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Understanding the formation of Cooper pairs in iron-based superconductors is one of the 
most important topics in condensed matter physics. In conventional superconductors, the 
electron-phonon interaction leads to the formation of Cooper pairs. In conventional 
strong-coupling superconductors like lead (Pb), the features due to electron-phonon interaction 
are evident in the infrared absorption spectra. Here we investigate the infrared absorption 
spectra of the iron arsenide superconductor BaFe1.9Pt0.1As2. We find that this superconductor 
has fully gapped (nodeless) Fermi surfaces, and we observe the strong-coupling electron-boson 
interaction features in the infrared absorption spectra. Through modeling with the Eliashberg 
function based on Eliashberg theory, we obtain a good quantitative description of the energy 
gaps and the strong-coupling features. The full Eliashberg equations are solved to check the 
self-consistency of the electron-boson coupling spectrum, the largest energy gap, and the 
transition temperature (Tc). Our experimental data and analysis provides compelling evidence 
that superconductivity in BaFe1.9Pt0.1As2 is induced by the coupling of electrons to a low energy 
bosonic mode that does not originate solely from phonons.  
 

I. INTRODUCTION 
Nearly half-a-century after the experimental discovery of superconductivity, Bardeen, Cooper and 

Schrieffer (BCS) developed a model to explain this phenomenon [1]. The BCS mechanism provides a 
microscopic description of weak-coupling, phonon-mediated superconductivity in conventional 
superconductors. Subsequently, Eliashberg [2,3] proposed a more realistic model of the 
superconducting state that includes the retarded nature of the phonon induced interaction applicable to 
conventional strong-coupling superconductors like lead (Pb) and mercury (Hg). The agreement of the 
parameters in the self-consistent solutions of the Eliashberg equations, for example in Pb, with 
experimental results like the phonon density of states from inelastic neutron scattering [4], electronic 
density of states from tunneling experiments [3], electronic heat capacity enhancement [3], and 
infrared absorption [5], provide strong evidence for the electron-phonon mechanism of 
superconductivity in conventional superconductors. 

For the iron-based superconductors, it has been argued that phonons alone cannot explain the high 



transition temperatures [6,7]. Spin and orbital fluctuations are currently the popular candidates for 
mediating the formation of Cooper pairs [6,7]. There is some experimental evidence that collective 
spin fluctuations may be the bosons that mediate the formation of Cooper pairs. These experiments 
include inelastic neutron scattering studies on both electron- and hole-doped iron pnictides [8–11], 
scanning tunneling spectroscopy [12] and specific heat measurements of hole (K) -doped 
BaFe2As2 [13], and quasi-particle interference imaging in LiFeAs [14]. 

There have been a number of infrared studies on iron-based superconductors [15–29]. However, 
they have not reported clear evidence of strong electron-boson coupling features in the infrared 
absorption data in the superconducting state normalized to the infrared absorption data in the normal 
state. Such features are expected to occur if superconductivity is mediated by collective bosonic 
excitations. Although the larger gap(s) in the iron-based superconductors are in the strong-coupling 
regime, only a limited number of infrared studies have considered strong-coupling approaches to 
model the data [17–19,25–27]. The strong-coupling methods were originally developed for strong 
electron-phonon interactions but they are believed to describe the coupling of electrons to any bosonic 
spectrum. In a few studies, researchers have obtained the electron-boson spectral density from the 
scattering rate only in the normal state [17,25–27]. One recent work [18] provides a method to find 
the electron-boson interaction both in the normal and superconducting states from the infrared 
scattering rate (or self-energy). However, this work does not check if the electron-boson spectral 
density function is self-consistent with the energy gap by solving the full Eliashberg equations. 
Charnukha et al [19] have used a multiband Eliashberg theory to fit the optical conductivity to support 
the spin-fluctuation mechanism. Their model only qualitatively describes the real part of the optical 
conductivity in the superconducting state.  

Previous experiments on high quality single crystals of superconducting BaFe1.9Pt0.1As2 reveal 
two isotropic gaps, one 2-3 meV and the other 5-7 meV [30]. Here we report infrared spectroscopy 
data on BaFe1.9Pt0.1As2 that is consistent with multi-band superconductivity with isotropic gaps. The 
important new finding is that we observe strong-coupling electron-boson interaction features when the 
infrared absorption spectra in the superconducting state are normalized to the infrared absorption 
spectrum in the normal state. The frequency dependent infrared absorption (A) is simply ܣ ൌ 1 െ ܴ 
where the frequency dependent infrared reflectance (R) is directly measured in the experiments. We 
identify a bosonic mode centered about 5 meV that provides the pairing glue in superconducting 
BaFe1.9Pt0.1As2. We employ theoretical modeling of the absorption spectra within the Allen 
formalism [18,31] and Zimmermann formalism [32] based on Eliashberg theory. The full isotropic 
Eliashberg equations are solved to check the self-consistency of the Eliashberg function 
(electron-boson spectral density function), the largest energy gap, and Tc. 
 

II. SAMPLES AND EXPERIMENTS 
Single crystals of BaFe1.9Pt0.1As2 were grown using FeAs self-flux method, which is described in 

Ref. [30,33] along with x-ray, transport, magnetic and thermodynamic measurements. The dc 
resistivity data shows the onset of superconductivity at Τc = 23 K [30,33]. Magnetic susceptibility 
measurements show bulk superconductivity with full volume fraction [30,33]. The ab-plane 
reflectance at various temperatures from 300 K to 5 K was obtained in a cryogenic setup with a 
Bruker Vertex 80v Fourier transform infrared (FTIR) spectrometer in the frequency range 20 cm-1 − 
8000 cm-1 (2.5 meV − 990 meV) using the technique of in situ gold evaporation [34]. Cryogenic 



ellipsometry was performed in a homebuilt vacuum chamber with a Woollam variable-angle 
spectroscopic ellipsometer in the energy range 0.6 eV – 6 eV [34]. 
 

III. EXPERIMENTAL RESULTS, MODELING AND DISCUSSION 
A. Infrared reflectance and absorption 

The ab-plane infrared reflectance of a BaFe1.9Pt0.1As2 crystal is shown in Fig. 1. In the normal 
state at T = 25 K, BaFe1.9Pt0.1As2 is highly reflective at low frequencies consistent with metallic 
behavior as in other metallic iron-arsenides [15,20–22,24–29,34]. At T = 5 K, well below Tc, 
superconductivity leads to changes in the spectrum at frequencies below ≈ 250 cm-1. 
Superconductivity is observed directly from perfect reflectance at frequencies below 31.5 cm-1 in the 
T = 5 K spectrum. The data are consistent with a fully gapped (nodeless) superconductor close to the 
dirty limit [20–22,35,36]. Features at ≈ 260 cm-1 and ≈ 320 cm-1 are observed in the normal state 
spectrum and these features are nearly unchanged in the superconducting state spectrum. The feature 
at ≈ 260 cm-1 is due to an infrared-active phonon. The somewhat broader feature at ≈ 320 cm-1 is 
possibly due to a weak optical interband transition.   
 

 

FIG. 1. The ab-plane infrared reflectance of BaFe1.9Pt0.1As2 in the superconducting state (T = 5 K) and normal 
state (T = 25 K). Inset: the ab-plane infrared reflectance of BaFe1.9Pt0.1As2 at T = 5 K and T = 25 K in a wider 

spectral range. 
 

The absorption in the superconducting state ܣௌሺܶሻ for ܶ ൏ ஼ܶis obtained from the equation              ܣௌሺܶሻ ൌ 1 െ ܴௌሺܶሻ, where ܴௌሺܶሻis the reflectance in the superconducting state. Similarly, the 
normal state absorption ܣேሺܶ ൌ 25 Kሻ  is obtained from ܣேሺ25 Kሻ ൌ 1 െ ܴேሺ25 Kሻ . The ratio ܣௌሺ5 ܭሻ/ܣேሺ25 Kሻ is plotted as a function of frequency in Fig. 2. There are clear features at 80 − 200 
cm-1 which are larger than the error bars (see Fig. 2(b)). The sharp peak at 87 cm-1 is due to the largest 
gap. Above this gap feature, we observe a ‘valley-peak-valley’ structure. When we compare our 
normalized infrared absorption data of BaFe1.9Pt0.1As2 to the normalized infrared absorption data of 
the well-known conventional strong-coupling superconductor lead (Pb) (Ref. [5,31]), we see they are 
remarkably similar. In Pb, acoustic phonons are the bosonic modes which mediate the formation of 
Cooper pairs, and the valleys in the absorption data are due to the peaks in the phonon density of 
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states shifted by 2Δ. Hence, the valleys in the absorption data of BaFe1.9Pt0.1As2 roughly correspond to 
peaks in the density of states of bosonic modes shifted by the largest gap 2Δ3.  

In the following sections IIIB and IIIC, two different models have been applied to fit the 
normalized absorption of BaFe1.9Pt0.1As2, in order to quantitatively determine the bosonic mode 
coupled to the electrons. 

  

 
FIG. 2. (a), (b) Experimental data showing infrared absorption in the superconducting state (T = 5 K) 

normalized to infrared absorption in the normal state (T = 25 K). Also shown are fits to the experimental data 
using four different methods described in the text. The Eliashberg functions α2F shown in (a) consists of one 

sharp large peak and one smaller broad peak in the superconducting state for both Allen formalism and 
Zimmermann formalism. (b) Zoomed in view of the ‘valley-peak-valley’ region (≈ 90 − 200 cm-1) in the 

normalized absorption spectrum shown in (a). Experimental error bars at representative frequencies are also 
shown in (b). 

 
 

B. Modeling strong-coupling features with Allen formalism 

In order to quantitatively study the bosonic modes in superconducting BaFe1.9Pt0.1As2 and obtain 
a fit to the experimental normalized absorption, we start from Allen’s formalism (optical self-energy 
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method) generalized to multi-band conductivity [18,31,37]. The imaginary part of the optical 
self-energy is: 

,ଶ௢௣ሺ߱ߑ  ܶሻ ൌ െ ଵଶ ቈ׬ ,ߗሺܨଶߙߗ݀ ܶሻܭሺ߱, ,ߗ ܶሻ ൅ ଵఛ೔೘೛೚೛ ሺఠሻஶ଴ ቉, (1) 

where ߙଶܨሺΩ, ܶሻ is the Eliashberg function (electron-boson spectral density function), ܭሺ߱, ,ߗ ܶሻ 

is the kernel of Allen’s integral equation, and 1 ߬௜௠௣௢௣ ሺ߱ሻ⁄  is the impurity scattering rate [18]. Eq. (1) 

is applicable to both the normal phase and the superconducting phase, but ܭሺ߱, ,ߗ ܶሻ  and 1 ߬௜௠௣௢௣ ሺ߱ሻ⁄  are different for the two phases: 

,ሺ߱ܭ ,ߗ ܶሻ ൌ గఠ ቂ2߱ coth ቀ Ωଶ்ቁ െ ሺ߱ ൅ Ωሻ coth ቀனାΩଶ் ቁ ൅ ሺ߱ െ Ωሻ coth ቀனିΩଶ் ቁቃ  

(for normal state)                                           (2a) 

      ൌ ଶగఠ ሺ߱ െ ΩሻΘሺ߱ െ 2Δ െ Ωሻ ൈ ܧ ൬ඥሺఠିΩሻమିሺଶ୼ሻమఠିΩ ൰ 

(for superconducting state at T = 0 K),                         (2b) 
where Θሺݔሻ represents the Heaviside step function, E(x) represents the complete elliptic integral of 
the second kind and Δ is energy gap. The impurity scattering rate: 

 1 ߬௜௠௣௢௣ ሺ߱ሻ⁄ ൌ 1 ߬௜௠௣⁄  (for normal state) (3a) 
                               ൌ ሺ1 ߬௜௠௣⁄ ሻ ൈ ܧ ൬ඥఠమିሺଶ୼ሻమఠ ൰ 

(for superconducting state at T = 0 K),           (3b) 
in which 1 ߬௜௠௣⁄  is a constant. Then the real part of the optical self-energy can be obtained by 
Kramers-Kronig transformation: 

ଵ௢௣ሺ߱ሻߑ  ൌ െ ଶఠగ ܲ ׬ ߗ݀ ఀమ೚೛ሺఠሻఆమିఠమஶ଴ . (4) 

The complex optical conductivity for one channel is: 

෤ሺ߱ሻߪ  ൌ ఠ೛మ଼గ௜ ଵ෩ఀ೚೛ሺఠሻିఠ/ଶ, (5) 

where ߱௣ is the plasma frequency in one channel and ߑ෨௢௣ሺ߱ሻ ൌ ଵ௢௣ሺ߱ሻߑ ൅  ଶ௢௣ሺ߱ሻ. The totalߑ݅
conductivity is the sum of different channels (here we have 3 channels due to the multi-band nature of 
this material): 
෤௧௢௧௔௟ሺ߱ሻߪ  ൌ ෤௖௛ଵሺ߱ሻߪ ൅ ෤௖௛ଶሺ߱ሻߪ ൅  ෤௖௛ଷሺ߱ሻ. (6)ߪ
We then add the contributions of the interband transitions from the experimental data at higher 
frequencies to the total low frequency conductivity calculated from the model. 

In both normal state and superconducting state, the Eliashberg function ߙଶܨሺߗሻ only appears in 
the optical self-energy of the largest gap channel, while for the two smaller gap channels only 
impurity scattering is considered in the optical self-energy. The parameters in the fit are as follows: 
the impurity scattering rate (1 ߬௜௠௣⁄ ൌ 370 cm-1) consistent with the experimental data, the weights of 
the square of the total plasma frequency in each conductivity channel, and the three energy gaps in the 
superconducting state (discussed below). The total plasma frequency of 1.45 eV is obtained from the 
low frequency optical conductivity data at T = 25 K in the normal state (Appendix A). Our best fit to 
the normalized absorption data and the corresponding Eliashberg function ߙଶܨሺߗሻ are shown in Fig. 



2(a), (b). The smallest gap 2Δ1 = 31.5 cm-1 corresponds to the onset of absorption and the largest gap 
2Δ3 = 87 cm-1 corresponds to the peak at 87 cm-1 in the normalized absorption data. A third gap with 
energy 2Δ2 = 58 cm-1 is required to fit the shoulder around 60 cm-1. However, Δ2 is associated with the 
Fermi surface with a small spectral weight (10% of the square of the normal state plasma frequency). 
The gaps Δ1 and Δ3 are associated with Fermi surfaces that respectively represent 55% and 35% of the 
square of the normal state plasma frequency. The smallest gap Δ1 that we observe in BaFe1.9Pt0.1As2 is 
consistent with four different experiments reported in Ref. [30]. The existence of a larger gap has been 
previously suggested by point contact spectroscopy experiments [30]. The observation of multiple 
gaps is consistent with several earlier studies of other types of iron-based superconductors [19,22,38]. 
For electron-doped Ba-122 system, ARPES data shows that a small gap occurs on two electron 
pockets γ and δ, while a larger gap is on the outer hole pocket (β band) [39]. The inner hole pockets 
are hard to observe [39,40] due to their small spectral weight. Hence Δ2 could be the gap on the inner 
hole pockets.  

The ratio 2Δ3/kBTc = 5.44 is clearly in the strong-coupling limit compared to the BCS 
weak-coupling value of 3.53. The ratios of the other two gaps to Tc are either smaller than (2Δ1/kBTc = 
1.97) or close to (2Δ2/kBTc = 3.63) the BCS weak-coupling value. This justifies using the Eliashberg 
function only in the conductivity channel associated with the largest energy gap Δ3. In order to fit the 
two valleys in the experimental normalized absorption spectrum, the Eliashberg function in the 
superconducting state consists of two Gaussian peaks: one large and sharp mode centered at 
frequency Ω1 = 46 cm-1 and one broad, weaker mode centered at frequency Ω2 = 121 cm-1. These two 
peaks approximately correspond to the two valleys respectively centered at frequencies 115 cm-1 (≈ 
Ω1 + 2Δ3) and 180   cm-1 (≈ Ω2 + 2Δ3) in the calculated normalized absorption spectrum. In order to 
obtain the correct absolute value of normalized absorption, only the weak, broad peak is necessary in 
the Eliashberg function for the normal state. Here we discuss the calculated normalized absorption 
using three methods while keeping the same energy gaps: the multi-band Allen formalism including 

both electron-boson interaction and impurity scattering 1 ߬௜௠௣௢௣ ሺ߱ሻ⁄ ; the multi-band Allen formalism 

with only impurity scattering; and multi-band Mattis-Bardeen theory [41] (with constant normal state 
conductivity σ1 = 6000 Ω-1 cm-1 consistent with the low frequency conductivity data at T = 25 K 
shown in Appendix A). The multi-band Mattis-Bardeen theory assume the gaps are isotropic s-wave 
gaps in the weak-coupling limit, and the total conductivity is the superposition of the different 
superconducting channels. The multi-band Mattis-Bardeen theory has been applied to iron-based 
superconductors previously [16,20–22,28,42]. The model fits are compared in Fig. 2. Neither multiple 
band Mattis-Bardeen theory nor the Allen formalism with only impurity scattering capture the 
“valley-peak-valley” features in the normalized absorption data. The introduction of electron-boson 
interaction to the optical self-energy for the largest gap is required to fit the ‘valley-peak-valley’ 
features between ≈ 90 cm-1 and 200 cm-1.  

Since the Allen formalism is expected to provide only an approximate quantitative description of 
strong-coupling superconductors [18,31], we take the important step to check the self-consistency of 
the energy gap and the Eliashberg function ߙଶܨሺΩሻ used in the Allen formalism by solving the full 
Eliashberg equations. For this we assume an isotropic energy gap consistent with experiments [30] 
and the effective Coulomb pseudo-potential μ* = 0.1 [43]. The Eliashberg equations are solved using 
EPW4.2 as described in the Ref. [43]. Renormalization function Z(ω) and the superconducting gap 
Δ(ω) are first solved on imaginary energy axis and then an analytic continuation is performed to the 



real axis. The solved gap function is 2Δ (ω=0) = 85 cm-1, which is almost identical to the largest gap 
2Δ3. We also calculate Tc from the Eliashberg function. The lower limit of Tc can be estimated from 
McMillan’s formula [44],  

 ୡܶ,୫୧୬ ൌ ଵ.ଶ଴ۄఠۃ expሾെ1.04 ሺ1 ൅ ሻߣ ሺߣ െ כߤ െ ⁄ሻכߤߣ0.62 ሿ, (7) 

where כߤassumed to be 0.1, and 

ߣ  ൌ 2 ׬ dΩ ߙଶܨሺΩሻஶ଴ /Ω, (8)  ۄ߱ۃ ൌ ൛׬ dΩ ߙଶܨሺΩሻஶ଴ ൟ/൛׬ dΩ ߙଶܨሺΩሻஶ଴ /Ωൟ. (9) 

Thus we obtain Tc,min = 17.1 K. An upper limit of Tc is given by the generalized McMillan 
equation [18,44],  

 ݇B ୡܶ,୫ୟ୶ ؆ 1.13ℏ߱௟௡expሾെ ሺ1 ൅ ሻߣ ⁄ߣ ሿ, (10) 

where  

 ߱௟௡ ൌ expൣሺ2/ߣሻ ׬ dΩ ln Ω ሺΩሻஶ଴ܨଶߙ /Ω൧,  (11) 

and this gives Tc,max = 24.6 K. The estimates of Tc are consistent with the experimental transition 
temperature of 23 K. 
 

C. Modeling strong-coupling features with Zimmermann formalism 

In order to confirm the results of the modeling based on the Allen formalism, we apply a second 
approach to model our data: the formalism of Lee, Rainer and Zimmermann [32] (we call it 
Zimmermann formalism in this article) to calculate the optical conductivity in the strong-coupling 
regime. The Zimmermann formalism has advantages in that it is self-consistent and incorporates 
temperature dependence in the superconducting state. Similar results to the Zimmerman formalism 
have been derived by Marsiglio [45] and Schachinger and Carbotte [46], which indicate the 
robustness and significance of the formalism. The temperature dependent complex conductivity in the 
superconducting state takes the following expression [32,47]: σሺ߱, ܶሻ ൌఠ೛మଵ଺గయఠ ׬ ߝ݀ ቄtanh ቀ ఌଶ௞ಳ்ቁ ,ߝሺܯ ߱ሻሾ݃ሺߝሻ݃ሺߝ ൅ ߱ሻ ൅ ݄ሺߝሻ݄ሺߝ ൅ ߱ሻ ൅ ଶሿߨ െାஶିஶtanh ቀ ఌାఠଶ௞ಳ்ቁ ,ߝሺכܯ ߱ሻሾ݃כሺߝሻ݃כሺߝ ൅ ߱ሻ ൅ ߝሺכሻ݄ߝሺכ݄ ൅ ߱ሻ ൅ ଶሿߨ ൅
ቂtanh ቀ ఌାఠଶ௞ಳ்ቁ െ tanh ቀ ఌଶ௞ಳ்ቁቃ ,ߝሺܮ ߱ሻሾ݃כሺߝሻ݃ሺߝ ൅ ߱ሻ ൅ ߝሻ݄ሺߝሺכ݄ ൅ ߱ሻ ൅  ଶሿቅ,     (12)ߨ

where ߱௣ is the plasma frequency in one conductivity channel and  

 ݃ሺߝሻ ൌ ିగఌ෤ሺఌሻඥ୼෩మሺఌሻିக෤మሺఌሻ, (13a) 

 ݄ሺߝሻ ൌ ିగ୼෩ሺఌሻඥ୼෩మሺఌሻିக෤మሺఌሻ, (13b) 

,ߝሺܯ  ߱ሻ ൌ ቂඥΔ෩ଶሺߝ ൅ ߱ሻ െ ε෤ଶሺߝ ൅ ߱ሻ ൅ ඥΔ෩ଶሺߝሻ െ ε෤ଶሺߝሻ ൅ 1/߬ቃିଵ
, (14a) 



,ߝሺܮ  ߱ሻ ൌ ቂඥΔ෩ଶሺߝ ൅ ߱ሻ െ ε෤ଶሺߝ ൅ ߱ሻ ൅ ඥΔ෩כଶሺߝሻ െ ε෤כଶሺߝሻ ൅ 1/߬ቃିଵ
, (14b) 

in which 1/߬  is the impurity scattering rate. The quantities Δ෩  and ε෤  depend on energy ߝ , ε෤ሺߝሻ ൌ ሻ and Δ෩ߝሺܼߝ ൌ ܼሺߝሻΔሺߝሻ. The complex renormalization function ܼሺߝሻ and superconducting 
gap Δሺߝሻ are obtained by solving the standard Eliashberg equations for isotropic systems at real 
energies. In eq. (12), the integral is implemented on the energy axis from negative infinity to positive 
infinity. The negative energy dependence of ܼሺߝሻ and Δሺߝሻ can be obtained from the symmetry 
properties of ܼሺߝሻ and Δሺߝሻ. Note that the real part of both ܼሺߝሻ and Δሺߝሻ are even functions of 
energy, and the imaginary part of both ܼሺߝሻ and Δሺߝሻ are odd functions of energy [48,49]. 

For the normal state, the conductivity can be expressed as: 

 σேሺ߱, ܶሻ ൌ ఠ೛మ଼గఠ ׬ ߝ݀ ቂtanh ቀ ఌାఠଶ௞ಳ்ቁ െ tanh ቀ ఌଶ௞ಳ்ቁቃାஶିஶ ,ߝேሺܯ ߱ሻ, (15) 

where  

,ߝேሺܯ  ߱ሻ ൌ ሾെ݅ߝே̃ሺߝ ൅ ߱ሻ ൅ כே̃ߝ݅ ሺߝሻ ൅ 1/߬ሿିଵ, (16) 

 and ߝே̃ሺߝሻ is defined by: 

ሻߝே̃ሺߝ  ൌ ߝ ൅ ׬ ݀Ω ߙଶܨሺΩሻ ቂ݅ߨ coth ቀ Ωଶ௞ಳ்ቁ െߖ ቀଵଶ ൅ ݅ ିఌାΩଶగ௞ಳ்ቁ ൅ߖ ቀଵଶ ൅ ݅ ିఌିΩଶగ௞ಳ்ቁቃାஶିஶ , (17) 

in which ߙଶܨሺΩሻ is the Eliashberg function and ߖሺݔሻ is the digamma function. Negative energy 
dependence of ߙଶܨሺΩሻ can also be obtained from symmetry properties of ߙଶܨሺΩሻ. Note that ߙଶܨሺΩሻ is an odd function of frequency (energy) [50]. 

For the simulation based on the Zimmermann approach, the following parameters were used for 
the strong-coupling channel with the largest gap Δ3: ߱௣ଶ is 35% of the square of the total plasma 
frequency of 1.43 eV, and the impurity scattering rate in the normal state and superconducting state is 
370 cm-1 and 160 cm-1 respectively. A lower impurity scattering rate in the superconducting state 
compared to that in the normal state gives a better fit to the experimental data. This can be understood 
as follows: the effective impurity scattering rate in the superconducting state is lower because 
condensed electrons do not undergo impurity scattering. For weak-coupling channels with energy 
gaps Δ1 and Δ2, we used Mattis-Bardeen theory to calculate the conductivity. The total optical 
conductivity is obtained by adding up the contribution from the three parallel channels. The spectral 
weight (square of the plasma frequency) ratios for the three conductivity channels for the best fit are 
the same as in the Allen formalism (55%, 10% and 35% for the gaps Δ1, Δ2 and Δ3). The best fit and 
corresponding Eliashberg function are shown in Fig. 2. It can be seen in Fig. 2 that the Zimmerman 
model has overall good quantitative agreement with the data because it captures the 
‘valley-peak-valley’ features between 90 cm-1 and 200 cm-1 and the frequencies of the peak and dip 
align very well with those in the experimental data. Similar to Allen’s method, the Eliashberg function 
in the superconducting state still consists of two peaks, one large sharp peak centered at 36.3 cm-1 (4.5 
meV), and one small broad peak centered 121 cm-1 (15 meV). The coupling constant λ = 4.27, and 
corresponding upper limit transition temperature Tc is 20.5 K. Analogous with the results of the Allen 
formalism, only the small broad peak is included in the Eliashberg function for calculating the normal 
state conductivity. The result of solving Eliashberg equations at 5 K gives the gap function 2Δ (ω=0) = 
81.2 cm-1, which is close to the result using Allen’s formalism. 

Our models based on the Allen and Zimmermann formalisms quantitatively describe the energy 
gaps and the strong coupling features in the experimental data (see Fig. 2). However, we note that the 



model based on the Allen formalism gives a better fit to the experimental data compared to the model 
based on the Zimmermann formalism. 
 

D. Origin of the bosonic modes 

Next we discuss the origin of the two peaks in the Eliashberg function. The promising candidates 
for bosons which mediate the formation of Cooper pairs are either spin fluctuations or orbital 
fluctuations (induced by Fe phonons). Spin resonance modes have been determined by inelastic 
neutron scattering experiments [8–11]. The spin resonance, which is observed only in the 
superconducting state in cuprates, heavy-fermion and iron-based superconductors, is generally 
considered a feedback effect from superconductivity. Despite some theoretical controversies, the 
resonance is viewed as a spin-exciton bound state in the particle-hole channel. The appearance of the 
resonance implies a sign change of superconducting gap(s) between either different patches of the 
Fermi surface or different Fermi pockets connected by a resonance mode at momentum q (see 
Ref. [51] and references therein). From the modeling of our infrared absorption data, the large sharp 
peak in the Eliashberg function of BaFe1.9Pt0.1As2 is centered at 5.1 ± 0.6 meV (41 ± 5 cm-1), with a 
full-width at half-maximum of 1 meV, and is only present in the superconducting state. We note that 
the spin resonance mode at 3D antiferromagnetic ordering wave vector Q = (1, 0, -1) occurs in 
BaFe1.9Ni0.1As2 (a superconductor with Tc = 20 K and similar to BaFe1.9Pt0.1As2), with resonance 
energy ℏωres = 7 ± 0.5 meV, and width d = 1.9 ± 0.7 meV [8]. Inelastic neutron scattering experiments 
on BaFe1.9Pt0.1As2 are not available at present. If the bosonic mode we have observed is due to spin 
fluctuations, then we expect that a spin resonance mode about 5 meV will be observed in future 
inelastic neutron scattering experiments. The center frequency of the bosonic mode in our infrared 
experiments is also not that different from the spin resonance mode of another electron-doped material 
Ba(Fe1-xCox)2As2 which is ~ 8-9 meV [10,11]. Note that the bosonic mode observed in the optical 
response is the q averaged (all momenta in the Brillouin zone) local susceptibility. From the above 
discussion, we infer that the sharp peak about 5 meV in the Eliashberg function of BaFe1.9Pt0.1As2 
possibly represents the spin resonance in the superconducting state. The important point is that the 5 
meV peak cannot be due to phonons alone because it is lower in energy compared to the energy of the 
lowest peak in the phonon density of states in the parent compound or doped BaFe2As2 [52,53]. 
Moreover, since phonons are present in both the normal and superconducting states, the 5 meV peak 
cannot be due to phonons alone because it is only required in modeling the superconducting state data 
and not required for modeling the normal state data. 

The broad, weak peak in ߙଶܨሺΩሻ is centered at 15 meV (121 cm-1), with a width of 5 meV, and 
is required in the models for both the superconducting and normal states. Inelastic X-ray scattering 
experiments have measured the lowest energy peak in the Fe phonon density of states centered at 13 
meV, with width approximately 5 meV. The phonon density of states are nearly temperature 
independent [54]. Phonons are likely the origin of the weak, broad mode. Actually, the position and 
the width of the broad peak is also very similar to the prediction of the resonance peak of s++ wave 
pairing state [55]. Possible explanations are that the weak, broad mode is either due to 
electron-phonon interaction or due to phonon induced orbital fluctuations. Note that the total 
electron-boson coupling constant λ = 3.5 – 4.3 contains a significant contribution of 2.8 – 3.6 from the 
sharp peak, and a minor contribution of only 0.7 from the broad peak. If the sharp peak in the 
Eliashberg function is due to spin fluctuations, this means spin-fluctuations play the dominant role in 
superconductivity in BaFe1.9Pt0.1As2. It would also support the presence of a predominant s± gap in 



superconducting BaFe1.9Pt0.1As2 [6]. However, we note that superconductivity with relatively high Tc 
is preserved in the presence of large impurity scattering in BaFe1.9Pt0.1As2. This is more consistent 
with an s++ pairing state because the s± pairing state is expected to be fragile against impurities due to 
interband scattering [56]. 
 

E. Temperature dependent features 

Finally, we study the temperature dependence of the normalized absorption spectra. The 
absorption spectra in the superconducting state at T = 5 K, 10 K, 15 K, and 20 K, are normalized to 
the normal state absorption data (T = 25 K) and plotted in Fig. 3(a). It is clear that the amplitude of the 
strong-coupling features due to electron-boson interaction decreases when temperature increases 
toward Tc. However, there is little frequency dependence of these features for temperatures at and 
below 15 K. At T = 20 K, still below Tc, the strong-coupling features weaken further and move to 
lower frequencies. This may be caused by a reduction of the energy gap Δ3 magnitude and a 
downward shift in center frequency Ω1 of the bosonic peak as the temperature approaches Tc from 
below. The Allen formalism for the superconducting state is meant for T = 0 K and works well for 
temperatures much below Tc. To the best of our knowledge, the Allen formalism for the 
superconducting state at higher temperatures does not exist at present. Hence, we cannot 
quantitatively model the temperature dependence of the bosonic mode based on the Allen formalism. 
Nevertheless, we attempt to follow the temperature dependence of the energy gaps using two 
alternative methods discussed below. The first method is based on Mattis-Bardeen theory. The second 
method based on the Zimmerman formalism also allows us to model the temperature dependence of 
the low energy bosonic mode.  

In the first method, the temperature dependent energy gap 2Δ3(T) is estimated directly from the 
normalized absorption because it corresponds to the first prominent peak position (shown by arrows 
in Fig. 3(b)) and is plotted in Fig. 3(c). The temperature dependence of Δ1 and Δ2 cannot be obtained 
directly from the data. However, since the ratio 2Δ/kBTc for the smaller two gaps shows they are in the 
weak-coupling regime, we have modeled the normalized absorption using three-band Mattis-Bardeen 
formalism (we assume the temperature dependence of the largest gap can be modeled with 
Mattis-Bardeen theory). The results are shown in Fig. 3(c) with hollow symbols. The largest and 
smallest gaps appear to deviate from the BCS prediction close to Tc. 

 



 

   

FIG. 3. (a) Solid lines are temperature dependent infrared absorption in the superconducting state normalized to 
infrared absorption in the normal state at T = 25 K. Dashed lines (red) are Mattis-Bardeen fits to the normalized 

infrared absorption data. Dash-dotted lines (blue) are the fits using Zimmermann’s formalism for the largest 
energy gap, and Mattis-Bardeen formalism for the two smaller energy gaps. (b) Zoomed in view of the spectra 
showing the peak associated with the largest gap 2Δ3 and the “valley-peak-valley” strong-coupling features at 

different temperatures in the superconducting state. Arrows indicate the frequency of the first prominent peak in 
the normalized absorption spectrum due to the energy gap 2Δ3 in the presence of impurity scattering. (c) Plot of 

the temperature dependence of the three energy gaps and bosonic mode Ω1. Hollow symbols (blue) represent 
energy gaps from Mattis-Bardeen formalism (see text), filled symbols (green) represent the energy gap Δ3 from 
Zimmermann formalism, and half hollow symbols (magenta) represent bosonic mode Ω1. The dashed lines are 
the BCS prediction of the temperature dependence of the energy gaps. The vertical dotted line represents Tc. 

 
Since the Mattis-Bardeen description does not capture the temperature dependence of the 

strong-coupling features and the low energy bosonic mode, we attempt to fit the temperature 
dependent normalized absorption using Zimmermann’s formalism for the largest gap channel. In the 
modeling, we assume the low energy bosonic mode is temperature dependent and follows a similar 
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functional dependence as the energy gap [57]. Temperature dependent complex renormalization 
function ܼሺߝሻ  and superconducting gap Δሺߝሻ  are obtained by solving the standard Eliashberg 
equations for isotropic systems at real energies. The Zimmermann formalism is applied in the largest 
energy gap channel, and the temperature dependence of the two smaller gaps in the weak-coupling 
regime are modeled using Mattis-Bardeen theory. The simulation results are shown in Fig. 3(a). The 
theoretical model roughly captures the temperature-dependent trend of the ‘valley-peak-valley’ 
features. At T = 10 K and 15 K, the ‘valley-peak-valley’ features become weaker compared to T = 5 K 
simulation, while there is some frequency dependence at T = 15 K compared to the T = 5 K and 10 K 
simulations. At T = 20 K, a temperature close to Tc, the ‘valley-peak-valley’ features are nearly 
washed out in the simulation consistent with the experimental data. The temperature dependence of 
the energy gaps and the bosonic mode from the model is shown in Fig. 3(c). There are larger error 
bars at higher temperatures due to uncertainty in the solution of the Eliashberg equations using the 
EPW software when the temperature approaches Tc. 
 
 

IV. CONCLUSION 
To conclude, we have observed temperature dependent features in the infrared absorption spectra 

arising from the energy gaps and strong electron-boson interaction in the superconductor 
BaFe1.9Pt0.1As2. This was enabled by careful, systematic cryogenic infrared reflectance measurements. 
The data is consistent with three nodeless energy gaps in the superconducting state, out of which only 
the largest gap is in the strong-coupling regime. We obtain the Eliashberg function (electron-boson 
spectral density function) by modeling the absorption data with both the generalized Allen formalism 
and Zimmermann formalism. The largest gap, the Tc, and the Eliashberg function were verified to be 
self-consistent within the Eliashberg theory. We find that superconductivity in BaFe1.9Pt0.1As2 arises 
primarily due to pairing of electrons induced by a bosonic mode centered at 5.1 ± 0.6 meV. This 
bosonic mode cannot be attributed to phonons alone because it occurs at an energy less than the 
lowest energy peak in the phonon density of states. The bosonic mode may originate from spin 
fluctuations although we cannot rule out the role of orbital fluctuations or another mechanism.  
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APPENDIX A: OPTICAL CONDUCTIVITY 
The temperature dependence of the real part optical conductivity σ1 is shown in Fig. 4. It is  

obtained from Kramers-Kronig transformation constrained by cryogenic ellipsometry data, similar to 



the procedure described in Ref. [34]. At T = 5 K, the real part of the conductivity is negligible below 
the frequency 31.5 cm-1, corresponding to the smallest gap. At higher frequencies, there is a sharp 
increase of the conductivity just above the gap and subsequently the conductivity reaches a maximum, 
which is a clear indication of superconductivity in the dirty limit. Indeed, the scattering rate in the 
normal state (T = 25 K) is 370 cm-1 which is much larger than the energy gaps indicating that 
superconductivity is in the dirty limit. In fact, the large radius Pt ion doped into the FeAs4 tetragon 
leads to significant impurity scattering and to some degree of localization at higher temperatures in 
the normal state. This can be seen from the non-monotonic frequency dependence of σ1 at low 
frequencies in the normal state at higher temperatures (see Fig. 4). 

The inset in Fig. 4 clearly shows the “missing” spectral weight between the normal state 
conductivity and the superconducting state conductivity. The “missing” spectral weight in the 
superconducting state is transferred into the delta function at zero frequency which represents the 
superfluid response to a dc electric field. The missing spectral weight area is equal to the superfluid 

density [22], ߱௣௦ଶ ൌ 8 ׬ ݀߱ሾߪଵሺ߱, ܶ ൌ ሻܭ25 െ ,ଵሺ߱ߪ ܶ ൌ ሻሿఠ೎଴ܭ5 ൌ 1.9 ൈ 10଻ cmିଶ , where the 

cutoff frequency ߱௖ ൌ 400 cmିଵ is chosen so that the integral converges smoothly. The superfluid 

density is consistent with that obtained from the low frequency limit ߱௣௦ଶ ൌ െ߱ଶεଵ ሺ߱ ՜ 0ሻ, where 

ε1 is the real part of the dielectric function [22,58]. We use the Drude-Lorentz model to separate the 
contribution of free carriers and interband transitions to the conductivity in the normal state (T = 25 
K) [58]. In the simplest Drude-Lorentz model, a single Drude feature is sufficient to describe the free 
carrier contribution. The superfluid density at T = 5 K is 14% of the Drude spectral weight in the 
normal state (T = 25 K). An interpretation is that 14% free carriers in the normal state have condensed 
into the superconducting state. 

 

 
FIG. 4. The real part of the ab-plane optical conductivity σ1 is plotted as a function of frequency at different 

temperatures. Inset: the region shaded grey is the “missing area” between the normal and superconducting state 
real conductivity that moves into the delta function at ω = 0 in the superconducting state. 
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CALCULATED USING THE TWO MODELS 
Absolute reflectance and absorption obtained from the Allen formalism and the Zimmermann 

formalism in the superconducting state (T = 5 K) and normal state (T = 25 K) are shown in Fig. 5. We 
have obtained quantitatively good agreement to the absolute reflectance and absorption data using the 
Allen formalism. The Zimmermann formalism agrees better with the experimental data at lower 
frequencies compared to higher frequencies (above ≈ 100 cm-1).  
 

  

 
FIG. 5. The frequency dependent (a) reflectance and (b) absorption in the superconducting state (5 K) and the 
normal state (25 K) calculated from the Allen formalism and the Zimmermann formalism and compared to the 

experimental data. 
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