
geometrically distinct regions; mass-loaded structured elastic
plate is the model chosen. Source is placed at the start of the
interface 3. Arrangement of masses for blue and orange cells
are shown in panels (a) and (b); specific system parameters
are detailed in captions of Figs. 3 and 7. Panels (a) and (b)
are associated with the (c) and (d) scattered field panels.

Panel (c) shows typical 2-way energy-splitting30; an
alternative geometrically engineered interfacial wave

network, with more than 2-way splitting, is shown in (d).

break TRS, our system is ultimately topologically trivial. De-
spite this, valley-Hall insulators do have advantages; they are
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relatively straightforward to design as we only need to break
spatial inversion and/or a reflection symmetry, together with
proactively suppressing backscattering between modes of op-
posite group velocity.

The group theoretic and topological concepts founda-
tional to our approach hold irrespective of any specific two-
dimensional scalar wave system. We illustrate these concepts
using a single system, specifically, a structured thin elastic
Kirchhoff-Love (K-L) plate39 for which many results for point
scatterers are explicitly available40; the ideas themselves carry
across to photonics, phononics and plasmonics. A particu-
larly pleasant feature of the K-L model is that the fundamental
Green’s function is, unlike acoustics and electromagnetism,
non-singular and bounded thereby simplifying simulations.

We begin by briefly formulating the Bloch eigenstate and
scattering problems in the context of the K-L elastic plate,
Sec. I A, and then move on, Sec. I B, to describe the construc-
tion, origin and classification of the three canonical edge states
that are possible. Sec. II introduces the design paradigm for
creating networks and we elucidate the critical points required
in building or interpreting networks: sharp modal shapes, fil-
tering, Fourier space separation between opposite propagating
modes, chirality and the suppression of intervalley scattering,
tunneling of energy and the effect of the nodal region at the
junction between interfaces. Given the paradigm developed
we move on, to Sec. III, where we construct such novel inter-
facial wave networks; we demonstrate the collective strength
of the design principles, in Sec. III D, by building a large
scale topological supernetwork. Finally, in Sec. IV, we pull
together concluding remarks.

A. Formulation

Displacement Bloch eigenstates ψnκ(x) satisfy the (non-
dimensionalized) K-L equation[

∇4
x − ω2

κ

]
ψjκ = F (x), (1)

for Bloch-wavevector κ, j labelling the eigenmodes and ωκ

the frequency; reaction forces at the point constraints, F (x),
introduce dependence upon the direct lattice.

In two-dimensional systems there are only three symmetry
sets that yield Dirac cones12,29 of which we use two. The gap-
ping of these Dirac cones is done via two distinct symmetry-
breaking mechanisms; for point scatterers this entails varying
their masses or positions. The simplest model to use is that
of the mass-loaded elastic plate where the reaction forces are
proportional to the displacement and hence,

F (x) = ω2
κ

∑
n

P∑
p=1

M (p)
n ψjκ(x)δ

(
x− x(p)

n

)
. (2)

Here n labels each elementary cell, containing p = 1...P con-
straints, that repeats periodically. Eq. (1) is solved to ob-
tain the eigenstates using plane wave expansions41, modified
for elastic plates42, and when forcing is applied we utilize a

Green’s function approach43 where the total wavefield is given
for N scatterers by

ψjκ(x) = ψi(x) +
∑
n

P∑
p=1

F (p)
n g

(
ωκ, |x− x(p)

n |
)

(3)

with ψi is the incident field. Using the well-known Green’s
function40, g (ωκ, ρ) = (i/8ω2

κ) [H0(ωκρ)−H0(iωκρ)], the
unknown reaction terms F (p)

n come from the linear system

F (p)
n = M (p)

n ω2
κ

[
ψi

(
x(p)
n

)
+

∑
m

P∑
q=1

F (q)
m g

(
ωκ, |x(q)

m − x(p)
n |
)]
. (4)

This model has considerable advantages in terms of being al-
most completely explicit, and additionally the Green’s func-
tion is non-singular; this leads to highly resolved solutions
and edge states that enable us to interpret the results accu-
rately. The numerical schemes that emerge from this approach
are efficient thereby allowing us to concentrate on the design
process itself.

(a) (b)

Figure 2: The geometric creation of interfacial edge states
relies upon broken three-fold symmetry; the stacked media

are required to share the same band-gap, the latter arises from
having same angular perturbation away from the reflection
line, σv . The details of the 3 edges are summarised in Table
1. Perturbations shown in (a) lead to a type 1 edge, resulting

in similar edge modes to those of Fig. 3; whilst the
perturbations indicated by the right and left arrows, for the
lower cell in (b), pertain to the type 2 (Fig. 4) and type 3

(Fig. 7) edges, respectively.
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Edge Type Point Group Symmetries
pre-perturbation

→ GΓ, GK,K′

Medium 1
post-perturbation

Medium 2
post-perturbation

Topological
Protection System abbreviation

M1 =M0, M1 =M0 + β,Type 1 C6v, C3v M2 =M0 + β M2 =M0
C6v nontrivial

concave and convex curves C3v, C3v θ = +α θ = −α
Yes

—
Type 2
one convex curve C3v, C3v θ = +α θ = +α+ π/3 Yes C3v nontrivial

Type 3
two convex curves C3v, C3v θ = +α θ = −α+ π/3 No C3v trivial

Table I: Summary of the three edge types leading to Figs. 3, 4 and 7. In the C6v case, M1 and M2 denote alternating mass
values within a hexagon (see Fig. 3); M0 denotes the unperturbed mass value and β the perturbation. For the C3v cases, θ

represents the angular perturbation, α, away from the reflection line σv (see Fig. 2). Topological protection follows when the
valley Chern numbers are opposite for adjoining media. Abbreviations are adopted to concisely distinguish between the three

systems referenced throughout this article.

B. Three distinct edges: Topology, symmetry and the cellular
structure

We demonstrate three distinct edge states that are intelli-
gently constructed; two of these are topologically nontrivial
whilst one is topologically trivial. Despite the latter case be-
ing trivial it will be shown in Sec. II C, that it is still relatively
robust to backscattering due to the Fourier space separation
between the forward and backward propagating modes; typi-
cally the well-studied topological trivial interfacial and cavity
guide states effectively rely solely upon this separation. A
summary of the three types is shown in table I and their geo-
metrical origins are visually demonstrated in Fig. 2.

Turning our attention toward the topological nontrivial
states, the valley Hall effect originates from the gapping of
Dirac cones resulting in nontrivial band gaps where broad-
band edge states are guaranteed to reside; simply placing two
media, that share a band gap, as neighbours does not guaran-
tee an interfacial mode44. The topological invariant that dic-
tates the construction of our neighbouring media is the valley
Chern number; this takes non-zero values locally at the KK ′

valleys. By attaching two media, with opposite valley Chern
numbers, broadband chiral edge states arise; these interface
states are commonly known as topological confinement states,
kink states, zero modes, or zero-line modes (ZLMs). From
hereon in we use the term ZLM to refer to these topologically
nontrivial states; the etymology of this term arises from the
adjoining media, either side of the interface, having opposing
valley Chern numbers.

We generate ZLMs (and incidentally also the topologically
nontrivial modes) by placing one gapped medium above an-
other; this second medium could either be a reflection and/or
π/3 rotation of the first. The simplicity of this construction,
and the apriori knowledge of how to tessellate the two media,
to produce these broadband edge states, is the main benefit
of these geometrically engineered modes. A benefit of the
topologically nontrivial valley modes is that the opposing val-
ley Chern numbers imbue the edge states with an additional

protective property (Sec. II D); despite the type 3 edge (ta-
ble I) yielding topologically trivial states it ultimately shares
many of the same features, as its topological counterpart, in
a practical setting due to the Fourier space separation of the
counter-propagating modes (Sec. II C).

For instance, for the C6v nontrivial case, from29, the effec-
tive bulk Hamiltonian takes the form,

Heff = τzvD(σ̂z∆κx − σ̂x∆κy) + τzMK σ̂y, (5)

whereMK = ω2
K∆M, vD is the system dependent group ve-

locity, {σ̂i} are the Pauli matrices. The ∆M term is responsi-
ble for gapping the Dirac point and differs depending upon the
manner whereby inversion symmetry is broken; for the canon-
ical honeycomb case, ∆M = β/2. The presence of the valley
Pauli matrix, τz , relates the Dirac masses at the KK ′ valleys
by MK = −MK′ . The corresponding eigenvalues for this
effective Hamiltonian are,

(ω2
K − ω2

κ) = ±
√
v2D|∆κ|2 +M2

K . (6)

This is the form of the eigenvalues for the massive Dirac
fermionic equation albeit for a platonic crystal. Following
similar arguments to45, we evaluate the Chern number as
C = CK + CK′ where CK,K′ = sgn (MK,K′) /2. The term
MK is responsible for gapping the Dirac cones by reducing
the symmetries of the cellular structures. The Dirac cone itself
is geometrically obtained in three distinct ways,29; these are
described by the space group symmetries C6v, C3v, C6 how-
ever, for simplicity, in this article we solely concentrate upon
the C6v, C3v cases. We could have used C3v case throughout,
i.e. for the type 1 edge, but we opted to include a C6v case
to illustrate the generality of our arguments. As we see from
Fig. 2 there are 3 possible edge types for the C3v case (and
for C6), whilst for the C6v case (due to the reflection and ro-
tation being equivalent) there is only a single edge type which
is topologically nontrivial.
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The systematic reduction of these cellular structures takes
the space group symmetry down to C3 and consequently re-
duces the point group symmetries at the KK ′ valleys to C3;
this reduction at the valleys gaps the Dirac cone. The symme-
try reduction down to 3-fold symmetry leads to three symmet-
rically distinct edges for each cellular structure.

For the tight-binding model,46, ZLMs with distinguishable
valley degrees of freedom exist for every propagation angle
except for the armchair; the armchair termination exactly su-
perposes theKK ′ valleys thereby coupling them. In principle
one could use other edge terminations for continua however it
is impractical to use fractional cells, as in46, when partitioning
the media. Therefore the topological networks that we create
are based solely upon the zigzag interface as they offer the
greatest protection against backscattering.

Figure 3: The gapped Dirac ZLM (related to type 1 edge of
Table I) with original space group symmetry C6v and

alternating the masses M1 = 1,M2 = 2, which have distance
from centroid to masses 0.5 (the pitch is 2). Right-hand circle
on the concave curve at ω = 15.11 corresponds to the ZLM
(right). Left-hand circle on the convex curve at ω = 15.67 to

the ZLM (left). Note, the detail of both of the easily
distinguishable edge states; hence we can easily attribute a
modal pattern to a specific ordering of the adjoining media.

To summarize, we have identified the canonical three types
of edges that arise from breaking six-fold or three-fold sym-
metry in hexagonal structures and the resulting edge states as
shown in Figs 3, 4, 7. We present a systematic breakdown
of the different edge modes that may arise from breaking the
symmetry induced Dirac cones occurring for the hexagonal
lattice and thence for all 2D media. Previously, the bulk of the
valleytronics literature13–28 have exclusively only dealt with
the type 1 edge (in the notation of Table I). We now utilize the
unexplored type 2 and 3 edges to demonstrate their properties
for controlling and redirecting waves. Note that the simplest
C6v case is actually the honeycomb structure; we have opted

Figure 4: The gapped Dirac ZLM with original space group
symmetry C3v emerges from the type 2 edge (Table I). The
cellular structure for the upper medium is shown; the lower
medium is a π/3 rotation of this (see Fig. 5). This case has

the distance from centroid to vertices of triangle = 0.85, unit
masses (the pitch is 2) and a perturbation of 0.05. The circled

point at ω = 19.13 corresponds to the ZLM shown. In
contrast to Fig. 3 we have a broad frequency range for which
there is a non-simultaneous edge mode. The interface for the

broadband edge mode is explicitly shown in Fig. 5(a), the
narrowband zigzag edge is shown in Fig. 5(b). The lack of

overlap between the states will be utilized in Secs. II B, III A
when we wish to preferentiate the energy propagation along
particular leads within a network. For a type 2 edge, you are

not guaranteed a non-simultaneous edge mode. It is
imperative to analyze the three distinct types of edges (see

Fig. 2 and Table I) in order to discern whether they produce
different edge states and hence different scattering behaviour
within a network. The colorbar is shown to emphasise that a
graded colour scheme is used for all displacements within
this article; often an ungraded scheme is used within the

valleytronics community which can be visually misleading.

for hexagonal arrangement here because of its parallels with
continuous inclusions (see Fig. 8), the C3v arrangements can
also be mapped over to continuous inclusions.
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(a)
(b)

Figure 5: The zigzag edges for orange medium over blue and
vice-versa for the structure used in Fig. 4 and associated with

the type 2 edge of Table I.

(a)
(b)

Figure 6: The zigzag edges for orange medium over blue and
vice-versa used in Fig. 7 and associated with the type 3 edge
of Table I. The zigzag edges in panels (a) and (b) are nearly

identical which gives the almost overlapping edge modes
shown in Fig. 7

II. NETWORK DESIGN PARADIGM

We outline the design principles that will be used in the sub-
sequent section for creating novel topological networks. The
two nontrivial modes that we are studying are characterized as
weak topological states, protected solely by symmetry, hence
care must be taken to prohibit backscattering. A set of prin-
ciples regarding, the optimization of these valley modes, was
given in47. To clarify, the protection arises both, from the op-
posite chirality of opposite propagating modes and the inter-
valley Fourier separation between these two states. Only the
former is a topological effect, whilst the latter also occurs for
topologically trivial interfacial and cavity waveguide modes.
Hence, for the C6v and C3v nontrivial systems we have both
of these protective mechanisms, however for the C3v trivial
case we solely rely on the latter; despite this in Sec. II C we
demonstrate how these modes still appear robust against sharp
disorder (i.e. the turning point at the junction) for a broadband
range of frequencies. Another benefit of these trivial interfa-
cial modes is that they afford unrestricted directional splitting
as compared with their nontrivial counterparts (Sec. II D).

Our design paradigm is similar to47 albeit our application is
slightly different; our aim is to build robust networks, com-
prised of trivial or nontrivial interfacial modes, not just to

Figure 7: The gapped Dirac topologically trivial edge state
with original space group symmetry C3v , arises from the

type 3 edge (Table I). The trivial nature is due to the Chern
numbers at the KK ′ valleys being identical; despite this, the

simultaneous bulk band-gap, for the two media, and their
relative difference in orientation results in broadband edge

states. Distance from centroid to vertices of triangle = 0.85
and unit masses (the pitch is 2). Similar to Fig. 3 we obtain
simultaneous edge states albeit for the type 3 edge we have
two convex curves as opposed to a convex and a concave.

Left-hand circle at ω = 18.95 corresponds to the interfacial
mode on the left whilst the right-hand circle, ω = 17.95 to

the right-hand mode.

(a) (b)

Figure 8: Structural elements moving beyond point masses:
(a) continuous perturbed C6v case, (b) continuous perturbed

C3v case.

characterise the robustness of nontrivial ZLMs. Therefore, in
addition to the robustness of the modes, we require additional
features to aid the tunability of energy as it propagates within
an interfacial wave network. An outline of the six principles is
given below, before we embark upon more detailed numerical
explanations, in the subsequent subsections:

• Different modal shapes.—Our semi-analytic expres-
sions allow us to obtain precise and sharp modes where
the distinct modal patterns are easily seen. We distin-
guish the modes present, those related to medium 1 over
medium 2 and its reverse; by solving the linear system
(4) we easily visualize which edge state, and therefore
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which edge, has been excited.

• Filtering.—If there is only a single curve within a fre-
quency range, then a mode exists for medium 1 over
medium 2 but not for its reverse. The non-simultaneous
edge modes present in the C3v nontrivial case, Fig. 4,
provide an example. These types of systems are utilized
for filtering (see Sec. II B).

• Fourier space separation.—This property has been al-
luded to countless times with regards to interfacial and
cavity guide modes. When a source is placed at the
start of a waveguide, the backscatter is inversely related
to the wavelength of the energy-carrying envelope48.
Therefore, a larger wavevector is less prone to backscat-
tering and hence less prone to coupling with its opposite
propagating counterpart.

• Chirality of valley states and suppressing interval-
ley scattering.—Unique to topological valley modes is
presence of a favoured chirality for edge modes10,47,49.
The lack of coupling of modes with opposite chirality
has been shown in31,32. Therefore for a network, if a
mode on a pre-nodal lead is of a particular chirality
it will not easily couple to its counterpart of opposite
chirality. This is also true for a mode with a partic-
ular wavevector or K/K ′ valley index, pre- and post-
the nodal region. Hence, the chirality and wavevector
matching properties are significant for determining the
coupling between modes, pre- and post- the nodal re-
gion. The mechanism in which coupling between the
two valleys is restricted is more commonly referred to
as suppressing intervalley scattering.

• Tunneling.—A route to partitioning energy away from
an interfacial waveguide is via the tunneling of energy
through the decaying tails of the edge state. The amount
of energy partitioned via tunneling is tuned by adjusting
the band-gap.

• Nodal region.—The nodal region becomes highly rele-
vant when the wavelength of the energy-carrying enve-
lope is comparable in size to the nodal region. In these
instances the design of the nodal region can preferenti-
ate certain outgoing leads over others.

A. Different modal shapes

The clarity of edge modes that we find numerically allows
us to easily, and rapidly, identify whether the edge state cor-
responding to, say, the concave or convex curves of Fig. 3 is
excited. The two edge modes shown in Figs 3, 4 and 7 relate
to either an edge state along medium 1 over medium 2 or its
reverse. They are visualised by placing a source at the far-left
hand side of the interface between the two media; the result-
ing modal pattern clearly reflects the relative ordering of the
media, see Figs 9 and 10. To see this more clearly one needs
to realise that the scatterer arrangement within each medium

is important and one cannot apply a π rotation of Fig. 9 to
obtain Fig. 10.

For the simpler cases, Figs 9, 10, the identity of the edges is
obvious, however later using the highly resolved edge modes
to unpick which edge is responsible, and exactly which mode
is excited, is in practice very useful when constructing com-
plex networks comprised of many geometrically distinct re-
gions. The underlying mathematics that underpins the con-
struction of interfacial wave networks does not rely upon the
physical model and so there is no need to use a more compli-
cated systems, i.e. Maxwell, acoustic, Navier elasticity, than
the K-L flexural plate equation. These effects are geomet-
rically induced, hence system-independent, choosing more
complicated models to explore them adds nothing more than
computation time and results in lower resolution edge states
which obscure from the fundamental physics. By using the
K-L model, as a vehicle, we are able to use the resulting clar-
ity of the modes to provide us with useful information in a
time-efficient manner.

Figure 9: The clarity of the “sawtooth” edge mode obtained,
for parameter values from the convex curve (ω = 15.67)

shown in Fig. 3, is evident for this C6v nontrivial example.

Figure 10: Edge state for the same parameters as Fig. 9, but
now with the ordering of the media reversed to be associated
with the concave curve in Fig. 3. The modal pattern is clearly

different from the ZLM in Fig. 9.

A less trivial example than Figs 9, 10, touched upon in
refs.28,29, is that of a gentle waveguide bend where the ad-
joining media undergoes a 2π/3 bend, see Fig 11. A source
placed at the turning point between the two interfaces excites
either the mode belonging to the concave or convex curves;
the clarity of the modes shows clearly the origin of the left-
ward and upward propagating modes.
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(a)
(b)

Figure 11: Source placed at the turning point, ω = 15.80. As
evident from the modal shapes, the mode propagating

upwards is the “sawtooth” mode that lies on the convex curve
whilst the leftward propagating mode is on the concave curve

as shown in Fig. 3

B. Filtering

The C6v case, referenced in the previous section, has two
distinct broadband zero-line modes (ZLMs), at overlapping
frequencies, within the nontrivial band gap (Fig. 3); the asym-
metry of the edges was reflected by the differences in the
modal shapes. In contrast, for the C3v case, Fig. 4, the ZLMs
now have very limited overlap with only one broadband mode.
Physically, this implies that, for the C3v case, a ZLM exists,
over a wide range of frequencies, for one of the orderings of
the media but not for its inverse. This allows us to restrict
propagation along one of two distinct interfaces; see Fig. 12.

Figure 12: The importance of the relative ordering of the
media for filtering in the C3v nontrivial case, for both panels
an isotropic source is placed at the leftmost edge at frequency

ω = 19.13.

C. Fourier space separation

It is perhaps surprising, given the emphasis in the topologi-
cal literature on nontrivial edge states, to observe that the triv-
ial case demonstrates visually robust energy transport around
π/3 and 2π/3 bends (see Fig. 13). This is because the trans-
port around the bends is partly supported by the separation in
Fourier space between the forward and backward propagating
modes; this is also implicit in the successful guiding of pho-
tonic crystal waveguides around bends48 where topological
protection is also absent. An example showing the importance
of the separation, common in the valleytronics literature, is
the contrast between the armchair and zigzag interfaces. This
is further evidenced by the small Fourier separation between
modes of opposite group velocity, see46, for the armchair case
relative to that of the zigzag; the armchair termination is far
more prone to backscatter than the zigzag.

(a) ω = 18.25 (b) ω = 19.00

Figure 13: Robustness of C3v trivial edge state demonstrated
against π/3 and 2π/3 bend. The source excitation is placed

at the leftmost edge.

D. Chirality of valley states and suppressing intervalley
scattering

To ensure coupling between modes, pre- and post- the
nodal region, we must consider the relative group velocity and
wavevector of the incoming and outgoing waves. The time-
averaged energy flux, for a structured elastic plate51,

〈S〉 =
ωκ

2
Im
(
ψjκ∇3

xψ
∗
jκ −∇2

xψ
∗
jκ∇xψjκ

)
, (7)

provides the natural quantity that describes the energy trans-
fer. The topological protection of the edge states arises from
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(a) C3v trivial, vg < 0 (b) C3v trivial, vg > 0 (c) C6v nontrivial, vg < 0 (d) C6v nontrivial, vg > 0

Figure 14: Close-ups of the interfaces for the C3v trivial and C6v nontrivial cases; top and bottom panels, respectively. The left
and right panels represent negative and positive group velocity, vg , respectively. The arrows denote the energy flux, Eq. (7).

There is a clear distinction between the topologically nontrivial and trivial cases; the nontrivial flux has orbital motion induced
from the stacked media having opposing valley Chern numbers and hence opposite chirality at the KK ′ valleys; this property

gives the valley modes their robustness49,52.

the orbital nature of their flux; there is a clear difference in
the fluxes between the topologically nontrivial and trivial edge
states as evidenced by Fig. 14. For the Dirac cone eigenso-
lutions the singularity of the phases correspond to the high
symmetry points in Fourier space37 where there is nonzero
Berry curvature; in physical space these are associated to the
points of zero displacement around which the vortices of flux

orbit. Similar vortices are shown in Fig. 14 for the nontriv-
ial edge state; notably these are absent from the trivial case.
These localized zero displacements along the interface create
a self-pinned linear array, similar to the pinned arrays in50,
along which Rayleigh-Bloch modes propagate. The relative
difference in the robustness, between topologically nontrivial
and trivial modes, is explained more rigorously in49,52.

(a)
(b) Graded C6v nontrivial case (c) Graded C3v trivial case

Figure 15: (a) Source placed at leftmost edge, we grade both, C6v nontrivial and C3v trivial examples. The former is graded
according to the relative difference in value between alternate masses whilst the latter is graded according to the angular

perturbation away from σv . (b) Propagating modes lie within the graded region in the center. K/K ′ mismatch for modes of
identical chirality leads to an absence of coupling for the C6v case; (c) the matching phase and group velocity, for the C3v

trivial case, leads to coupling between the pre- and post-graded region modes.

An additional impact of the orbital flux is that modes of
opposite chirality do not couple31; hence topological networks
have to be carefully designed in order to trigger the desired
excitations along outgoing leads. Another crucial condition
that dictates the coupling between pre- and post-nodal region
modes is the K/K ′ valley index. Transmission across a nodal
region will be facilitated when the K/K ′ valley index of the
incoming and outgoing waves match.

Both the wavevector and energy flux of the post-nodal re-
gion modes must match the pre-nodal mode in order for the
wave to propagate through with limited scattering. Topologi-

cally nontrivial systems that require matching of the wavevec-
tor and chirality, between incoming and outgoing leads, are
often said to suppress intervalley scattering53–56. For the C6v

nontrivial case (and every other topological case25,30,32) this
restricts the systems to a 2-way splitting of energy (if a tun-
neling mechanism is not invoked, see Sec. II E).

A continuous spatial change of medium so the geometry
changes with distance can be used to illustrate many of the
features that are important, for instance the absence of cou-
pling, for the C6v nontrivial case, and coupling, for the C3v

trivial case, shown in Fig. 15. Fig. 15(a) pictorially shows the
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graded change from one media ordering to its reverse. The
masses for the upper medium (Fig. 15) in the C6v case grad-
ually vary from M1 = 1,M2 = 2 to M1 = 2,M2 = 1; the
lower medium variation is identical albeit from right to left.
The use of material grading allows us to explore and demon-
strate the coupling mechanism, the resulting scattered field is
shown in panel (b) of Fig. 15. Evidently the left hand ZLM
is unable to couple into the right hand ZLM; this is due to the
post-graded region mode being located at the opposite valley,
−κ, to the pre-graded region mode +κ (see dispersion curves
in Fig. 3), hence the absence of wavevector matching impedes
the propagation through the graded region. In contrast, the
C3v trivial case exhibits modes, of identical group and phase
velocity, for the pre- and post-graded region leads (see disper-
sion curves in Fig. 7); this results in almost unimpeded propa-
gation through the graded region, Fig. 15(c). The grading, for
the upper medium in the C3v trivial case, is from an angular
perturbation, away from σv , of θ = 0.05 to θ = π/3 + 0.05;
similar to the C6v nontrivial case, the lower mediums’ grad-
ing is the reverse of the upper medium. The primary visual
difference between the curves in Figs. 3 and 7, that results
in this different propagative behaviour, is the curvature of the
pair of edge states; the two convex curves in Fig. 7 ensure
the matching of group velocities at a particular κ whilst the
concave and convex curves in Fig. 3 do not.

Despite the C3v case being trivial, its relative robust-
ness against sharp disorders (demonstrated by Fig. 13) and
its additional coupling capabilities, relative to its nontrivial
counterpart, allow for the construction of novel interfacial
wave networks that differ from the topologically nontrivial
examples25,30,32; specifically, the ability to have more than 2-
way energy splitters (Sec. III B). However, the negative of
using these trivial modes, for networks, is the prevalence of
scattering and hence lack of controllability compared with the
nontrivial cases; for the latter, the conservation of topologi-
cal charge post- the nodal region57 leads to more robust edge
states along the outgoing leads and greater tunability in par-
titioning energy. In order to construct topological networks,
that contain more than 2-way energy-splitters, the tunneling
mechanism must be used as in Secs. II E, III C.

E. Tunneling

An alternative means to transmit energy along different
leads is via tunneling; the exponentially decaying tail, of an
incoming mode, being used to ignite an outgoing mode. This
allows for transmission of energy down leads that would not
be activated due to a mismatch in wavevector and/or chirality
(see Sec. II D). The benefit of utilizing tunneling to redi-
rect energy away from an incoming ZLM is that this enables
more than 2-way energy-splitting (see Sec. III C) whilst still
preserving the topological charge, and hence the topological
protection, along the post-nodal region leads.

The width of the band-gap, as mentioned in47, plays a role:
The band-gap needs to be small enough to preserve a strong
Berry curvature in the vicinity of the valleys, but large enough
to enhance the localization of modes along the interface. The

Figure 16: Demonstration of tunneling for the C6v nontrivial
case. A source is placed along the upper interface where
ω = 15.375; the decaying tail of the triggered ZLM ignites

the parallel ZLM.

former criterion, is related to the chirality of the edge modes,
see Sec. II D, whilst the latter is related to the decay perpen-
dicular to the propagation direction. If these criteria are bal-
anced then the topological protection of nontrivial states and
the localization of the states is optimized. The latter is impor-
tant for tuning the partitioning of energy away from the nodal
region.

A simple example of tunneling, for the C6v case is shown
in Fig. 16; the ignited ZLM has the modal pattern shown in
Fig. 10, this mode tunnels to ignite the parallel ZLM which
has the sawtooth pattern shown in Fig. 9. The back and forth
coupling between two evanescently coupled parallel modes is
a well-known phenomenon for parallel waveguides classically
treated using coupled mode theory58 and its variants59.

F. Nodal region

The design of the nodal region impacts upon the relative
transmission along active leads, where propagation is per-
mitted, and hence is an important property when designing
interfacial wave networks particularly when wavelength and
nodal region are comparable in scale. These networks are
constructed upon a medium which contains an even number
of geometrically distinct portions; an interfacial mode is able
to propagate between each pair of distinct media. If we are
dealing with a nodal region that divides four media, for exam-
ple, there are a myriad of ways to design it; each of which will
partition energy differently especially when the wavelength of
the incoming wave is comparable to the nodal region. Fig. 17
illustrates this clearly; the hexagonal cell has one incoming
edge and two outgoing edges (right panel of Fig. 17) and yet
we wish to partition energy in 2 or 3 directions using non-
fractional cell partitions between the distinct media. For topo-
logical networks, the chirality and wavevector matching argu-
ments, readily used, determine which leads energy can travel
down but the relative transmission down those active leads
remains unknown. This is seen in the topological network
designs of30,32 where there is a difference in transmission be-
tween the active leads; additional information is garnered by
considering the nodal region. These particular examples are
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examined more closely in Sec. III B.

Figure 17: Incoming mode from the left lead, two right-sided
outgoing leads. There are many ways to partition the

right-sided medium into an even number of regions. If
wavelength is comparable to size of the nodal region the

partitioning of energy will be sensitive to the design of the
nodal region.

III. BUILDING NOVEL TOPOLOGICAL NETWORKS

The knowledge accrued, in the previous section, regarding
the transport of energy is essential for building complex inter-
facial wave networks. In this section, we geometrically engi-

neer networks that have additional functionality as compared
to the current designs in the valleytronics literature. We em-
ploy, both, the topologically nontrivial and trivial examples to
yield designs which go beyond 2-way energy-splitting (Secs.
III B, III C). Section III D, uses the building blocks of the de-
sign paradigm, described in the previous section, to produce
the first realization of a topological supernetwork.

A. Filtering: restricting propagation using C3v nontrivial
modes

The C3v nontrivial case demonstrates the filtering proper-
ties, described earlier in Sec. II B, in Fig. 18. We place a
dipole between the two central blue cells, Fig. 18(a); each
source has the potential to trigger all of the ZLMs 1 − 4; for
the C3v nontrivial case, despite ZLMs 1, 3 and 4 being trig-
gered, ZLM 2 is not directly excited, Fig. 18(b). This is due
to the interface of ZLM 2, closest to the dipole, being asso-
ciated to the narrowband mode and hence different from the
other three. The difference in interfaces is revealed by replac-
ing the C3v topologically nontrivial domains with those from
the C6v nontrivial case; from Fig. 18(c), the modal shape of
ZLM 2 is clearly distinct from ZLMs 1, 3 and 4 (Sec. II A);
this difference visually validates the absence of ZLM 2 for the
C3v nontrivial case. The potential for geometrically induced
filtering enhances our design capability through tunability of
energy propagation that can be restricted to only propagate
along selected interfaces.

(a)
(b) (c)

Figure 18: Filtering network: (a) schematic, (b) C3v nontrivial case where the edge state along interface 2 is not excited,
ω = 18.93, and (c) C6v where the “sawtooth” mode along interface 2 is clearly triggered, ω = 15.91. 1152 hexagonal cells are

used for all the networks in this section.

B. Using C3v trivial modes for 3- and 5-way splitting

Motivated by30,32, that showed 2-way energy-splitters, we
demonstrate how the C3v trivial case allows for enhanced 3-
way splitting of energy for the same arrangement of distinct
media as30,32 (Figs. 1, 19). After these comparative set of
examples, we push those designs further, by concluding this
subsection, with a novel 5-way energy-splitter, Fig. 20.

Ref.32 demonstrated an ‘X’ shaped design for a topologi-
cal energy-splitter, Fig. 19(a). Their results indicated that the
highest transmission occurred along ZLM 4, followed closely
by ZLM 2; in contrast, to these two leads, negligible trans-
mission occured along lead 3. These results can be interpreted
through the lens of the design paradigm (Sec. II) and the use
of the C6v nontrivial case. From Fig. 19(b), the distinctive
modal shapes, and hence the different interfaces, are clearly
evident (Sec. II A). The relatively higher transmission along
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lead 4 compared with 2 can be attributed to the design of the
nodal region (Sec. II F); when the wavelength of the incom-
ing ZLM is comparable to the cell, then the two orange cells
within the nodal region, invariably forms an effective barrier
which limits propagation along lead 2. The absence of prop-
agation along lead 3, as noted in32, is due to the mismatch
in wavevector of the mode which has an identical chirality
to ZLM 1 (Sec. II D). The absence of wavevector match-

ing, between leads 1 and 3, can be rectified by replacing the
C6v topologically distinct regions with C3v topologically triv-
ial (albeit geometrically distinct) regions. The resulting scat-
tered field, Fig. 19(c), shows propagation along lead 3 and
collectively, 3-way energy-splitting, away from the nodal re-
gion. Despite the topological charge not being conserved57,
the Fourier space separation (Sec. II C) between modes of op-
posite group velocity ensures a degree of robustness.

(a) Schematic (b) Topologically nontrivial 2-way
energy-splitter

(c) Topologically trivial 3-way
energy-splitter

Figure 19: Tesselation used for 3-way energy-splitting motivated by32, panel (a); source is placed at the beginning of interface 1
and the resulting scattered fields for the C6v nontrivial and C3v trivial cases are shown in panels (b) and (c) respectively. Panel
(b) resembles the displacement in32, frequency ω = 15.86; whilst panel (c) shows novel 3-way splitting of energy at ω = 19.45.

A similar example, to Fig. 19, is the topological network
examined in30; Fig. 1(c) imitates their example using the C6v

nontrivial case. The relative transmission along active leads,
difference in modal shape and absence of propagation along
lead 1 (Fig. 1) are all explained in a similar manner to the
earlier example. The trivial analogue, Fig. 1(d), leverages the
wavevector and group velocity matching C3v counterexample
shown in Sec. II D, to allow for novel 3-way energy-splitting.

An example, that is independent of any pre-existing tessel-
lations within the valleytronics literature, is the 5-way splitter
shown in Fig. 20. Recall that we restrict ourselves to zigzag
interfaces because they afford the maximum Fourier separa-
tion (see Sec. II C) between opposite propagating modes;
hence our tessellation can comprise of, at most, 6 geometri-
cally distinct regions. Therefore, the novel C3v trivial net-
work, Fig. 20, partitions energy, away from the nodal region,
the maximum number of ways possible given the zigzag in-
terface constraint.

C. Illustrating 4-way splitting via tunneling using C6v

nontrivial modes

The novel topological network exemplar in this article, that
contains a more than 2-way energy-splitter, is shown in Fig.
21. The tesselation is comprised of 4 (at first sight 6, but note
the detail of the central nodal region) geometrically distinct re-
gions, formed from the C6v nontrivial case, and containing a
4-way energy-splitter. The excited ZLM 1 propagates through

Figure 20: 5-way splitting of wave energy away from nodal
region. Blue and orange cells associated with geometrically
distinct cells (see Fig. 7 for cellular structures). Frequency
ω = 18.85; despite the bulk gap being {17.05, 19.90}, the
5-way splitter was only seen for a narrow band range of

frequencies. This is in contrast to the more broadband 3-way
energy-splitters, shown in Figs. 1, 19. Note the difference, in

the nodal region, between this example and Fig. 21.

the junction, and continues along the lead beyond it, however
energy is shifted to ZLMs 2− 5. This 4-way energy-splitting
arises due to two sets of tunneling (Sec. II E) occurring be-
fore and after the junction. The nodal region differs from Fig.
20; this is done to ensure the propagation of ZLM 1 through
the central region and beyond. If instead we used the tessel-
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Figure 21: 4-way splitting of wave energy away from nodal
region, energy couples from one topological valley mode into

four others via tunneling. Blue and orange cells associated
with opposing Chern valley numbers at a specific valley.

Frequency ω = 15.91, bulk gap {13.90, 16.23}

lation of Fig. 20, this would create an effective barrier at the
junction, consequently we would obtain a similar arrow modal
pattern to Fig. 18(b), albeit with backscattering. A major ben-
efit of utilising tunneling to partition energy is that it allows
for the preservation of topological charge57 and hence ZLMs
2 − 5 in Fig. 21 are topologically protected; therefore, com-
pared with the trivial energy-splitters, (Figs. 1(d), 19(c) and
20) the nontrivial modes (Fig. 21) are more robust and hence
of more practical use.

D. Topological supernetwork

The topological supernetwork, Fig. 23, is generated using
the design paradigm building blocks, Sec. II. It contains only
the C6v nontrivial case and therefore the topological charge
is conserved; the giant tessellation is a combination of those
tessellations found in Figs. 18(c), 21, 19(b) in that order.

This is just one amongst many supernetworks that can now
be constructed from individual building blocks. There are a
myriad of other complicated topological networks that can
now be accurately designed by partitioning the medium dif-
ferently. Direct generalisations include, using fractional cells,
different edge terminations or combining different geometri-
cal cases. For the latter, we could design theC6v andC3v non-
trivial cases to have simultaneous bulk bandgaps, then create a
tesselation where neighbouring regions are topologically dis-
tinct (opposite valley Chern numbers). This way the filtering
properties of the C3v case are combined with the dual propa-
gation properties of the C6v . Moreover, one can tune the rates
of decay of the ZLMs perpendicular to the interface; thereby
controlling the amount of energy partitioned via tunneling as
well as the sensitivity of modes to backscattering by defects.

Figure 22: Topological supernetwork schematic: The total
arrangement contains 2340 cells, each contains a hexagonal

arrangement of point scatterers; different colours denote
dissimilar arrangements. The network is excited at the

leftmost junction with a dipole at ω = 15.28. The resulting
scattered field is shown in Fig. 23

Figure 23: Scattered field for the topological supernetwork;
details of tesselation shown in Fig. 22. Note the clarity of the

modal shapes, the 4-way splitting, via tunneling, and the
limited propagation along the rightmost interface (due to the
wavevector mismatch). The colour bar is for a linear gradient

of values.

IV. CONCLUDING REMARKS

Herein we have shown in detail how to design novel ge-
ometrically engineered interfacial wave networks containing
energy-splitters that partition energy in more than 2-way di-
rections. The main concepts used to design these systems
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have been laid out systematically in Sec. II. The specific
model we use, the elastic plate and point masses, is irrele-
vant to our main argument which relies on topology and group
theoretic principles. Thus we anticipate that the approach de-
scribed will motivate the design of experimental, and other
theoretical, topological networks for all similar scalar wave
systems: plasmonics, photonics, acoustics, as well as, for vec-
torial systems such as plane-strain elasticity, surface acous-
tic waves and Maxwell equation systems). It is also easy
to construct geometries that do not involve point scatterers,
see Fig. 8, and yet will share the same group and geometric

properties required for our designs. Additionally, returning
to the valley-Hall “weak” topological phase that underlies the
ZLMs: The principles that underly the topological networks
presented here, should extend to potentially more robust geo-
metrically induced phases60–62, thereby bringing the design of
broadband, robust, energy-splitters to yet another level.
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