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We study the damping of plasma waves in linear Josephson junction chains as well as in two
capacitively coupled chains. In the parameter regime where the ground capacitance can be neglected,
the theory of the antisymmetric mode in the double chain can be mapped onto the theory of
a single chain. We consider two sources of relaxation: the scattering from quantum phase slips
(QPS) and the interaction among plasmons related to the nonlinearity of the Josephson potential.
The contribution to the relaxation rate 1/τ from the nonlinearity scales with the fourth power of
frequency ω, while the phase-slip contribution behaves as a power law with a non-universal exponent.
In the parameter regime where the charging energy related to the junction capacitance is much
smaller than the Josephson energy, the amplitude of QPS is strongly suppressed. This makes the
relaxation mechanism related to QPS efficient only at very low frequencies. As a result, for chains
that are in the infrared limit on the insulating side of the superconductor-insulator transition, the
quality factor ωτ shows a strongly non-monotonic dependence on frequency, as was observed in a
recent experiment.

I. INTRODUCTION

Josephson-junction (JJ) chains constitute an ideal
playground to study a wealth of fascinating physical ef-
fects. Parameters of these systems can be engineered
in a controllable way, leading to the emergence of var-
ious physical regimes. In chains with the charging en-
ergy dominating over the Josephson energy, the Coulomb
blockade is observed1 and a thermally activated con-
ductance is found2 at low bias. Moreover, the critical
voltage at which the conduction sets in, is governed by
the depinning physics3,4. In the opposite limit, where
the Josephson energy is the dominant energy scale, su-
perconducting behavior in the current-voltage charac-
teristics is observed5,6. Deep in the superconducting
regime, plasmonic waves (small collective oscillations of
the superconducting phase) are well-defined excitations
above the classical superconducting ground state. The
non-perturbative processes in which the phase differ-
ence across one of the junctions changes by 2π—the so
called quantum phase slips7–11 (QPS)—are exponentially
rare. Upon lowering the Josephson energy, QPS prolifer-
ate and eventually lead to the superconductor-insulator
transition4,5,7,10,12–17 (SIT) that occurs when the charg-
ing and Josephson energies are of the same order.

Disorder plays an important role in JJ chains. The
effect of disorder was discussed in the context of the per-
sistent current in closed JJ rings in Ref. 8. More recently,
the impact of various types of disorder on the SIT was
studied in Ref. 17. Remarkably, the most common type
of disorder, random off-set charges, works to enhance su-
perconducting correlations. The mechanism behind this
effect is the loss of coherence of QPS due to a disorder-
induced random phase, see also Ref. 18.

In recent years, properties of JJ chains under mi-
crowave irradiation have attracted considerable interest.
Microwave radiation leads to quantized current steps in
the current-voltage characteristics that were argued to
be promising for metrological applications19. Another
interesting direction in this context is the field of cir-
cuit quantum electrodynamics where novel regimes can
be reached20,21. JJ chains can be further employed to
provide a tunable ohmic environment22. This environ-
ment is realized by two parallel chains that are coupled
capacitively to each other, and inductively to transmis-
sion lines.

A similar setup was used in Ref. 23 to probe the re-
flection coefficient of a JJ double chain under microwave
irradiation. Two parallel chains are short-circuited at one
end while being coupled at the other end to a dipole an-
tenna that can excite antisymmetric plasma waves (i.e.,
those with opposite amplitudes in the two chains). The
whole sample is placed in a metallic waveguide which
reduces the influence of external disturbances. Reso-
nances corresponding to individual plasmonic modes at
quantized momenta are clearly observed. This enables
the reconstruction of the energy spectrum of the plasma
waves. Because of finite damping, the resonances in the
reflection coefficient acquire a finite width. By measuring
the modulus and the phase of the reflection coefficient,
the internal damping could be disentangled from the ex-
ternal losses such as the leakiness of the waveguide or
the damping of the transmission line. For chains with a
large Josephson energy, the experimentally found quality
factor (inverse linewidth multiplied by mode frequency)
increased with lowering frequency of the microwave ra-
diation. When the Josephson energy was reduced, the
curves became flat and eventually showed a tendency
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to drop at low frequencies. This behavior was inter-
preted in Ref. 23 as a signature of the SIT. It was noted,
however, that, in contrast to theoretical predictions, the
observed behavior is controlled by the short-wavelength
rather than the long-wavelength part of the Coulomb
interaction in the chain. In particular, the “supercon-
ducting” behavior with the quality factor growing at low
frequencies was observed in the range of parameters cor-
responding to the insulating phase of the chain.

The purpose of this work is to provide theoretical un-
derstanding of the effects related to the internal damping
of plasma waves in JJ chains. We study two models: (i)
a single linear chain, and (ii) a double chain of JJs, as in
the experiment of Ref. 23. It is shown that the effective
theory for the antisymmetric mode of the double chain
can be mapped onto a theory for a single chain if the
capacitance to the ground can be neglected. We iden-
tify two sources that lead to the decay of plasmons: (i)
the scattering of plasmons induced by QPS and (ii) the
interaction of plasmon modes via “gradient” anharmonic-
ities. We find the contribution to the relaxation rate of
a plasma wave for both kinds of damping mechanisms.
The “gradient” nonlinearities are always irrelevant in the
renormalization-group sense and the corresponding relax-
ation rate vanishes as ω4 at low frequencies. From the
SIT point of view, this behavior can be viewed as “super-
conducting”. On the other hand, the contribution of QPS
processes can show both “superconducting” and “insulat-
ing” trends depending on the parameters of the model.
The QPS contribution is, however, strongly suppressed
if the Josephson energy is much larger than the charging
energy associated with the junction capacitance that con-
trols the short-wavelength part of the Coulomb interac-
tion. The combination of the two mechanisms (QPS and
“gradient” anharmonicities) can thus lead to a change
of the trend from “insulating” to “superconducting” at
intermediate frequencies. This mimics a SIT in the inter-
mediate frequency range, although the system is in fact
deeply in the insulating phase from the point of view of
its infrared behavior.

The paper is structured as follows. In Sec. II we
introduce lattice models for a single JJ chain and for
two capacitively coupled chains, and derive the effective
low-energy field theory. Sec. III discusses two mecha-
nisms contributing to the finite lifetime of the plasmonic
waves in JJ chains. The scattering off QPS is studied in
Sec III A, and the decay because of interactions between
plasmonic waves is analyzed in Sec. III B. We analyze the
interplay of both mechanisms in Sec. III C. In Sec. IV we
summarize the main results of the paper and compare
them to experimental findings. Technical details can be
found in the appendix.

FIG. 1. Schematic representation of the two devices under
consideration: a) A single chain of Josephson junctions. The
capacitance to the ground is denoted by C0, and the junction
capacitance by C1. The canonically conjugated variables are
the superconducting phase θi and the number of Cooper pairs
Ni of the i-th island. b) Two capacitively coupled chains.
Here, the capacitance to the ground is denoted by Cg and
the interchain capacitance by C0. The additional index ↑, ↓
discriminates between the variables of the two chains.

II. LATTICE MODELS AND LOW-ENERGY
THEORY

In this work, we consider two closely related systems:
a single linear chain of Josephson junctions depicted in
Fig. 1a and a device consisting of two capacitively cou-
pled chains shown in Fig. 1b. We are interested in their
effective low-energy description. For a single chain of
Josephson junctions with Coulomb interaction and disor-
der, Fig. 1a, the field theory was constructed previously
in Ref. 17. We briefly recall this derivation below and
extend the theory by including the terms accounting for
gradient nonlinearities. We then show that, up to numer-
ical coefficients, the same effective description applies to
the antisymmetric mode of the double JJ chain of Fig. 1b,
provided that Cg � C0.

In the case of a single chain, we denote by C1 and
C0 the junction capacitance and the capacitance to the
ground, respectively. Tunnel barriers between the is-
lands allow for hopping of Cooper pairs along the chain.
The number of Cooper pairs Ni and the superconduct-
ing phase θi of the i-th island satisfy the canonical com-
mutation relation, [Ni, θj ] = iδi,j . Besides the Joseph-
son energy EJ that quantifies the hopping strength of
Cooper pairs, there are the two charging energy scales
E0 = (2e)2/C0 and E1 = (2e)2/C1, where e denotes the
elementary charge. The charging energy E1 quantifies
the strength of the Coulomb interaction at short scales,
while the energy E0 controls the Coulomb-interaction
strength in the infrared and, in particular, determines
the position of the SIT12,17. The lattice Hamiltonian for
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this system has the form

H =
E1

2

∑
i,j

s−1
i,jNiNj + EJ

∑
i

[1− cos(θi+1 − θi)], (1)

where

si,j =
Ci,j
C1

=

(
2 +

1

Λ2

)
δi,j − δi,j+1 − δi,j−1 (2)

is the dimensionless capacitance matrix and Λ =√
C1/C0 is the screening length for the 1D Coulomb in-

teraction.
In the low-energy limit, it is legitimate to replace the

lattice Hamiltonian (1) by an effective continuum model.
The latter is conveniently written17 in terms of the field
φ(x) related to the density of Cooper pairs N (x) by
∂xφ(x) = −πN (x). The action of the model reads17

S = S0 + Sps. (3)

The quadratic part of the action (in the imaginary-time
representation, with temperature T and Matsubara fre-
quencies ωn)

S0 =
1

2π2u0K0
T
∑
ωn

∫
dq

2π

[
ω2
n + ε2(q)

]
|φ(q, ωn)|2 (4)

describes the plasma waves with the energy spectrum

ε(q) =
ωp|q|√

q2 + α/Λ2
, ωp =

√
EJE1. (5)

To facilitate our future discussion of the effective theory
for the double chain setup of Fig. 1b, we have introduced
here a numerical coefficient α; in the present case of a
single chain we have α ≡ 1. The parameters u0 and K0

in Eq. (4) are given by

u0 =

√
EJE0

α
, K0 =

√
EJ

αE0
. (6)

Here u0 is the velocity of low-energy plasmons with mo-
mentum q � 1/Λ and K0 is the corresponding Luttinger
constant. Note that we measure all distances in units of
the lattice spacing and set ~ = 1, so that the velocity has
the dimension of energy.

The second ingredient in Eq. (3), Sps, describes QPS.
In the absence of disorder it is given by17

Sps = yu0

∫
dxdτ cos [2φ(x, τ)] , (7)

where τ is the imaginary time and y is the (ultraviolet)
value of the QPS amplitude that is usually called “fugac-
ity”. This terminology is related to the fact that QPS
can be considered as vortices in the Euclidean version
of the 1 + 1-dimensional quantum theory. The fugac-
ity y for phase slips is exponentially small in the regime

EJ � min(E1, E0) where the superconducting correla-
tions are (at least locally) well developed,

y ∝ e−ζK , K =

√
EJ

αE0
+

EJ

α2E1
. (8)

Here K plays the role of the Luttinger constant for the
ultraviolet plasmons (with q ∼ 1), and ζ is a numerical
factor that depends on the screening length Λ and also
on details of the ultraviolet cutoff scheme. Estimates for
ζ in several limiting cases can be found in Refs.7, 8, 10,
12, and 18.

Among various types of disorder that are present in
experimental realizations of the JJ chains, the strongest
and the most important one is the random stray charges.
Random stray charges Qi modify the kinetic energy term
in the lattice Hamiltonian, Eq. (1), according to∑

i,j

s−1
i,jNiNj −→

∑
i,j

s−1
i,j (Ni −Qi) (Nj −Qj) . (9)

The wave function of the system accumulates then an
extra phase in the course of a QPS due to the Aharonov-
Casher effect8,24,25. Accordingly, the QPS action in the
effective theory in the presence of charge disorder takes
the form

Sps = yu0

∫
dxdτ cos [2φ(x, τ)−Q(x)] , (10)

where

Q(x) = 2π

∫ x

−∞
dx′Q(x′). (11)

For simplicity we assume Gaussian white noise disorder,

〈Q(x)〉Q = 0, 〈Q(x)Q(x′)〉Q =
DQ

2π2
δ(x− x′). (12)

In the Hamiltonian language, the action (3) corre-
sponds to

H = H0 +Hps, (13)

where the quadratic part is of the form

H0 =
1

2π2

∫
dq

2π

[
ε2(q)

u0K0
|φ(q)|2 + u0K0q

2|πθ(q)|2
]
,

(14)
and the QPS contribution reads

Hps = yu0

∫
dx cos[2φ(x)−Q(x)]. (15)

Equations (3), (4) and (10) [the latter one reduces to
Eq. (7) in the clean case] constitute the low-energy de-
scription of a JJ chain as derived in Ref. 17. Several re-
marks are in order here. First, in this work we will be in-
terested in the physics at moderate wavelengths q . 1/Λ
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and will approximate the dispersion relation (5) by its
expansion at small q:

ε(q) ≈ u0(1− q2l2)|q|, (16)

l = Λ/
√

2α. (17)

Here the length l (that differs from Λ only by a numerical
coefficient) sets the scale for the bending of the plasmonic
dispersion relation.

Second, the only nonlinearity in our effective action at
this stage is due to the QPS. In the ultimate infrared limit
q � 1/Λ (or, in fact, for all q in the case of short-range
charge-charge interaction, Λ . 1) the effective action
Eqs. (3), (4) and (7) reduces to the standard sine-Gordon
theory and describes the superconductor-insulator tran-
sition (SIT) that occurs12 at K0 = 2/π. The SIT is
driven by the QPS and in this sense they constitute the
most important anharmonicity in the system. Other non-
harmonic terms are, however, also possible. For example,
the expansion of the Josephson coupling in Eq. (1) to the
next-to-leading order provides the following contribution
to the effective Hamiltonian:

Hnl = − EJ

α3 4!

∫
dx (∂xθ)

4
, (18)

which is associated with the action

Snl = − α

4!π4E3
J

∫
dxdτ (∂τφ)

4
. (19)

In contrast to the QPS term (15), the nonlinearity (18)
and all other non-linear terms that can be added to the
effective Hamiltonian are built out of the local charge
N ∝ ∂xφ and current J ∝ ∂xθ densities. Therefore,
they always contain high powers of gradients and are ir-
relevant in the renormalization-group sense. We will oc-
casionally refer to the anharmonicities of these type as to
“gradient” anharmonicities to distinguish them from the
QPS. The gradient anharmonicities are always unimpor-
tant at lowest energies. Yet, as we will see in Sec. III B,
they can control the decay of plasmons at sufficiently high
frequencies if the bare value of the QPS amplitude y is
small.

We thus conclude that the effective action describing
a chain of Josephson junctions is given by

S = S0 + Sps + Snl. (20)

Here S0 and Sps are given by Eqs. (4) and (10), respec-
tively. As for the “gradient” anharmonicities represented
by Snl, we will use Eq. (19) as a specific form. We argue
in Sec. III B that our main conclusions are insensitive to
this particular choice.

Let us now turn to the discussion of the double-chain
setup of Fig. 1b. In this case we denote by Cg and C0

the capacitance to the ground and the interchain capaci-
tance, respectively. The lattice Hamiltonian for the dou-

ble chain reads

H =
E1

2

∑
i,j

∑
σ,σ′=↑,↓

[S−1]σ,σ′(i, j)Ni,σNj,σ′

+ EJ

∑
i,σ

[1− cos(θi+1,σ − θi,σ)],

(21)

with

S(i, j) = s̃i,j

(
1 0
0 1

)
+
C0

C1
δi,j

(
1 −1
−1 1

)
(22)

and

s̃i,j = (2 + Cg/C1)δi,j − δi,j+1 − δi,j−1. (23)

Here, the indices ↑, ↓ refer to the two chains.
In the Gaussian approximation the spectrum of the

Hamiltonian (21) consists of two modes, symmetric and
antisymmetric, that are analogous to the charge and
spin modes in a spinful Luttinger liquid. In this work
we are interested in the physics of the antisymmetric
mode that can be excited in the system by coupling to
the dipole antenna23. To simplify the analysis, we as-
sume further that Cg � C0. It is not clear to us how
well is this assumption satisfied in the experiments of
Ref. 23; we believe it to be, however, of minor impor-
tance for our results. Specifically, our analysis should
remain applicable, up to modifications in numerical co-
efficients of order unity, also for Cg ∼ C0. The condition
Cg . C0 corresponds to sufficiently well coupled chains,
with large splitting between the symmetric and antisym-
metric modes26.

In full analogy to the spin-charge separation in quan-
tum wires, the (low-momentum) velocity of the symmet-

ric (“charge”) mode, uch = 2
√
e2EJ/Cg greatly exceeds,

under the assumption Cg � C0, the velocity of the anti-

symmetric (“spin”) mode, us =
√

2e2EJ/C0. This obser-
vation allows one to integrate out the charge mode and
formulate the effective description of the system in terms
of the antisymmetric mode alone. Details of this deriva-
tion are presented in appendix A. It turns out that, just
as in the case of a single JJ chain, the effective theory is
given by Eqs. (20), (4), (10) and (19), with the parame-
ters given by Eqs. (16), (17) and (6). The only difference
is the value of the numerical factor α that should now be
set to 2.

Equations (20), (4), (10) and (19) constitute the start-
ing point for our analysis of the decay of plasmonic exci-
tations in the setups of Fig. 1. We carry out this analysis
in Sec. III.

III. RELAXATION OF PLASMONIC WAVES

Plasmonic waves, which are long-wavelength excita-
tions above the superconducting ground state, are sub-
jected to interaction. As a result, once excited by, e.g.,
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a microwave, a plasma wave can decay into several plas-
mons of lower energy. The two anharmonic terms in the
action (20) provide two mechanisms for the decay of plas-
mons: interaction with QPS and “gradient” anharmonic-
ities. We analyze these channels of plasmon decay one by
one is Secs. III A and III B, respectively. The interplay
of the two mechanisms is discussed in Sec. III C.

A. Relaxation due to phase slips

We start with the discussion of the relaxation processes
related to the scattering off QPS. Our analysis follows
closely the one of Refs. 27 and 28. The curvature of
the plasmonic spectrum, as quantified by the length l in
Eq. (16) is of minor importance here and for the purpose
of this section we approximate the plasmonic spectrum
by

ε(q) = u0|q|. (24)

Correspondingly, the Gaussian action takes the form

S0 =
1

2π2u0K0

∫
dxdτ

[
u2

0(∂xφ)2 + (∂τφ)2
]
. (25)

A formal expansion of the QPS action, Eq. (7), in pow-
ers of φ shows that the plasmon can decay into an arbi-
trary large number of low-energy plasmons. We will de-
termine directly the sum of all those contributions. This
decay rate can be conveniently calculated from the imag-
inary part of the self-energy (of the Fourier transform) of
the correlation function

G(r) = 〈〈φ(r)φ(0)〉S〉Q , (26)

where r = (x, τ) and 〈·〉S denotes the average with re-
spect to the full action, S = S0 + Sps. On the Gaussian
level, the imaginary-time Green function reads, in Fourier
space,

G0(q) =
π2u0K0

ω2
n + u2

0q
2
, q = (q, ωn), (27)

where ωn is the Matsubara frequency. With the help of
the self-energy, the full Green function can be expressed
as

G(q) =
1

G−1
0 (q)− Σ(q)

=
π2u0K0

ω2
n + u2

0q
2 − π2u0K0Σ(q)

.

(28)
The inverse lifetime of an excitation with energy ω is
related to the imaginary part of the retarded self-energy
on the mass shell:

1

τ(ω)
=
π2K0u0

2ω
Im ΣR(q = ω/u0, ω). (29)

In the following, we calculate the self-energy perturba-
tively in the QPS fugacity y. The self-energy in the

Matsubara space-time, Σ(r), can be extracted from the
perturbative expansion of the Green function, Eq. (26),

G(r) = G0(r) +

∫
d2r1d2r2G0(r− r1)Σ(r1 − r2)G0(r2),

(30)
with the following result:

Σ(r) = 2y2u2
0

[
e−2C0(r)−DQ|x|

− δ(r)

∫
d2r0e−2C0(r0)−DQ|x0|

]
+O(y4).

(31)

Here, the exponential contains the correlation function

C0(r) =
2

βNx

∑
q

(1− cosqr)G0(q) (32)

=
πK0

2
ln

[
u2

0β
2

π2
sinh (z+) sinh (z−)

]
(33)

with

z± =
π

u0β
(x± iu0τ), (34)

Nx � 1 denotes the number of junctions, and β is the
inverse temperature. The result for the self-energy in the
imaginary time τ should be analytically continued to real
time t and then Fourier-transformed. The τ -dependence
of the first term in Eq. (31) is determined by the following
Matsubara time-ordered correlation function

χT (x, τ) = e−2C0(x,τ). (35)

The retarded version of this correlation function can be
obtained in the standard way29. We find

χR(x, t) =
2Θ(t)Θ (u0t− |x|) sin

(
π2K0

) (
π
βu0

)2πK0

∣∣∣sinh π
u0β

(x+ u0t) sinh π
u0β

(x− u0t)
∣∣∣πK0

,

(36)
where Θ denotes the Heaviside step function. In order
to extract the lifetime, we need to know the imaginary
part of the self-energy in Fourier space. The second term
on the RHS of Eq. (31) does not contribute to the imag-
inary part of Σ. The imaginary part of the self-energy in
Fourier space can thus be obtained via

Im ΣR(q, ω) = 2u2
0y

2 Im

∫
dxdt e−i(qx−ωt)χR(x, t)e−DQ|x|.

(37)
It is convenient to switch to the light-cone variables z± =
π(u0t± x)/(u0β):

ImΣR(q, ω) = 2u0y
2 sin(π2K0)

(
π

u0β

)2πK0−2

× Im

∫ ∞
0

dz+

∫ ∞
0

dz−
exp{i β2π (ω − u0q)z+}

(sinh z+)
πK0

×
exp{i β2π (ω + u0q)z−}

(sinh z−)
πK0

e−
DQu0β

2π |z+−z−|.

(38)
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FIG. 2. Scaling behavior of the inverse relaxation time of plas-
monic waves due the scattering from QPS in different regimes
in the frequency-temperature plane. For each regime, the be-
havior of 1/(τu0y

2) is indicated.

Equations (29) and (38) give the decay rate of plasma
waves due to QPS. They can be further simplified in var-
ious limiting cases that we analyze below.

1. Clean case

In the regime DQ � min(q, T/u0) we can set DQ = 0,
and the integrations decouple. Performing the integra-
tions, we obtain

Im ΣR(q, ω) = 2u0y
2 sin(π2K0)

(
2π

u0β

)2πK0−2

× Im

{
B

(
1− πK0,

πK0

2
− i β

4π
(ω + u0q)

)

× B

(
1− πK0,

πK0

2
− i β

4π
(ω − u0q)

)}
,

(39)

where

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(40)

is the Euler Beta function. Making use of Eq. (29), we
extract the relaxation rate,

1

τ(ω)
∼ u0y

2


(

2πT
u0

)2πK0−3

, ω � T,

T
u0

(
2πωT
u2

0

)πK0−2

, ω � T.
(41)

2. Disordered case

In the limit of strong disorder, DQ � max(q, T/u0),
the main contribution of the integrations in Eq. (38)

comes from the region close to z+ = z−. We find

Im ΣR(q, ω) ' 8u0
y2

DQ
sin(π2K0)

(
2π

u0β

)2πK0−1

× Im B

(
1− 2πK0, πK0 − i

βω

2π

) (42)

for the imaginary part of the self-energy, which is inde-
pendent of momentum. This leads to the following scal-
ing of the relaxation rate in the case of strong disorder,
DQ � max(q, T/u0):

1

τ(ω)
∼ u0

y2

DQ


(

2πT
u0

)2πK0−2

, ω � T,(
ω
u0

)2πK0−2

, ω � T.
(43)

For a moderate disorder strength, we need to consider
two cases. If q � DQ � T/u0, the clean result given
by the first line of Eq. (41) remains valid. For T/u0 �
DQ � q the integration over z− in Eq. (38) is cut at the
upper limit by πT/u0q � 1. We can further neglect z−
in the exponential function related to DQ. This leads to
the following behavior of the relaxation rate:

1

τ(ω)
∼ u0y

2 DQ

(
DQω

u0

)πK0−2

, T � u0DQ � ω.

(44)
Equations (41), (43) and (44) give the relaxation rate

of plasma waves due to QPS in different regimes and
constitute the main result of this section. They are sum-
marized in Fig. 2. The relaxation rate exhibits power-
law scaling with frequency, temperature and the disor-
der. The corresponding exponents are non-universal and
are determined by the value of the Luttinger parame-
ter K0. Deep in the superconducting phase of the JJ
chain, K0 � 1, the relaxation rate vanishes at low fre-
quencies, while the opposite trend is predicted in the in-
sulating phase with sufficiently small K0.

B. Relaxation due to “gradient” nonlinearities

Let us now turn to the analysis of “gradient” anhar-
monicities described by the term Snl in the effective ac-
tion (20). They are irrelevant from the point of view of
the renormalization group. However, at intermediate en-
ergy scales they contribute to the decay of the plasma
waves on equal footing with QPS. We consider here the
nonlinearity (18) corresponding to the correction (19) of
the action, which arises as the quartic term of the expan-
sion of the Josephson potential.

Perturbative treatment of the decay of plasmons
caused by “gradient” anharmonicities was discussed in
other contexts in Refs. 30–32. The perturbation theory
turns out to be ill-defined in the case of a linear plas-
monic spectrum and in this section we use the dispersion
relation (16) taking into account its finite curvature.
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FIG. 3. Dominant relaxation process mediated by nonlinear-
ities for a right moving plasmon with momentum q1.

In order to calculate the relevant matrix element for
the relaxation process, it is convenient to express the
superconducting phase θ through bosonic creation (b†q)
and annihilation operators (bq), that obey the standard
bosonic commutation relations. This decomposition is of
the form29

θ(x) = i

√
π

2Nx

∑
q 6=0

sign(q)√
|q|

e−a|q|/2eiqx(b†q − b−q), (45)

where a is the ultraviolet cutoff that can be send to zero
in this calculation, and Nx is the number of junctions per
chain. Our analysis below largely follows the approach
of Ref. 32. The relaxation rate can be calculated using
the diagonal part of the linearized collision integral,

1

τ(q1)
=

1

2

∑
q2,q′1,q

′
2

W
q′1,q

′
2

q1,q2

{
NB(εq2)[1 +NB(εq′1) +NB(εq′2)]

−NB(εq′1)NB(εq′2)
}
,

(46)

where the transition probability is

W
q′1,q

′
2

q1,q2 = 2π|〈0|bq′2bq′1Hnlb
†
q1b
†
q2 |0〉|

2δ(Ei − Ef ), (47)

and Ei(f) denotes the total energy of the initial (final)
states. The modulus of the matrix element is given by

|〈0|bq′2bq′1Hnlb
†
q1b
†
q2 |0〉| =

π2EJ

4α3Nx

√
|q1q2q′1q

′
2|

× δq1+q2,q′1+q′2
.

(48)

A right moving plasmon with momentum q1 > 0 can re-
lax via this nonlinearity by the scattering off a left mov-
ing thermal plasmon with momentum q2 < 0 (see Fig. 3).
According to the conservation laws, the momentum of the
left moving particle

q2 = −3

2
q1q
′
1q
′
2l

2 +O(q5
1l

4) (49)

is much smaller than the momentum q1. With the help of
the momentum conservation we can perform the sum over

q′2. The delta function related to the energy conservation
can be written in the form

δ(Ei − Ef ) =
2

3u0(q1 + q2)|q′1,+ − q′1,−|l2
δ(q′1 − q′1,+),

(50)
where

q′1,± '
q1

2
±

√
q2
1

4
+

2q2

3q1l2
. (51)

Requiring q′1,± to be real restricts the range of q2 to the
interval

q∗ < q2 < 0, q∗ = −3

8
q3
1l

2. (52)

In the continuum (long-chain) limit, the remaining
summations over momenta transform into integrations,
N−2
x

∑
q2,q′1

→
∫

dq2dq′1/(2π)2. Performing the integra-

tion over q′1, we find

1

τ(q1)
=
π3E2

Jq1

96α6

∫ 0

q∗

dq2

q′1,+q
′
1,−|q2|

u0(q1 + q2)|q′1,+ − q′1,−|l2

×
{
NB(εq2)[1 +NB(εq′1,+) +NB(εq′1,−)]

−NB(εq′1,+)NB(εq′1,−)
}
.

(53)

The q2-dependence in the denominator of the integrand
can be neglected compared to q1. We assume now that
the energy of the particle with momentum q1 is much
larger than temperature but not too large such that
βu0q

3
1l

2 � 1. In this case, the Bose function of the parti-
cle with momentum q2 can be replaced by 1/βu0|q2|, and
the Bose function related to the particle with momen-
tum q′1,+ can be neglected. The Bose function related
to the particle with momentum q′1,− can be replaced by

1/βu0q
′
1,− for −3q2

1l
2/2βu0 < q2 < 0 and neglected for

q∗ < q2 < −3q2
1l

2/2βu0. The main contribution to the
integral in Eq. (53) originates from the latter range of
q2. After performing the integration, we find (under the
assumptions βu0q1 � 1, q2

1l
2 � 1, and βu0q

3
1l

2 � 1) the
following behavior of the relaxation rate:

1

τ(q1)
' π3E2

JTq
4
1

768α6u2
0

=
π3

768α5

EJ

E0
Tq4

1 . (54)

Equation (54) constitutes the main result of this sec-
tion. It predicts ω4 scaling of the relaxation rate of plas-
mons due to the “gradient” anharmonicity. The relax-
ation rate vanishes at low frequencies reflecting the irrel-
evant character of the gradient anharmonicities.

Before closing this section let us discuss the universal-
ity of the result (54) with respect to the particular form of
the Hamiltonian Hnl given by Eq. (18). On phenomeno-
logical grounds various terms of the form (∂xφ)n(∂xθ)

m

are allowed in the effective Hamiltonian. For n+m > 4
such terms are less relevant than the (∂xθ)

4 term con-
sidered here and, thus, contribute less to the lifetime of
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plasmons. On the other hand a cubic-in-density inter-
action, (∂xφ)3, is more relevant in terms of the scaling
dimension. However, the energy and momentum con-
servations forbid the decay of a single plasmon into two
particles. Correspondingly, a cubic non-linearity should
be taken in the second order perturbation theory to pro-
duce a finite decay rate. The resulting process is again
the one of Fig. 3 and leads to the same ω4 scaling of the
relaxation rate30–32.

C. Interplay of QPS and “gradient”
anharmonicities

In Secs. III A and III B we have analyzed the decay
of plasmon excitations due to QPS and the “gradient”
anharmonicities, respectively. While the relaxation rate
due to “gradient” anharmonicities follows universal ω4

scaling, the QPS contribution is characterized by a non-
universal exponent and reflects the SIT controlled by the
value of K0. Let us now discuss the interplay of the
two relaxation channels. We assume for definiteness that
frequencies of interest are larger than temperature.

It is convenient to characterize the strength of the plas-
mon decay by a dimensionless parameter ωτ . This pa-
rameter is expected to be proportional to the quality
factor studied in Ref. 23. Deep in the superconduct-
ing regime, K0 � 1, the relaxation of plasmons is al-
ways dominated by the “gradient” anharmonicities and
the quality factor ωτ scales as ω−3, see Eqs. (41), (43),
(44) and (54). Upon decreasing the Luttinger parame-
ter K0, the QPS start to be visible in the quality factor.
Specifically, the QPS dominate the low-frequency behav-
ior of the quality factor under the condition πK0 < 6
(respectively, πK0 < 3), yielding its ω3−πK0 (respec-
tively ω3−2πK0) scaling in the cases of weak (respectively,
strong) disorder. Furthermore, as a result of QPS, for
sufficiently small K0 (πK0 < 3 for weak and πK0 < 3/2
for strong disorder), the quality factor goes down as fre-
quency decreases. The resulting frequency dependence of
ωτ will then be non-monotonic with a maximum around
a crossover frequency where the QPS set in, as illustrated
in Fig. 4.

In the discussion of the overall frequency dependence
of the quality factor, it is important to keep in mind the
exponential smallness of the fugacity y, Eq. (8). Due
to this fact, the frequency below which QPS dominate
over “gradient” non-linearities is exponentially small for
EJ � E1. As a result, even deep in the insulating regime,
K0 � 1, the quality factor is dominated by the gradi-
ent non-linearities and thus grows with lowering the fre-
quency in a wide frequency range if EJ � E1. Only at
exponentially small frequencies this “superconducting”
behavior crosses over to the decrease of the quality fac-
tor reflecting the insulating character of the system in
the infrared limit.

Our results compare well with the experimental find-
ings of Ref. 23, as we discuss in more detail in Sec. IV.

FIG. 4. Schematic behavior of the quality factor as a function
of the rescaled frequency ω/ωp in a double-log scale in the
insulating regime, E0 � EJ. The arrows indicate the change
under an increase of EJ (thin lines correspond to a larger
value of EJ). The frequency scale of the crossover between
the regime of dominant relaxation due to QPS (red lines)
and that of dominant relaxation due to the nonlinearity (blue

lines) is exponentially small in the parameter
√
EJ/E1. A

further increase of EJ into the superconducting regime leads
to a monotonic dependence of the quality factor (not shown
in the figure). The scaling of the QPS and the “gradient”
anharmonicity contributions indicated near the corresponding
lines is based on Eqs. (41) and (54), respectively, with an
assumption ω � T . For the QPS contribution, the formula
corresponds to the clean case. In the disordered case, the
scaling of the QPS contribution can be inferred from Eqs. (43)
and (44); this does not affect the qualitative appearance of the
plot.

IV. SUMMARY AND DISCUSSION

We have studied the decay of plasmonic waves in JJ
chains. Motivated by a recent experiment23, we have
considered, besides a single one-dimensional chain, also
a model of two capacitively coupled linear chains. It has
been shown that in the parameter regime where the ca-
pacitance to the ground (Cg) can be neglected, the theory
for the antisymmetric mode in the double chain can be
mapped onto a theory for a single chain. This was possi-
ble because the symmetric mode acquired a fast velocity
due to the strong Coulomb interaction.

Two sources for the relaxation of plasma waves have
been considered. First, the damping originating from
the scattering generated by QPS leads to a relaxation
rate that scales with frequency as a power law with a
nonuniversal exponent that depends on the parameter
K0 =

√
EJ/E0. The scaling behavior of the relaxation

rate related to QPS in different parameter regimes is
summarized in Fig. 2. Since the QPS amplitude is ex-
ponentially small in the parameter

√
EJ/E1, the rate is

very sensitive to this parameter. The second mechanism
for the relaxation of plasma waves is the interaction of
them mediated by other nonlinear terms. As an example,
we have considered the lowest-order nonlinearity coming
from the Josephson potential. This term leads to a relax-
ation rate that scales as the fourth power of frequency.
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The vanishing of the relaxation rate at low frequencies
reflects the irrelevance of this term in the renormaliza-
tion group sense. Nevertheless, for a small phase-slip
amplitude (fugacity), the contribution originating from
this nonlinearity may be dominating in a wide range of
frequencies.

Comparing our findings to the experiment of Ref. 23,
we find a very good qualitative agreement between our
theory and experimental observations. All of the samples
shown in Fig. 3b of Ref. 23 are nominally in the insulat-
ing regime. Specifically, values of the Luttinger constant
K0 that are extracted from the measured values of the
impedance Z (proportional to 1/K0) make one to ex-
pect the insulating behavior. However, the samples with
a large ratio of EJ/E1 show an increase of the quality
factor when lowering the frequency. This behavior sug-
gests that the systems are in the superconducting regime.
This apparent contradiction is resolved by noting that the
crossover scale below which the QPS effects show up is
exponentially small in the square root of EJ/E1. As a
result, the downturn of the quality factor indicating in-
sulating behavior occurs below the lowest measured fre-
quencies. For devices with a lower value of both K0 and
EJ/E1, the authors of Ref. 23 observe a flat behavior at
intermediate frequencies with a tendency to drop at low-
est measured frequencies. This behavior is qualitatively
consistent with our prediction on the frequency depen-
dence of the quality factor that is dominated by QPS
in the insulating regime at low frequencies. For a more
quantitative comparison, the extension of the experimen-
tal measurement method to lower frequencies and the
investigation of the temperature dependence would be
beneficial.

Let us discuss in more detail experimental observations
on dependences of the quality factor on various input pa-
rameters. We consider first the more insulating chains.
The authors of Ref. 23 point out a stronger sensitivity
of the quality factor to the parameter EJ/E1 compared
to the parameter Z ∝ 1/K0 for their weakest junctions
(large Z and low EJ/E1)—an observation that is immedi-
ately understood within our theory. In these devices, the
parameter K0 is very small such that the exponent for
the power law of the phase-slip contribution to the qual-
ity factor is only slightly modified when changing K0.
Even relatively large changes of the order of 20% (as in
the experiment) have only a small effect, since the value
of K0 is still small and modifies the exponent only weakly.
On the other hand, the fugacity of QPS depends expo-
nentially on the square root of EJ/E1, which explains the
observed strong dependence of the quality factor on this
parameter.

Further, we compare the scaling predicted in our
work to the experimental observations in low-impedance
chains shown in Fig. S 4 in the Supplementary Material
of Ref. 23. All these samples are characterized by a large
ratio of EJ over E1 such that the QPS effects should
be negligibly small in the range of measured frequencies.
Indeed, the curves show an increasing behavior when low-

ering the frequency. More specifically, the corresponding
frequency scaling of the quality factor is consistent with
the theoretical expectation ω−3 from the decay due to
the nonlinearity. Discussing the dependence on other pa-
rameters, we notice that the charging E0 experiences a
particularly strong variation in the experiment (within
a factor of ∼ 75), while the variation of other device
parameters is smaller. All experimental curves appear to
collapse reasonably well when plotted as a function of the
rescaled frequency ω/ωp. On the other hand, our predic-
tion shows a strong power-law dependence (E3

0) on the
charging energy E0. We speculate that a different kind
of nonlinearity may be responsible for the explanation
of this discrepancy. It might originate from some kind
of nonlinear capacitances and result in a different pref-
actor in the frequency dependence of the quality factor
that does not depend so strongly on the charging energy
E0. The identification and analysis of other types of non-
linearities constitutes an interesting prospect for future
research.

Before closing this paper, we add two more comments
on possible extensions of this work. First, we assumed
that the Josephson and charging energy are constant for
the whole chain. In principle, one can generalize the
model by including spatial fluctuations of them. This will
make the Luttinger-liquid constant K0 randomly space
dependent, K0 → K0(x), and result in a possibility of
elastic backscattering of plasmons that gets stronger with
increasing frequency33,34. In the experiment of Ref. 23,
this disorder appears to be very weak, as can be inferred
from regularly spaced resonances at higher frequencies.
One can imagine, however, chains with a stronger K(x)-
type disorder. An investigation of the combined effect of
such a disorder and interaction on plasmon spectroscopy
is an interesting prospect for future research.

Second, our analysis of the width of the plasmonic res-
onances which relies on the golden rule assumes a con-
tinuous spectrum. This is justified if the obtained rate
is larger than the the level spacings of final states to
which a plasmon decays. In particular, for the gradient-
anharmonicity decay, these are three-particle states: the
final states for a decay of a plasmon with momentum q1

are characterized by three momenta q′1, q2, and q′2, see
Fig. 3. The corresponding three-particle level spacing is
much smaller than the single-particle level spacing in a
long chain since it scales as 1/N3 with the length N .
Thus, the analysis remains applicable despite the dis-
crete single-particle spectrum. The situation changes in
shorter chains where one might be able to reach a regime
in which the golden-rule rate is smaller than the three-
particle level spacing. In this case, effects of localization
in the Fock space may become important. For a related
discussion in the context of electronic levels in quantum
dots see Refs. 35–38.

While preparing this paper for publication, we learnt
about a related unpublished work39.
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Appendix A: Derivation of low-energy field theory

This appendix is devoted to the derivation of the low-
energy field theory for the antisymmetric mode of the
double-chain system. Our starting point is the lattice
Hamiltonian (21). We denote by Eg, E0 and E1 the
charging energies associated with the capacitance Cg, C0

and C1, respectively, and Ei = (2e)2/Ci.

The basic idea is that in the limit of small capaci-
tance Cg the associated charging energy Eg suppresses
the charge fluctuations in the symmetric mode (at least
at long scales) leaving us with the antiymmetric mode
as the only dynamical degree of freedom. This obser-
vation was previously employed in the literature to ob-
tain the low-energy theory of the antisymmetric mode,
see Refs. 40 and 41. Here we generalize the results of
Refs 40 and 41 to the case when the Coulomb inter-
action is long-ranged (C1 � C0) and charge disorder is
present in the system. We show that the effective the-
ory takes the form of the sine-Gordon model, Eqs. (3),
(4) and (10) supplemented by a “gradient” non-linearity
term, Eq. (19).

The posed goal can be achieved in two different ways.
In Sec. A 1, we present a semi-quantitative derivation of
our results from the field-theory description of the sym-
metric and antisymmetric modes in the double chain.
A more microscopic analysis of the initial lattice model
(leading to the same results) is carried out in Secs. A 2
and A 3 for the cases of short-range (C1 = 0) and long-
range (C1 � C0) Coulomb interaction, respectively.

1. Heuristic derivation from the continuum field
theory

We start our discussion of the effective theory for the
antisymmetric mode in the double chain from a heuris-
tic derivation based on the filed-theory description of the
lattice model (21). The latter is derived in full analogy
to the case of a single JJ chain. To this end, we introduce
two fields φ↑ and φ↓ related to the charge in the lower
and upper chain via ∂xφσ = −πNσ, as well as their com-
binations (

φs
φa

)
=

1

2

(
1 1
1 −1

)(
φ↑
φ↓

)
. (A1)

In terms of these fields, the quadratic part of the action
corresponding to the lattice model (21) reads

S0 =
1

π2

∫
dq

2π

dω

2π

{[
(2e)2q2

Cg + C1q2
+
ω2

EJ

]
|φs(q)|2

+

[
(2e)2q2

2C0 + Cg + C1q2
+
ω2

EJ

]
|φa(q)|2

}
.

(A2)

The QPS can be accounted for by

Sps = yu0

∫
dxdτ {cos [2φ↑+Q↑(x)] + cos [2φ↓ +Q↓(x)]} ,

(A3)
where

Qσ(x) = 2π

∫ x

−∞
dx′Qσ(x′) (A4)

and Q↑(↓)(x) is the random charge in the upper (lower)
chain. Note that in Eq. (A3) we consider QPS as happen-
ing independently in the upper and lower chains. This
is justified provided that E1 ≡ (2e)2/C1 � Eg, E0 ≡
(2e)2/C0. The fugacity y is then exponentially small in

the parameter
√
EJ/E1.

In the long wave-length limit, q �
√
Cg/C1 �√

C0/C1, the quadratic action (A2) reduces to the
Luttinger-liquid form

S0 =
∑
ρ=s,a

1

2π2u0,ρK0,ρ

∫
dxdτ [u2

0,ρ(∂xφρ)
2 + (∂τφρ)

2],

(A5)
with

u0,s =
√
EJEg,

K0,s =
1

2

√
EJ

Eg
,

u0,a =
√
EJE0/2,

K0,a =

√
EJ

2E0
.

(A6)

Let us now consider the perturbative expansion of the
partition function Z in the fugacity y. The lowest non-
vanishing correction arises in the second order and reads

δZ =
y2u2

0

4

∫
d2r1d2r2

1

|r1 − r2|2πK0,s

×
〈

cos[2(φa(r1)− φa(r2)) +Q↑(x1)−Q↑(x2)]

+ cos[2(φa(r1) + φa(r2)) +Q↑(x1)−Q↓(x2)]

+ cos[2(φa(r1) + φa(r2))−Q↓(x1) +Q↑(x2)]

+ cos[2(φa(r1)− φa(r2))−Q↓(x1) +Q↓(x2)]
〉

0,a
.

(A7)

Here, r = (x, u0,aτ). In Eq. (A7) we have performed
explicit averaging over the symmetric mode φs but kept
the correlation functions of φa in the unevaluated form.
Introducing

Qs(x) = Q↑(x) +Q↓(x) , Qa(x) = Q↑(x)−Q↓(x),
(A8)
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we find

δZ = y2u2
0

∫
d2r1d2r2

cos[Qs(x1)−Qs(x2)]

|r1 − r2|2πK0,s
×

〈cos[2φa(r1) +Qa(x1)] cos[2φa(r2) +Qa(x2)]〉0,a .
(A9)

Assuming that we are in the regime K0,s � 1, we
can approximate |r1 − r2|2πK0,s by unity. If the charge
disorder is weak, we can further replace cos[Qs(x1) −
Qs(x2)] by unity. In this case, the integrations over r1

and r2 decouple and we observe that the correction (A9)
can be viewed as resulting from the effective action [cf.
Eq. (A2); we take into account that Cg � C0]

Seff = Seff
0 + Seff

ps , (A10)

Seff
0 =

1

π2

∫
dq

2π

dω

2π

[
(2e)2q2

2C0 + C1q2
+
ω2

EJ

]
|φa(q)|2,

(A11)

Seff
ps =

√
2yu0

∫
d2r cos[2φa(r) +Qa(x)], (A12)

which (up to a redefinition of the fugacity y by an unim-
portant numerical factor) reproduces Eqs. (3), (4) and
(10) of the main text with α = 2.

If the charge disorder is strong, we expand the cosine
in Eq. (A9),

cos[Qs(x1)−Qs(x2)] = cos[Qs(x1)] cos[Qs(x2)]

+ sin[Qs(x1)] sin[Qs(x2)].
(A13)

Both terms in Eq. (A13), when substituted into Eq. (A9),
give equivalent contributions, if the disorder Qs is strong.
In the opposite limit of weak disorder (small Qs), the sec-
ond term would be much smaller than the first one. Thus,
keeping only the first term will always yield a correct re-
sult, up to a coefficient of order unity. Proceeding in this
way, we again find an effective action for QPS that is of
first order in y [cf. discussion of the weakly disordered
case],

Seff
ps =

√
2yu0

∫
d2r cos[Qs(x)] cos[2φa(r) +Qa(x)].

(A14)
For strong charge disorder we find, besides the random
phase, also a random amplitude of the QPS action. As
shown in Ref. 17, the QPS action without a random am-
plitude, Eq. (10), automatically generates a QPS term
with a random amplitude if the charge disorder is strong.
The phase-slip action Eq. (10) hence adequately describes
the effects of QPS on the antisymmetric mode in the dou-
ble chain in the disordered case.

Let us now discuss the “gradient” anharmonicity cor-
rection to the effective action of the antisymmetric mode.
Taking into account the “gradient” anharmonicity aris-
ing from the quartic expansion of the Josephson coupling
in each of the two chains one finds

Snl =
−1

12π4E3
J

∫
dx
[
(∂τφs)

4+(∂τφs)
4+6(∂τφs)

2(∂τφa)2
]
.

(A15)

We now average (A15) over fluctuations of φs. Omit-
ting a trivial constant term arising from the first term in
Eq. (A15) and a renormalization of the Josephson energy
in Eq. (A11) by a numerical factor arising from the last
term we get

Seff
nl = − 1

12π4E3
J

∫
dxdτ (∂τφa)4, (A16)

and reproduce Eq. (19) with α = 2.

2. Elimination of symmetric mode at the level of
the lattice model: the case of local Coulomb

interaction

In this appendix we assume local Coulomb interaction
(C1 = 0) and derive the effective theory of the antisym-
metric mode by integrating out the symmetric mode di-
rectly in the lattice model (21). We closely follow here
the derivation of the effective theory for a single chain
outlined in appendix A of Ref. 17. The generalization of
this derivation to the case C1 � C0 will be presented in
Sec. A 3.

We start by constructing the path-integral represen-
tation of the partition function for the system. To this
end, we discretize the (imaginary) time τ ∈ [0, β) in Nτ
steps with spacing ∆τ (the precise value will be discussed
later). For concreteness we assume periodic boundary
conditions along the chains, with Nx grains in each chain.
In the following, n and i are the indices of the lattice
point in τ and x directions, respectively, and σ =↑, ↓ dis-
criminates between the two chains. At each vertex of
the space-time lattice (n,i,σ), a resolution of unity of the
form

1 =
∑
N↑,N↓

∫ 2π

0

dθ↑
2π

∫ 2π

0

dθ↓
2π
|N↑,N↓〉 〈θ↑, θ↓|

× e−iθ↑N↑ e−iθ↓N↓

(A17)

is inserted. This results in the action

S = −i
∑
n,i,σ

Nn
i,σ(∂τθ)

n
i,σ + EJ∆τ

∑
n,i,σ

(1− cos[(∂xθ)
n
i,σ])

+
(2e)2∆τ

2

∑
n,i,σ,σ′

(C−1)σ,σ′
(
Nn
i,σ −Qi,σ

) (
Nn
i,σ′ −Qi,σ′

)
,

(A18)

where we have introduced the lattice derivatives

(∂xθ)
n
i,σ = θni+1,σ − θni,σ and (∂τθ)

n
i,σ = θn+1

i,σ − θ
n
i,σ;

(A19)
by Qi,σ we denote the stray charges and the inverse ca-
pacitance matrix in the local case reads

C−1 =
1

Cg(Cg + 2C0)

(
Cg + C0 C0

C0 Cg + C0

)
. (A20)
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To perform the summation over the charge variables
Nn
i,σ, it is convenient to introduce the symmetric and

antisymmetric combinations of charges and phases

Nn
i,s =

Nn
i,↑ +Nn

i,↓

2
, Nn

i,a =
Nn
i,↑ −Nn

i,↓

2
, (A21)

Qi,s =
Qi,↑ +Qi,↓

2
, Qi,a =

Qi,↑ −Qi,↓
2

, (A22)

θni,s =
θni,↑ + θni,↓

2
, θni,a = θni,↑ − θni,↓. (A23)

According to (A21), the charges Nn
i,s and Nn

i,a are ei-
ther both integer or both half-integer. Note also the ab-
sence of 1/2 in the definition of θni,a.

The partition function reads now

Z =
∑

{Nni,s,Nni,a}

∫ 2π

0

Dθ↑Dθ↓e−
∑
i,n S

n
i , (A24)

with

Sni =− 2iNn
i,s(∂τθ)

n
i,s − iNn

i,a(∂τθ)
n
i,a

+ (2e)2∆τ
[ (Nn

i,s −Qi,s)2

Cg
+

(Nn
i,a −Qi,a)2

2C0 + Cg

]
+ EJ∆τ

∑
σ

(1− cos[(∂xθ)
n
i,σ]).

(A25)

We observe that in the limit of a small capacitance Cg,
(2e)2/Cg � EJ, E0, the dynamics of the charges Ni,s is
frozen out and their values are pinned to the background
charges Qi,s

42

Nn
i,s =

1

2
b2Qi,sc (A26)

where b·c stands for the integer part. The first term in
Eq. (A25) is then a total derivative and can be dropped
due to periodic boundary conditions in the imaginary
time. Moreover, it is easy to see that, upon the proper
redefinition of the stray charges Qi,a, one can regard the
summation over Nn

i,a in the partition function as running
over integers irrespective of the (integer or half integer)
value of Ni,s. We thus conclude that, with the charges
Ni,s being frozen out, the dynamics of the system is gov-
erned by the action

S =
∑
n,i

{
− iNn

i,a(∂τθ)
n
i,a + (2e)2∆τ

(Nn
i,a −Qi,a)2

Cg + 2C0

+ 2EJ∆τ
(
1− cos[(∂xθ)

n
i,s] cos[(∂xθ)

n
i,a/2]

)}
.

(A27)

The last step one needs to perform in order to derive
from Eq. (A27) the effective action for the antisymmetric
mode is the integration over the phases θni,s. To this
end, we assume open boundary conditions in the space
direction and introduce new integration variables

θ̃ni = θni,s − θni−1,s, i ≥ 2. (A28)

The relevant factor in the partition function takes then
the form

Nx−1∏
i=1

Nτ∏
n=1

(∫ 2π

0

dθ̃ni+1,s

× exp
{
−2EJ∆τ(1− cos[(∂xθ)

n
i,a/2] cos[θ̃ni+1,s])

})
∝ exp

{
−∆τ

Nx−1∑
i=1

Nτ∑
n=1

g
[
(∂xθ)

n
i,a

]}
.

(A29)

Here we have dropped an irrelevant normalization factor,
and the function g(γ) can be expressed in terms of the
modified Bessel function I0(γ):

g(γ) = − 1

∆τ
ln I0

(
2EJ∆τ cos

γ

2

)
. (A30)

The function g(γ) is 2π periodic in its argument. Thus,
we can regard the effective action of the antisymmetric
mode,

S =
∑
n,i

{
−iNn

i,a(∂τθ)
n
i,a + (2e)2∆τ

(Nn
i,a −Qi,a)2

Cg + 2C0

+ ∆τ g[(∂xθ)
n
i,a]
}
, (A31)

as describing a chain of JJs with the effective Joseph-
son coupling given by g(∂xθ) and proceed in close anal-
ogy with Ref. 17. We develop the theory starting from
the superconducting ground state. As we will see later,
this means that we are in the limit EJ∆τ � 1. In this
limit, the main contribution comes from the region close
to ∂xθa = 0 (mod 2π). Thus, we can employ the Villain
approximation that reads

exp [−∆τ g(∂xθa)] ∝
∑
h

e−
EJ∆τ

4 (∂xθa−2πh)2

. (A32)

Fixing the time step ∆τ to

∆τ =

√
2

EJE0
=

√
2C0

(2e)2EJ
, (A33)

and following the derivation of the sine-Gordon theory
discussed in Ref. 17, we find (skipping the index “a”)

S =
1

2π2K0

∫
dxdτ [u2

0(∂xφ)2 + (∂τφ)2]

+ yu0

∫
dxdτ cos[2φ(x, τ) +Qa],

(A34)

where

K0 =

√
EJ

2E0
, u0 =

√
EJE0/2. (A35)
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Equation (A34) is equivalent to Eqs. (3), (4) and (10)
in the limit Λ = ∞. To complete our analysis we thus
only need to extract the “gradient” anharmonicity term.
It arises from the fourth order expansion of the effective
Josephson coupling (A30) and reads

Hnl = − EJ

192

∫
dx (∂xθa)

4
. (A36)

This result coincides with the “gradient” anharmonicity
term stated in the main text, Eq. (18), with α = 2.

3. Elimination of symmetric mode at the level of
the lattice model: the case of long-range Coulomb

interaction

Let us now discuss the derivation of the effective theory
in the case of the long-range Coulomb interaction, C0 �
C1. Throughout this section we take the limit of Cg = 0.

It is convenient to represent the partition function as
a path integral over the phases θi,σ(τ)

Z =

∫ ∏
i,σ

Dθi,σ(τ)e−S (A37)

with the action

S =

∫
dτ

∑
i,σ

[
[(∂xθ̇)i,σ]2

2E1
− EJ cos [(∂xθ)i,σ]

+ iθ̇i,σQi,σ

]
+
∑
i

(
θ̇i,↑ − θ̇i,↓

)2

2E0
.

 (A38)

The action Eq. (A38) is equivalent to the Hamiltonian
(21) in the limit Cg = 0. The first term in the second
line describes the effect of random stray charges. The
quantization of the grain charges Ni,σ is reflected in the
boundary condition along the imaginary time

θi,σ(β) = θi,σ(0) + 2πni,σ , (A39)

where β is the inverse temperature and ni,σ are integers.
In the considered limit of Cg = 0 the dependence of the

action on the symmetric combination of phases, θi,s ≡
(θi,↑ + θi,↓)/2 is through its spatial gradient only. We
thus introduce

Θi,s =
(∂xθ)i,↑ + ∂x(θ)i,↓

2
, θi,a = θi,↑ − θi,↓. (A40)

as new integration variables and find

S =

∫
dτ
∑
i

{
Θ̇2
is

E1
+

[
(∂xθ̇)i,a

]2
4E1

+ 2iΘ̇i,sQi,s

+ iθ̇i,aQi,a − 2EJ cos [Θi,s] cos

[
(∂xθ)i,a

2

]
+
θ̇2
i,a

2E0

}
.

(A41)

Here

Qi,s =
∑
j<i

Qj,s (A42)

and the symmetric and antisymmetric combinations of
the stray charges, Qi,s and Qi,a, are defined according to
Eq. (A22). The boundary conditions in the time direction
are given by

θi,a(β) = θi,a(0) + 2πni,a , (A43)

Θi,s(β) = Θi,s(0) + 2πni,s + πδi , (A44)

where ni,s(a) are integer numbers and

δi = (ni+1,a − ni,a) mod 2. (A45)

We can now formally perform the functional integra-
tion over the symmetric mode. Indeed, the integrations
at different spatial points decouple. It is then easy to
see that the result of the integration over Θi,s(τ) can be
expressed as

∫
DΘi,s(τ) exp

{
−
∫

dτ

[
Θ̇2
is

E1
+ 2iΘ̇i,sQi,s

−2EJ cos [Θi,s] cos

[
(∂xθ)i,a

2

]]}
= TrU(β) ≡ e−δS[∂xθi,a(τ)], (A46)

where U(τ) is the (imaginary-time) evolution operator
defined by

dU

dτ
= −H[θi,a(τ)− θi+1,a(τ)]U(τ), (A47)

with the time dependent Hamiltonian

H = E1

(
N − 2Qi,s −

δi
2

)2

− 2EJ cos

(
Θ + πδi

τ

β

)
cos

θi+1,a(τ)− θi,a(τ)

2
. (A48)

Here, N is the (integer-valued) momentum canonically
conjugate to the coordinate Θ.

The contribution δS[∂xθi,a(τ)] to the action of the anti-
symmetric mode defined by Eqs. (A46), (A47) and (A48)
is generally a complicated functional of the phase differ-
ence ∂xθi,a(τ). We are mainly interested, however, in
the low-frequency modes of the field θi,a (with frequen-
cies much less than the plasma frequency

√
E1EJ). The

adiabatic approximation can then be used for the com-
putation of the evolution operator (A47). Moreover, for
E1 � EJ and low temperature, the dynamics of Θ can
be determined just by the minimization of the potential
energy in the Hamiltonian (A48). This leads to

δS = −2EJ

∫
dτ

∣∣∣∣cos
(∂xθ)i,a

2

∣∣∣∣ . (A49)
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Equations (A41) and (A49) give rise to the effective
action for the antisymmetric mode

S =

∫
dτ
∑
i


[
(∂xθ̇)i,a

]2
4E1

− 2EJ

∣∣∣∣cos

[
(∂xθ)i,a

2

]∣∣∣∣
+θ̇i,aQi,a +

θ̇2
i,a

2E0

}
. (A50)

The subsequent derivation of the effective sine-Gordon
theory proceeds then along the lines of Ref. 17 and leads
to Eqs. (3), (4) and (10) with α = 2. The fourth order
expansion of the Josephson coupling in (A50) gives rise

to the “gradient” anharmonicity, Eq. (18).
Before closing this section, let us comment on the re-

lation between the presented derivation and the field-
theoretic derivation discussed in Sec. A 1 of the appendix.
Both derivations lead to the effective sine-Gordon model
for the antisymmetric mode. It was found in Sec. A 1
that the corresponding fugacity y fluctuates in space, see
Eq.(A14). Such fluctuations are not seen in Eq. (A50).
We anticipate that a more accurate treatment of QPS
based on Eqs. (A47) and (A48) will produce a fugacity
y that depends on the configuration of the stray charges
Qi,s and fluctuates in space. Furthermore, as shown in
Ref. 17, the random amplitude of the QPS term is gen-
erated under the renormalization-group transformation.
The results of both derivations are therefore equivalent.
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