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Abstract 

 It is well known that conventional harmonic lattice dynamics cannot be applied to 

dynamically unstable crystals at 0 K, such as high temperature body centered cubic (BCC) phase 

of crystalline Zr. Predicting phonon spectra at finite temperature requires the calculation of force 

constants to the third, fourth and even higher orders, however, it remains challenging to 

determine to which order the Taylor expansion of the potential energy surface for different 

materials should be cut off. Molecular dynamics, on the other hand, intrinsically includes 

arbitrary orders of phonon anharmonicity, however, its accuracy is severely limited by the 

empirical potential field used. Recently, machine learning algorithms emerge as a promising tool 

to build accurate potentials for molecular dynamics simulation. In this work, we approach the 

problem of predicting phonon dispersion at finite temperature by performing molecular 

dynamics simulations with machine learning-driven potential fields. We developed Gaussian 

approximation potential models for both the hexagonal closed-packed (HCP) phase and the body 

centered cubic (BCC) phase of Zirconium crystals. The developed potential field is first 

validated with static properties including energy-volume relationship, elastic constants and 
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phonon dispersions at 0 K. Molecular dynamics simulations are then performed to stochastically 

sample the potential energy surface and to calculate the phonon dispersion at elevated 

temperatures. The phonon renormalization in BCC-Zr is successfully captured by the molecular 

dynamics simulation at 1188 K. The instability of BCC structure is found to originate from the 

double-well shape of the potential energy surface where the local maxima is located in an 

unstable equilibrium position. The stabilization of the BCC phase at high temperature is due to 

the dynamical average of the low-symmetry minima of the double well due to atomic vibrations.   
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1. INTRODUCTION 

 Understanding temperature-dependent thermal properties of materials is important for a lot of 

high temperature applications, such as thermal barrier coatings, nuclear applications and high 

temperature thermoelectrics. Prediction of macroscopic thermal properties depend on the 

microscopic description of vibrational dynamics of the atoms in the solids, which is primarily 

characterized by phonon dispersions.  Although recent progress in first-principles calculation has 

enabled prediction of thermal properties routinely for many materials, it has been one of the 

long-standing challenges in material physics to model the vibrational spectra for materials that 

are dynamically unstable. Conventionally, lattice dynamics calculations are performed at the 

static limit (0 K) using the finite displacement method1 or density functional perturbation theory2, 

but these methods failed to explain why the dynamically unstable structures can emerge at high 

temperatures. For example, SnSe in the CmCm phase is one of thermoelectric materials with best 

figure of merit ZT at the high temperature (~1000 K). However, the CmCm structure displays 

soft phonon modes with imaginary frequencies in the phonon dispersion at the static limit. For 

these soft phonons, the harmonic force constants are negative, which means that the inter-atomic 

forces no longer pull the atoms back to the equilibrium position but push them away once the 

atoms are displaced from the equilibrium position. Clearly, the existence of soft phonons is a 

sign of lattice instability, but the static lattice dynamics failed to explain why the CmCm phase of 

SnSe is stable at high temperature.  Another example is the body centered cubic (BCC) structure 

for group IV metals like Ti, Zr and Hf. They all have soft phonons at the static limit but become 

stable phases at high temperature.3, 4     In 1955, Hooton realized that atoms vibrate in an 

effective potential due to their nonstationary neighbors, and the potential energy surface (PES) is 

stochastically sampled around the most probable position which is not necessarily a local 

minima.5 They then renormalized the soft phonon modes by an effective harmonic potential that 
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is temperature-dependent. Along this line, the problem of dynamical instability is addressed by a 

self-consistent approach under the harmonic approximation,6  which starts with the phonon 

dispersion at static limit as an initial guess and iteratively solve the eigenmodes of the dynamical 

equation. However, several recent studies suggest that care must be taken for strongly 

anharmonic crystals where the PES should be expanded to the third and even the fourth order.7-9 

Therefore, the accuracy of the force constants could be significantly affected by the artificial 

truncation of the Taylor expansion of the PES.8 On the other hand, Classical molecular dynamics 

can naturally incorporate the phonon anharmonicity of arbitrary order without truncating the 

Taylor expansion of the PES, but it suffers from the inaccuracy of the empirical potential field as 

limited by the fitting with the empirical functional forms.10-12 

 To overcome the challenges of both the first-principles lattice dynamics and the molecular 

dynamics simulations using empirical potential, machine learning (ML) based regression 

algorithms provide an elegant solution to reconstruct the ab-initio PES. Instead of decomposing 

the PES to simple empirical functional forms, the ML algorithm is totally data-driven,  which fits 

the PES by “learning” the correlation between the atomic configurations and the resulting energy 

from the ab-initio data.13 Since the ML algorithm does not assume any form of functions when 

fitting the ab-initio PES, it does suffer from the error caused by artificially truncating the Taylor 

expansions of the PES. In principle, the ML algorithm includes all orders of anharmonic terms in 

the PES.  Such data-driven feature of ML algorithms also resulted in a significantly improved 

accuracy of the ML-based potential compared with the empirical potentials, because it bypasses 

the difficulty of decomposing the high dimensional PES to simple functional forms when fitting 

for empirical potentials. Due to these advantages, machine learning algorithms including 

artificial neural networks14, Gaussian process regression, 15 and others16 have been successfully 
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used to model the thermal and mechanical properties in simple crystals such as Si, 17-19 GaN,18 

and graphene,20 as well as complex atomistic structures and processes, such as the amorphous 

carbon,21 lithium ion transport in electrode materials, 22, 23 and  phase-change material GeTe24.  

 Since machine learning algorithms addressed both the problem of truncating expansions of 

PES in first-principles calculations and the inaccuracy problem of the empirical potentials, it 

could be a promising tool to capture the lattice dynamics above 0 K by fitting the PES at elevated 

temperatures. This paper is therefore focused on modeling the phonon renormalization using 

ML-driven potential in Zirconium (Zr) crystal, one of the most classic example of dynamical 

instability. Zr and its alloys are indeed widely used as cladding materials in nuclear reactors.25 At 

room temperature, Zr takes the hexagonal closed packed (HCP) phase and transitions into a body 

centered cubic (BCC) phase at higher temperature, which is dynamically unstable at 0 K.6 Since 

phase stability is usually required to prevent structural failures in nuclear applications, 

understanding the temperature dependent vibrational dynamics of elemental Zr is critical. 

Recently, Zong et al. successfully reproduced the phase diagram of Zr using a potential 

developed by kernel ridge regression algorithm,26 indicating that ML could be a promising tool 

to model lattice dynamics of dynamically unstable crystals. However, their potential has limited 

accuracy for predicting phonon dispersion of both HCP and BCC Zr, with discrepancy of optical 

phonon frequency nearly 2 THz at the Brillouin zone center.26 This is probably because their 

machine learning potential was developed to reproduce phase diagram based on a multi-phase-

learning strategy. The training database therefore contains multi-phase structures with regions of 

phase space beyond thermal vibrations, which is unnecessary for modeling phonons.  As a result, 

the accuracy of phonon dispersions could be compromised.11 It remains unexplored whether such 
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ML potential can be applied to study the temperature-induced renormalization of the soft phonon 

modes in dynamically unstable structures. 

 In this paper, we focused on modeling the temperature effect on phonon dispersions using 

ML potential. Gaussian approximation potential (GAP) model18, 27 based on the Gaussian 

Process Regression algorithm15 is used to fit the PES of both HCP-Zr and BCC-Zr. For each 

phase of Zr, we developed a GAP model which accurately reproduced the energies and 

interatomic forces, the equation of state and the elastic constants derived from first-principles 

calculations. We observed that the instability of the BCC Zr at the static limit originates from the 

double-well shape of the PES, and the BCC structure corresponds to the local maxima of the 

PES. The high temperature BCC structure is stabilized by a stochastic average due to atomic 

vibrations over the two low symmetry minima separated by a low potential barrier. The phonon 

renormalization of the BCC-Zr can therefore be captured by performing molecular dynamics 

(MD) simulations which stochastically samples the PES. Using spectral energy density analysis, 

we have successfully observed that the soft transverse acoustic (TA) phonons of BCC-Zr is 

renormalized to ~ 1 THz at 1188 K.  

 

2. METHODOLOGY 

 Here we briefly review the formalism to use the GAP method for fitting PES and the 

symmetry invariant descriptors for characterizing the atomic configurations in Section 2.A. We 

then discuss the details for generating the database from the first-principles calculations 

including total energies, inter-atomic forces and virial stresses for training the machine learning 

based GAP model in Section 2.B. The training databases are downloadable in supplementary 

materials,28 and the training process is performed using the QUIP package.29 
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A. Fitting Potential Energy Surface using GAP Method 

 To construct the machine learning-driven potential using GAP, the total energy of the 

simulation cell is decomposed into the contributions from each individual atom:  

ܧ ൌ ෍ ௜ሻ௜ࢗሺߝ  (1) 

where ߝሺࢗ௜ሻ is the contribution of energy from atom ݅ , and  ࢗ௜  is the descriptor vector that 

characterizes the local chemical environment of atom ݅, i.e. the configurations of atoms in the 

neighborhood of atom ݅. The local energy contribution ߝሺࢗሻ is given by a linear combination of 

the kernel functions:  

௜ሻࢗሺߝ ൌ ෍ ,௜ࢗሺܭ௝ߙ ௝ሻ௝ࢗ ൌ ෍ ௝௝ߙ௜௝ܭ  (2) 

where the summation over ݆ includes all the atomic configurations in the first-principles database. 

The kernel function ܭ௜௝ ൌ ,௜ࢗሺܭ ௝ሻࢗ  is a nonlinear function that quantifies the degree of 

similarity between the chemical environments described by ࢗ௜  and ࢗ௝ . The vector ࢻ ൌሺߙଵ, ,ଶߙ … , ,௝ߙ … ሻ are the unknown coefficients to be determined using the first-principles data.  

Here we discuss first the determination of the unknown coefficient vector ࢻ, which is also called 

as “training process”, and then briefly discuss the specification of the kernel function ܭ and 

descriptors ࢗ௜. Detailed derivations can be found in refs 30, 31.  

 The database for building the GAP potential is collected into the vector ࢟, which contains the 

results from the first-principles calculations including total energies, inter-atomic forces and 

virial stresses. Another vector ࢿ is introduced to denote the set of local atomic energies with 

components ߝ௝ ൌ ࢟ through ࢿ can be introduced to correlate ࢟ and ࡸ ௝ሻ. Then a linear operatorࢗሺߝ ൌ ௜ݕ is then constructed as follows. If the data entry ࡸ The operator .ࢿTࡸ  in vector ࢟ is the 
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total energy of a certain atomic configuration, then ሺࡸTሻ௜௝ is 1 if the local energy ߝሺࢗ௝ሻ of atom ݆ 

should be included into the summation to find total energy as shown in Eq. (1), otherwise ሺ்ܮሻ௜௝ 

is 0. If the data ݕ௜ is a component of interatomic forces or stresses, then ሺࡸTሻ௜௝ are differential 

operators డడ௫ೕ with respect to atomic coordinate ݔ௝. Using the linear operator ࡸ, the covariance 

matrix ࡷ஽஽ can be constructed to quantify the similarity correlation between any pair of data 

points in the vector ࢟ as:  

஽஽ࡷ ൌ  (3) ࡸேேࡷ்ࡸ

where the subscript ܦ and ܰ denotes the length of ࢟ and ࢿ, respectively. ࡷேே is the covariance 

matrix for the joint covariance matrix for energies with elements ሺࡷேேሻ௜௝ ൌ ,௜ࢗሺܭ  ௝ሻࢗ

corresponding to the atomic configurations in ࢿ. However, computing the full covariance matrix ࡷேே  is expensive since ܰ  can easily approach 105 when the forces and virial stresses are 

included in the database. Therefore, a sparsification method30 is used to reduce the computational 

cost. Instead of computing the full matrix ࡷேே, a representative set containing ܯ atoms (ܯ ا ܰ) 

are chosen from the full set of ܰ atoms randomly, so that the computational cost is reduced by 

dealing with a much smaller covariance matrix ࡷெே between the representative set and the full 

set and the covariance ࡷெெ  of the representative set. Then the unknown coefficients ࢻ ൌሺߙଵ, ,ଶߙ … ,  ெሻ் is calculated as a linear combination of the input data ࢟, which is derived fromߙ

Bayesian probability formula:  

ࢻ ൌ ሺࡷெெ ൅ ெே்ࡷ்ࡸ઩ିଵࡸெேࡷ ሻିଵࡷெேࡸ઩ିଵ࢟ (4) 

where ઩ is a diagonal matrix with diagonal elements the squared uncertainties (ߪ௩ଶ) of the input 

data due to convergence parameters in ab-initio calculations, see Table I.  
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 We now discuss the formalism for the kernel functions ܭሺࢗ,   .ࢗ ᇱሻ and the descriptor vectorࢗ

The descriptor vector ࢗ is used to characterize the structural features of atomic configurations in 

the neighborhood of a certain atom (later referred as local chemical environments), which is 

usually referred as the chemical environment. The descriptor of a dimer molecule is simply the 

bond length between the two atoms. However, in condensed matter systems like crystals, one 

needs to deal with the many body feature of atomic interactions, which makes the choice of 

descriptor much more difficult. One of the most intuitive choice of descriptor for solids is the list 

of atomic positions ሼ࢘௜ሽ௜ୀଵே . However, ሼ࢘௜ሽ௜ୀଵே  is not a good descriptor, because it fails to 

uniquely characterize certain atomic configurations. For example, one can simply generate a 

complete different list by changing the order of atoms in the list, or imposing arbitrary 

rotations/translations to the coordinates, while the new list and the old list corresponds to the 

same atomic structure. A good descriptor should therefore be invariant to permutation, 

translation and rotation operations.27 Recently, Bartok et al. derived the so called SOAP 

descriptor32 that can be used to uniquely characterize and differentiate chemical environments, 

which is chosen as the descriptor in this work. Since the nonlocal metallic bonds in Zr crystals 

are intrinsically many-body interactions, the many-body SOAP descriptor becomes the natural 

choice.  In SOAP, the chemical environment of an atom ݅  is represented by the density of 

neighboring atoms, which is smoothed by a Gaussian function:  

௜ሺ࢘ሻߩ ൌ  ෍ ݁ିห࢘ି࢘೔ೕหమଶఙమೌ ௖݂௨௧൫ห࢘௜௝ห൯௝  (5) 

where ࢘௜௝ ൌ ࢘௜ െ ௝࢘  is the vector connecting atom ݅  and its neighboring atom ݆ ௔ߪ  ,  is 

corresponding to “size” of atom. The function ௖݂௨௧ is a smooth cut-off function: 
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௖݂௨௧ሺݎሻ ൌ ൞ ݎ            ,1 ൏ ௖௨௧ݎ െ ݀12 ൤1 ൅ cos ൬ߨ ݎ െ ௖௨௧ݎ ൅ ݀݀ ൰൨ , ௖௨௧ݎ െ ݀ ൏ ݎ ൑ ݎ    ,௖௨௧0ݎ ൐ ௖௨௧ݎ
 (6) 

where ݎ௖௨௧  is the cutoff radius, and ݀  is the cutoff transition width where the ௖݂௨௧  smoothly 

decays from 1 to 0. Obviously, ߩ௜ only depends on the relative coordinate ࢘௜௝ thus invariant to 

translations, and the summation over ݆  ensured permutation invariance of ߩ௜ . To ensure the 

rotational invariance, the atomic density distribution ߩ௜  is further expanded to a set of 

orthonormal radial basis functions ݃௡ሺݎሻ and spherical harmonics ௟ܻ௠:  

௜ሺ࢘ሻߩ ൌ ෍ ෍ ෍ ܿ௡௟௠௜ ݃௡ሺ|࢘|ሻ ௟ܻ௠ ൬ ࢘|࢘|൰௟
௠ୀି௟௟ழ௟೘ೌೣ௡ழ௡೘ೌೣ  (7) 

The components in descriptor vector ࢗ௜  are then calculated as the power spectrum of the 

expansion coefficients ܿ௡௟௠௜ : 

ሺࢗ௜ሻ௡௡ᇲ௟ ൌ ෍൫ܿ௡௟௠௜ ൯ܿכ௡ᇲ௟௠௜௠  (8) 

After specifying the descriptors, the kernel functions are constructed by inner products of 

descriptor vectors:  

௜௝ܭ ൌ ௪ଶߪ ቤ ௜ࢗ ڄ |௜ࢗ|௝ࢗ ڄ หࢗ௝ห ቤ఍
 (9) 

where the exponent ߞ is a positive integer to improve the sensitivity to different local atomic 

environments, and ߪ௪ଶ  is an overall scaling parameter. From Eq.(5) to Eq. (9), the hyper 

parameters (ߪ௩, ,௔ߪ ,௪ߪ ,௖௨௧ݎ ݀, ,ߞ ݊௠௔௫, ݈௠௔௫ ) are summarized in Table I for constructing the 

descriptors and the kernel functions. Here we choose typical values of ߪ௔, ,௪ߪ ݀, ,௖௨௧ݎ  in the ߞ

literature. 31, 33 The expansion cutoff ݊௠௔௫, ݈௠௔௫  are chosen so that a converged phonon 

dispersion can be obtained with the tolerance in frequency of 0.01 THz.  
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 In summary, the procedure of fitting PES works as follows. The data from first-principles 

calculations are collected into the vector ࢟ first and the coefficient vector ࢻ is then calculated 

using Eq. (4). The kernel functions used to generate covariance matrices ࡷெே,  ெெ are specifiedࡷ

as Eq (5-9). After obtaining the coefficient vector ࢻ , total energies of an arbitrary atomic 

configuration ࢗ  can be calculated using Eq (1-2), which completes the Gaussian process 

regression process.  In the following part, we are going to discuss the details for generating the 

training database, i.e., the vector ࢟ using the first-principles calculations.  

Table I. Hyper parameters for GAP with SOAP kernels. ݎ௖௨௧   5.0 Å݀   1.0 Åߪ௩ for energy   0.001 eV/atomߪ௩ for forces   0.05 eV/Åߪ௩ for virial stress   0.05 eV/atomߪ௪   1.0 eVߪ௔   0.5 Å4݊   ߞ௠௔௫   12݈௠௔௫   12

 

B. Generation of Training Database 

 Since the purpose of this work is to model the temperature effect on phonon dispersion of Zr, 

the database should be constructed with specific emphasis on the phase space region around 

equilibrium that is approachable by thermal vibrations. The developed potential is expected to 
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accurately fit the curvature of ab-initio PES at equilibrium. In addition to the curvature at the 

static limit, the thermal vibrations would sample a wider region of the PES in the phase space, 

which is essentially the physical origin for phonon dispersion renormalization. Therefore, the 

training database should not only include responses to perturbations of the equilibrium structure 

such as strains and atomic displacements, but also snapshots of thermal vibrations at high 

temperatures. In order to avoid the potential fitting unnecessary phase space regions beyond 

thermal vibrations, we separately train the potential for each phase (HCP and BCC) of Zr studied 

in this work to ensure the accuracy of phonon dispersions. For both HCP and BCC Zr, the 

databases are constructed as follows.  

Database 1 is used to train the GAP model in the descriptor space around the equilibrium 

geometry and the mechanical response to bulk strains. Self-consistent field (SCF) calculations 

are performed with different strain tensors with distortion parameters up to 4% imposed on the 

simulation cell. The symmetry-irreducible strain tensors for the hexagonal lattice and the cubic 

lattice are specified in ref. 34 and ref. 35 , respectively. The size of the simulation cells for HCP-Zr 

and BCC-Zr are specified in Table II.  Database 1 includes forces on atoms, total energies and 

virial stress on the simulation cell.  

 Database 2 is used to teach the GAP model with harmonic and anharmonic force constants 

at different volumetric strains. First, simulation cells of HCP-Zr and BCC-Zr are constructed 

with uniform strains on each lattice constant from -4% to 4% with the step of 1%. In each 

supercell with strains, small displacements (0.03 Å) are imposed to the irreducible atoms 

according to the space groups using the Phonopy package36 and ShengBTE package37. SCF 

calculations are then performed for each perturbed supercell with strains and displacements, so 

that the total energies, forces, and virial stresses at the perturbed states are recorded.  
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  Database 3 provides the information of chemical environments and PES above 0 K. ab-

initio molecular dynamics (AIMD) simulations were performed at different temperatures to 

generate snapshots of atomic configurations for both BCC and HCP Zr. At each temperature, 

1000 snapshots of atomic configurations are generated with AIMD using a time step of 1 

femtosecond. Total energy and forces are used as training data quantities. 

 All the training data in the databases is generated by the density functional theory (DFT) 

based first-principles calculations using the Vienna Ab-initio Simulation Package (VASP).38, 39 

Since the goal is to capture the effect of temperature on phonon dispersion (renormalization), the 

training database should include DFT data at both 0 K and at finite temperatures. All DFT 

calculations are performed using PBE functional40 with projector augmented wave (PAW) 

method.38, 39 For all DFT simulations, the cutoff energy is chosen as 300 eV.6 For both HCP 

phase and BCC phase of Zr, the following databases were generated to train the GAP model with 

chemical environments. Table II summarizes the detailed parameters in DFT and AIMD 

calculations, including total number of atoms in all AIMD snapshots and DFT calculations (ܰ), 

number of representative set of atoms (ܯ), temperature ܶ, dimensions of supercells, convergence 

threshold of SCF calculations (EDIFF tag in VASP package).  
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Table II. Detailed parameters for DFT calculations to generate training databases. 

HCP Zr 

T (K) Supercell k-mesh EDIFF ܯ ܰ 

Database 1 1350 20 0 3×3×2 7×7×7 1e-10 

Database 2 4266 65 0 3×3×2 7×7×7 1e-10 

Database 3 72000 750 100, 300 3×3×2 3×3×3 1e-6 

BCC Zr 

T (K) Supercell k-mesh EDIFF ܯ ܰ 

Database 1 1458 20 0 3×3×3 7×7×7 1e-10 

Database 2 2214 45 0 3×3×3 7×7×7 1e-10 

Database 3 54000 750 100, 300, 1200 3×3×3 3×3×3 1e-6 
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3. RESULTS AND DISCUSSIONS 
  

 This section discusses the application of GAP to model the phonon renormalization in Zr at 

elevated temperature. Before that, the accuracy of the GAP model to reproduce DFT calculations 

should be examined. As shown in Figure 1, the GAP prediction of total energies and components 

of forces (ܨ௜௫, ,௜௬ܨ  ௜௭ of atom ݅ along three Cartesian axes) are compared with the original AIMDܨ

simulation, which are corresponding to 200 equally spaced snapshots randomly selected from the 

1000 AIMD snapshots at 300 K. The GAP model is observed to reproduce the energies from 

AIMD calculation with the root mean squared error (RMSE) of 0.0002 eV/atom for the HCP 

phase and 0.0003 eV/atom for the BCC phase. The RMSE of the atomic forces between GAP 

model and AIMD simulations is 0.025 eV/Å for the HCP phase and 0.053 eV/Å for the BCC 

phase. The comparisons indicate good fitting of the ab-initio PES and its derivatives.  

 

Figure 1. (a-b). Comparison of (a) energy and (b) inter-atomic forces between GAP and AIMD 
calculations of the HCP-Zr.  (c-d). Comparison of (c) energy and (d) force components between 
GAP and AIMD calculations of the BCC-Zr.  
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 In addition to accurately reproduce the training observables (energies and forces), the GAP 

model is also expected to reproduce the thermal and mechanical properties of the Zr crystals.  

Figure 2a shows the equation of state ܧ ൌ  ሺܸሻ and Figure 2b shows the symmetry-irreducibleܧ

elastic constants ܥ௜௝ for both hcp and BCC-Zr. Excellent agreement is achieved in the equation 

of state as well as the elastic constants. The instability of the BCC-Zr is manifested in the elastic 

constants. For a crystal to be energetically stable, the Born criteria requires the ܥ௜௝ tensor to be 

positive-definite. In the case of BCC structure, the stability criteria requires ܥଵଵ,  ସସ toܥ  ଵଶ andܥ

satisfy ܥଵଵ െ ଵଶܥ ൐ ସସܥ ,0 ൐ 0 and ܥଵଵ ൅ ଵଶܥ2 ൐ 0.41 Clearly the criteria ܥଵଵ െ ଵଶܥ ൐ 0 is not 

satisfied as shown in the right panel of Figure 2b. Besides the elastic constants, we also compare 

the phonon dispersions predicted by the GAP model of both HCP-Zr and BCC-Zr at the static 

limit with the inelastic neutron scattering (INS) measurements3, 42 and the DFT calculations, as 

shown in Figure 2c and Figure 2d. For the HCP phase, there is only small difference in the 

phonon dispersion, while larger discrepancy is observed for the soft modes (plotted as imaginary 

frequencies) of the BCC phase, which is likely due to the larger RMSE of energy and forces in 

for the BCC phase as shown in Figure 1b and 1d.  
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Figure 2. (a) Equation of state (energy v.s. volume) of HCP-Zr and BCC-Zr calculated by GAP 
and DFT. (b) Symmetry-irreducible elastic constants of HCP-Zr (left panel) and BCC-Zr (right 
panel). The experimental elastic constants of HCP-Zr is from ref. 43  (c) Phonon dispersion of 
HCP-Zr. INS measurement data is taken from ref. 42 (d) Phonon dispersion of BCC-Zr. INS 
measurement data is taken from ref. 3   
 

 To illustrate the origin of the soft phonon modes, the PES is plotted in the normal coordinates 

for the two lowest modes at the high symmetry point N in the Brillouin zone. In order to obtain 

the shape of the PES around the equilibrium position, small displacements are imposed along the 

eigenvectors for the lowest soft TA mode with a scaling factor ܳଵ and the second lowest TA 

mode with a scaling factor ܳଶ and the PES as a function of scaled coordinates  ܧ ൌ ,ሺܳଵܧ ܳଶሻ is 

plotted as Figure 3a. It is clear that the PES shows a double-well shape. The dynamic instability 

of the BCC structure originates from the fact that the equilibrium state ሺܳଵ, ܳଶሻ ൌ ሺ0,0ሻ is a 
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saddle point of the PES. Along the ܳଵ direction, the equilibrium state is the local maxima of the 

double-well as shown in Figure 3b, while it is the local minima along the ܳଶ direction. As a 

result of the negative local curvature డమாడொభమ ൏ 0, the eigenvalue for the lowest TA mode ߱ଶ is also 

negative when the lattice dynamics simulations are performed at the static limit, so that the 

imaginary phonon frequency is observed in Figure 2d. At high temperature, the normal mode 

oscillator is hopping between the two potential wells, and the equilibrium position corresponding 

to the BCC structure is indeed the dynamical average between the two local minima. In addition, 

due to the complicated multi-minimum shape of the PES of the BCC phase, the fluctuations of 

AIMD energy and forces could also be larger compared with the stable HCP phase even at the 

same temperature, which results in the larger RMSE when reproducing the AIMD energies and 

forces. 

 

 



19 
 

Figure 3. (a) PES along eigenvectors at high symmetry point N. ܳଵ  and ܳଶ  correspond to 
dimensionless normal coordinate of the two TA modes with the order of increasing frequency.  (b) 
PES along the ܳଵ direction with ܳଶ ൌ 0. (c) PES along the ܳଶ direction with ܳଵ ൌ 0.   
 

 With the idea that the BCC structure is stabilized through dynamical average of the low-

symmetry minima of the PES, the phonon dispersion should be renormalized to real frequency 

values at high temperature when the PES is dynamically sampled. MD simulations are therefore 

performed to stochastically sample the PES, using the machine learning driven GAP potentialas 

we have developed above.  Phonon dispersion is then calculated by SED analysis44, 45 which 

maps the vibrational energy distribution in wave-vector space and frequency domain (ࢗ, ߱ሻ.  

Here the SED distribution is calculated by summing the Fourier transform of the amplitudes of 

vibrational velocities: 

߶ሺࢗ, ߱ሻ ൌ ଴߬ߨ14 ௖ܰ௘௟௟௦ ෍ ෍ ݉௕ อන ෍ ሶݑ ఈሺࡾ, ܾ, ሻݐ ڄ expሺ݅ࢗ ڄ ࡾ െ ሻݐ߱݅ ࡾݐ݀
ఛబ଴ อଶ

௕ఈୀ௫,௬,௭  (10) 

where ௖ܰ௘௟௟௦ is the total number of unit cells, ࡾ is the lattice vector and ܾ is the index of basis 

atoms in the unit cell, ݑሶ ఈሺࡾ, ܾ, ߙ ሻ is the velocity component along theݐ ൌ ሺݔ, ,ݕ  ሻ axis of theݖ

atom (ࡾ ,b) at time ݐ . The quantity ݀ݐ  (=1 fs)  is the time step between neighboring MD 

snapshots, and ߬଴, the total integration time is selected as 1 ns, and longer ߬଴ is found not to 

affect the SED distributions. For the HCP phase, SED along the Γ െ A direction and the Γ െ M 

direction are calculated, using supercells containing 3×3×50 primitive cells and 50×3×3 

primitive cells, respectively. For the BCC phase, SED is extracted along the Γ െ N path using a 

supercell containing 50×3×3 primitive cells.  Figure 4a-b shows the SED of the HCP-Zr at 100 K 

and 300 K. For the HCP phase, the most pronounced effect of non-zero temperature is the 

broadening of the SED lines due to stronger phonon scattering at higher temperature. Figure 4c 

shows the phonon dispersion of the BCC-Zr at 1188 K. The SED analysis has successfully 
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captured the renormalization of the soft TA mode in BCC-Zr which is now renormalized to ~1 

THz at 1188 K. Figure 4d shows the SED as a function of frequency at (0 ,0 ,0.3)=ࢗ along the Γ െ N  direction. The broad SED peak observed near 1 THz is agreeing well with INS 

experiments.3  

 

 

Figure 4. (a-b) SED of HCP-Zr at (a) 100 K and (b) 300 K. (c) SED of bcc-Zr at 1188 K. (d) 
SED as a function of phonon frequency at ࢗ ൌ (0.3,0,0). The dashed lines indicate the frequency 
measured by INS in ref. 3 at 1188 K.    

 



21 
 

  



22 
 

4. SUMMARY 

 In summary, we studied the temperature effect on phonon dispersions of the HCP phase and 

the dynamically unstable BCC phase of Zr, using molecular dynamics simulation with machine 

learning-driven Gaussian approximation potential. The GAP model accurately reproduces 

energies and interatomic forces corresponding to the atomic configurations of the AIMD 

snapshots as well as the mechanical properties of Zr. The dynamical instability of BCC Zr is 

captured by the GAP model with the soft phonon modes in the dispersion relationship as well as 

the non-positive-definite elastic constant tensor. The instability of the BCC structure is observed 

to originate from the double-well shape of the PES, and the BCC phase becomes stable at high 

temperature as a result of dynamical average as the normal mode oscillators hopping between the 

two local minima of the PES. The stabilization of BCC Zr is captured by examining the phonon 

dispersion at high temperature using MD simulations and SED analysis. In addition to the 

broadening effect at elevated temperature, the SED analysis also captures the phonon 

renormalization of the soft TA mode in BCC crystal, with the frequency renormalized to ~ 1THz 

at 1188 K, agreeing well with the INS experiments. This work for the first time approaches the 

problem of phonon renormalization in dynamically unstable crystals using molecular dynamics, 

showing that machine learning-driven potential is a promising tool for modeling high 

temperature lattice dynamics and thermal properties. 
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