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We introduce configuration space as a natural representation for calculating the mechanical re-
laxation patterns of incommensurate two-dimensional (2D) bilayers. The approach can be applied
to a wide variety of 2D materials through the use of a continuum model in combination with a
generalized stacking fault energy for interlayer interactions. We present computational results for
small-angle twisted bilayer graphene and molybdenum disulfide (MoS2), a representative material
of the transition metal dichalcogenide (TMDC) family of 2D semiconductors. We calculate accurate
relaxations for MoS2 even at small twist-angle values, enabled by the fact that our approach does not
rely on empirical atomistic potentials for interlayer coupling. The results demonstrate the efficiency
of the configuration space method by computing relaxations with minimal computational cost. We
also outline a general explanation of domain formation in 2D bilayers with nearly-aligned lattices,
taking advantage of the relationship between real space and configuration space. The configuration
space approach also enables calculation of relaxations in incommensurate multilayer systems.

Layered materials consist of 2D atomically thin sheets
which are weakly coupled by the van der Waals force.
For understanding the electronic and mechanical prop-
erties of multilayered structures of such materials, it
is useful to view them as a series of conventional
crystals with a weak perturbative interaction between
sheets1. Bilayer systems with slight lattice misalignment
due to differing lattice constants or relative twist-angle
are of interest in optical and transport experiments2–5.
In small-angle twisted bilayer graphene (tBLG) and
graphene-hBN bilayers, highly regular domain-wall pat-
terns have been observed experimentally and studied
theoretically6–9 and have been attributed to the general
strain-soliton phenmenon10–12. The appearance of do-
main walls is the result of atomic relaxation which serves
to minimize the additional energy due to misalignment.
Under electric-field gating the domain walls give rise to
interesting topologically-protected edge states13–18. Un-
derstanding this relaxation and predicting its behavior in
other nearly-aligned bilayers may be useful in the search
for topological edge states and quantum information ap-
plications.

We study three different bilayer systems, graphene and
the two high-symmetry alignments of MoS2, which is a
standard representative of the transition-metal dichalco-
genide family of 2D materials. Bilayer graphene and
graphene-hBN systems have been modeled with a con-
tinuum approach8,19,20, where the discrete atomic posi-
tions are replaced by a continuous field of displacements.
These real space continuum approaches work well in the
case of a twisted bilayer because any bilayer moiré pat-
tern becomes periodic in the continuum limit. However
not every incommensurate system is periodic in a con-
tinuum limit. As an example, consider a three layer sys-
tem which is mutually incommensurate (e.g. all three
of the layers’ unit cells are linearly independent). Let-

ting Γij be the bilayer moiré cell generated by layers i
and j, then Γ12 and Γ23 are not guaranteed to form a
periodic supercell. This is not a statement about atom-
istic commensurability, but rather commensurability of a
pure continuum model. From this perspective, we argue
that existing continuum models developed for twisted bi-
layers may not be easily extended with full generality to
multilayer systems.

To address this problem, we revisit the bilayer con-
tinuum relaxation problem but introduce a different ap-
proach: consider minimizing total energy over a collec-
tion of all possible local atomic environments, which we
call configuration space21. In brief, every atomic site in
a real space bilayer structure has a corresponding local
environment that describes the relative stacking disreg-
istry. A construction of configuration space is outlined in
Fig. 1, and is explained more precisely later in the text.
We introduce the formalism of configuration space here
and discuss some of the challenges of the multilayer prob-
lem, but leave the multilayer implementation to a future
work. We find that in the twisted bilayer case the config-
uration space methodology reduces to existing real space
continuum models up to a change of variables while pro-
viding a different physical insight. The bilayer relaxation
patterns in configuration space show high energy stack-
ing environments “flowing” to low energy, a phenomenon
that is not as obvious in real space relaxation patterns.

To begin, we summarize the common continuum ap-
proach to bilayer relaxation in real space before gener-
alizing it for configuration space. It is convenient to
separate the energy into interlayer (stacking) and in-
tralayer (strain) energy, as the two layers weakly interact
with one another. We will assume smooth and slowly-
varying relaxation in each layer, described by a position-
dependent displacement vector field Ui(r) where i in-
dexes the layer number. We will only consider in-plane
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FIG. 1. How to map the atomic degrees of freedom of a moiré
cell in real space to configuration space. Two triangular lat-
tices (red and blue) are twisted relative to one another, form-
ing a moiré pattern (dashed black line). Three blue atoms
are highlighted in cyan, purple, and green, and their stacking
relative to the underlying red lattice is shown in the boxed
insets. These environments are described by vectors that lie
within the unit-cell of the red layer, allowing one to translate
every atom in real space to a specific point b in configuration
space.

relaxation, which is appropriate for a bilayer encapsu-
lated in a stiff substrate, although the method can be
extended for out-of-plane relaxations as well. Such en-
capsulated systems show improved optical and electronic
transport properties22 and are of great experimental in-
terest.

Under these assumptions, the intralayer energy for a
layer is well described by a linear isotropic continuum
approximation

Eintra = lim
R→∞

1

|BR|

∫
BR

1

2
E (∇Ui) Ci E (∇Ui) dr

= lim
R→∞

1

|BR|

∫
BR

1

2

[
Ki(∂xUix + ∂yUiy)2+ (1)

Gi((∂xUix − ∂yUiy)2 + (∂xUiy + ∂yUix)2)

]
dr

where E(∇Ui) = 1
2 (∇Ui+∇UT

i ) is the 2×2 infinites-
imal strain tensor and BR is a sphere of radius R used to
normalize the integral. The fourth-order stiffness tensor
C depends on the two parameters K (bulk modulus) and
G (shear modulus) which represent the energy cost asso-
ciated with strain. This approximation does not capture
short-range symmetry-breaking effects like Peierls distor-
tions, but can describe the long-range domain-walls ob-
served in twisted bilayer graphene.

For the interlayer energy, we use the generalized stack-
ing fault energy (GSFE) surface. This concept was orig-
inally used to describe the energy of defects in bulk
crystals23–26 and has recently been employed for explain-
ing relaxation in graphene and hBN bilayers27,28. The
GSFE provides the interlayer energy per unit cell and
depends only on the relative stacking between two succes-
sive layers. We denote this functional by VGSFE, with the

initial local stacking configuration between layers given
by the 2D vector b(r). We can obtain the stacking af-
ter relaxation by adding in the displacement fields Ui(r),
giving a normalized interlayer energy:

Einter = lim
R→∞

1

|BR|

∫
BR

VGSFE(b(r) +U1(r)−U2(r))dr.

(2)
These intralayer and interlayer couplings are ob-

tained from total-energy calculations based on density-
functional theory (DFT) with the Vienna Ab initio Sim-
ulation Package (VASP)29,30. A unit-cell with basis vec-

tors a1 = a(1, 0) and a2 = a(
√

3/2, 1/2) is used, where
the lattice parameter a for graphene is 2.47 Å and for
MoS2 is 3.18 Å . For the intralayer coupling, isotropic
and anisotropic strain are applied to an optimized mono-
layer unit cell, distorting the x and y axes by ±1.5% in
steps of 0.3%. We obtain K and G of Eq. (1) by linear
fitting of the ground-state energy dependence on this ap-
plied strain. For MoS2, the sulfur atom heights for each
strain sample are relaxed while calculating the ground-
state energy.

For the interlayer GSFE, we use previously reported
DFT results for bilayer graphene stacking27. In MoS2,
the GSFE was parameterized by evaluating the energy
on a grid of points for an MoS2 bilayer, with the van der
Waals force implemented through the vdW-DFT method
using the SCAN+rVV10 functional31,32. The in-plane
positions of all atoms in the bilayer are fixed but they
are allowed to relax in the out-of-plane direction. The
top layer is shifted relative to the bottom layer over a
9 × 9 grid in the unit cell to sample the GSFE energy
landscape. To fit the VGSFE to this set of values, we use
a form similar to that used by Zhou et. al.27, but with
modifications that better highlight how the symmetry of
the bilayer affects the GSFE. First, we define two pa-
rameters, (v, w) ∈ [0, 2π] × [0, 2π], which describe b(r)
in terms of the unit-cell vectors. For the bilayers studied
here, v and w are related to the stacking vector (bx, by)
by

(
v
w

)
=

2π

α

[
1 −1/

√
3

0 2/
√

3

](
bx
by

)
. (3)

The GSFE can then be written in a relatively simple
form in the (v, w) basis:

VGSFE = c0 + c1(cos v + cosw + cos (v + w))

+ c2(cos(v + 2w) + cos(v − w) + cos(2v + w))

+ c3(cos(2v) + cos(2w) + cos(2v + 2w))

+ c4(sin v + sinw − sin(v + w)) (4)

+ c5(sin(2v + 2w)− sin(2v)− sin(2w))

with the coefficients c0, . . . , c5 given in Table I. For
hexagonal systems like graphene that have symmetry be-
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FIG. 2. Examples of misaligned lattices. Top panels show
bilayers whose lattice constants differ by factor of λ while the
bottom panels show bilayers with relative twist angle θ. The
left panels show misaligned structures with small moiré length
(moiré wavelength given by the black arrow), while the right
panels show nearly-aligned structures with large moiré length.

tween the AB and BA stackings, the coefficients of the
sine terms are constrained to be zero as the GSFE func-
tional must be even around the origin (AA stacking).

There is always a lowest-energy stacking between lay-
ers, and relaxation should distort the layers to maximize
the area of that stacking (or stackings, in the case of
degenerate ground states). Examples of bilayers under
lattice mismatches (λ) and twists (θ), are displayed in
Fig. 2. When the lattices are nearly alligned, only small
amounts of lattice straining are necessary to form a large
area of uniform stacking. As the misalignment increases
the strain needed for creating uniform stacking grows
larger, making domain formation less favorable. To un-
derstand the stacking energy landscape of layered mate-
rials, we show the GSFE for graphene and the two high-
symmetry stacking orientations of MoS2 (0◦ and 180◦

rotation between layers) in Fig. 3. The two different ori-
entations in bilayer MoS2 are due to the presence of dif-
ferent atomic species (Mo and S) on the two sub-lattices
of the honeycomb lattice. The 0◦ MoS2 bilayer has two
identical low-energy stackings, similar to graphene, while
the 180◦ MoS2 bilayer has only one low-energy stack-
ing. Symmetry arguments can predict the critical points
of the GSFE, and their relative energies can be ranked
by comparing interlayer distances between atoms at each
stacking. Our use of the GSFE for interlayer interactions
is expected to be more accurate than empirical atomistic
potentials when they exist (for materials like graphene

FIG. 3. (a): The Generalized Stacking Fault Energy (GSFE)
evaluated on stackings sampled along the unit-cell diagonal
for three different bilayers. (b),(c),(d): Side-views of the
ground-state stacking orientation for each bilayer, and corre-
sponding GSFE dependence on configurations in the unit-cell
Γ. The color scale in each case is chosen to make the saddle
point (SP) energy white or bright yellow.

and hBN)33, and allows for modeling of bilayers where
no such potentials exist to our knowledge (e.g., MoS2).

This modeling strategy works best when the twist an-
gle is close to the one used to fit the GSFE (0◦) and we
do not recommend using the functionals provided here
for studying relaxations at angles larger than 10◦. For
larger angles, one should find a commensurate supercell
that is closer to the angle of interest, and then treat the
corresponding bilayer supercell as an effective untwisted
unit cell. The strain energy and GSFE functional for
this enlarged cell can be readily obtained. If the super-
cell has many atoms, the GSFE is likely very smooth and
does not lead to appreciable domain formation. However,
near angles that form small supercells, such as 21.78◦

for twisted honeycomb lattices, the GSFE may still have
enough structure to show domain formation. We leave
such investigation to future work.

Since the stacking configurations of untwisted layers
gives a clear picture of the bilayer energetic landscape,
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Material K G c0 c1 c2 c3 c4 c5
Graphene 69,518 47,352 6.832 4.064 -0.374 -0.095 0.000 0.000

0◦ MoS2 49,866 31,548 27.332 14.02 -2.542 -0.884 0.000 0.000

180◦ MoS2 49,866 31,548 30.423 12.322 -2.077 -0.783 2.397 0.259

TABLE I. Coefficients for the strain energy and Fourier components of the GSFE in bilayer graphene and the two high-symmetry
forms of bilayer MoS2. All values are in units of meV per unit-cell.

framing the relaxation problem entirely in terms of con-
figurations may prove useful. The collection of all local
stackings in an incommensurate system forms a dense
compact domain called configuration space34–36, and we
now outline its construction. We define 2×2 matrices A1

and A2 as the Bravais lattice vectors of layer 1 and layer
2, whose unit-cells are labeled as Γ1 and Γ2. Any point
in the Bravais lattice of layer 2 is indexed by an integer
tuple, n ∈ Z2, and it will have position r = A2n. We can
compute its stacking configuration relative to layer 1 by
b2 : A2Z2 → Γ1 explicitly by b2(A2n) = A2n = r(n).
Although the function b2 lacks an explicit modulation in
its definition, it is implicitly periodic over the torus Γ1.
As defined, b2 would vary quickly on the scale of the unit-
cell if r is formally substituted for r(n). This is not de-
sirable, so instead we smoothly interpolate b2(r(n)) be-
tween lattice points. We define lattice mismatch matrices
that encode the effective moiré pattern: 1−A1A

−1
2 = Aδ2

and 1−A2A
−1
1 = Aδ1, which yield interpolated mappings

b2(A2n) = (1−A1A
−1
2 )A2n

=⇒ b2(r) ≡ Aδ2r, b1(r) ≡ Aδ1r
(5)

where bi(r) will vary slowly on the atomic length scale
and should be considered modulo the unit cell torus of
the opposite layer. There is also a relationship between
atomic displacements in configuration space, ui(bi), and
those in real space:

Ui(r) = ui(Aδir) =⇒ ∇Ui = ∇uiAδi. (6)

Each ui is periodic over the unit cell of the opposite
layer, e.g. u1 is periodic on Γ2. In this way ui rep-
resents a regular sampling of the atoms that make up
layer i, whereas conventional continuum real space ap-
proaches sample Ui(r) on a mesh of positions. This dif-
ference allows ui to accurately reproduce incommensu-
rate relaxed atomistic structures where purely real space
approaches are ill-suited. Aδi can be interpreted as a
map from real space to configuration space, and A−1

δi as
the inverse map. This transformation has been done in
previous work for studying electronic structure in incom-
mensurate materials34,37, and here it allows for relaxation
of incommensurate bilayers.

To calculate relaxation for twisted bilayers in config-
uration space, the energy functionals must be defined

over the configuration space {Γ1,Γ2}. As each Γi is the
unit cell torus independent of twist angle, the configu-
ration space remains periodic and compact even when
the bilayer is incommensurate in real space. Throughout
the energy functionals, the real space displacement fields
Ui(r) must be replaced by the configuration space dis-
placement fields ui(bi). This substitution assumes that
if two atoms on layer 2 have similar stacking relative to
layer 1, then they must have similar relaxation. For two
arbitrary lattices, with the GSFE computed over Γ1, the
total energy is given as:

Etot(u1,u2) ≡ Einter(u1,u2) +

2∑
i=1

E
(i)
intra(∇ui)

E
(i)
intra(∇ui) =

∫
Γĩ

1

2
(Ec(∇ui) Ci Ec(∇ui)) dbĩ

Ec(∇ui) =
1

2

(
∇uiAδi +ATδi∇uTi

)
(7)

Einter(u1,u2) =

∫
Γ1

VGSFE(b2 + u2(b2)− ũ1(b2))db2

ũ1(b2) ≡ u1(−A2A
−1
1 b2)

where Γĩ is the unit cell of the layer opposite layer i.
The total interlayer coupling is described by a single inte-
gral evaluation of VGSFE over the configuration space of
only one layer. This works well if the two layers have sim-
ilar unit cells. Alternatively, the interlayer coupling can
be split into two equal components of 1

2VGSFE for each
Γi. This introduces additional complexity in the twisted
case, as the relative orientations between the twisted Γi’s
needs to be taken into account.

To illustrate how to transform the relaxation problem
to configuration space, we focus on a bilayer system with
small twist-angle θ. Letting layer 2 be rotated counter-
clockwise by θ relative to layer 1 gives A2 = RθA1 with
Rθ the conventional rotation matrix. ThenAδ1 = 1−R−1

θ
and Aδ2 = 1−Rθ, and we can expand the rotation matrix
to first order in θ to get bi(r):

b2(r) ≈ θ

(
−ry
rx

)
, b1(r) ≈ θ

(
ry
−rx

)
. (8)

Substituting this approximation for Aδi into Eq. (7)
also shows how the gradient of ui contributes to the
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strain-energy Ec with a factor of θ. This scaling predicts
that as θ → 0, eventually ui can balance the intralayer
and interlayer energies by forming strain solitons. The
width of the domain walls in configuration space should
diminish like θ, resulting in constant real space width.

To further simplify the model in the case of twisted
bilayers, notice that VGSFE depends only on the difference
of atomic displacements ∆u ≡ u2 − ũ1. If we consider a
bilayer system where layer 1 is frozen and only layer 2 can
relax, we have u1 = 0 and ∆u = u2. As ∆u minimizes
the total stacking energy, when relaxing both layers we
want to obtain a similar ∆u while minimizing the strain
energy. The two unit cells are nearly identical, so the
true solution is one that splits ∆u equally between the
two layers. This can be done by setting a single u field
u ≡ u2 = −ũ1 over a single Γ ≡ Γ1, leading to a total
energy functional:

Etot(u) =
1

|Γ|

∫
Γ

[
2Eintra(∇u) + VGSFE(b+ 2u)

]
db. (9)

For the three bilayers studied here, there is also a
mirror-plane symmetry along the vertical plane that bi-
sects the twist-angle, which we will label S. This sym-
metry gives the relation u = Su(Sb) as an additional
constraint during any optimization procedure. We min-
imize the total energy given in Eq. (9) with a standard
optimization routine implemented in the Optim Julia
package38 after uniformly sampling configuration space
with a discrete Fourier basis of plane-waves. This yields
the smooth displacement field in configuration space cor-
responding to the ground state of the relaxed bilayer sys-
tem. The result can then be mapped to real space for use
in other applications (for example, electronic structure
calculation) with Eq. (6).

In summary, this method makes four approximations
to arrive at a greatly simplified configuration space con-
tinuum model: (1) the in-plane and interlayer coupling
energies are well fitted by the strain moduli and GSFE
functionals of the untwisted bilayer; (2) short range
symmetry-breaking relaxations are ignored; (3) the re-
laxation pattern for any configuration can be smoothly
interpolated by sampling nearby configurations (e.g. a
smooth and quasi-periodic deformation field in space);
(4) the bilayer is made of homogeneous layers, allowing
for the relaxation of both layers to be related to a single
layer’s relaxation by symmetry (only needed if one wishes
to simplify the energy functional).

To illustrate the general nature of domain formation in
incommensurate graphene and TMDC bilayers, we wish
to show domain-wall formation on a scale where both the
unit-cell and the moiré supercell are easily visible. We
exaggerate the interlayer coupling by increasing VGSFE

by a factor of 100 for θ = 3◦ twisted bilayers of graphene
and 180◦ MoS2 in Fig. 4. For both systems, relaxation
causes the regions of lowest energy stackings to expand
in configuration space and the higher energy stackings

to reduce in size, producing thin lines and nodes. In
real space, this means the bilayers form large domains of
uniform stacking surrounded by thin solitons which inter-
sect at “pinned” high-energy stacking nodes. For bilayer
graphene and bilayer 0◦ MoS2, there are two identical
ground state stackings, commonly refered to as the AB
and BA stackings. These stackings are equal in energy
and compete to create a tiling of AB and BA triangu-
lar domains as observed in dark-field imaging studies of
twisted bilayer graphene6,9. For 180◦ bilayer MoS2, there
is only one low-energy stacking. It expands and causes
the formation of hexagonal domains.

Furthermore, due to the anti-symmetric nature of b(r)
in Eq. (8), ∇ × U(r) ≈ θ (∇ · u(b)), that is, the local
change in the real space twist angle (∇ ×U) caused by
the relaxation can be computed by taking the divergence
of the configuration space displacement field. The low-
energy stackings have ∇ · u < 0, which implies an “un-
twisting” of those areas in real space. Meanwhile, the
high energy stackings have ∇ · u > 0, which implies ad-
ditional twisting. This is why the domains show almost
no local twist angle in real space, while the high-energy
nodes are twisted more. We find that the local twist angle
at the AA stacking in twisted bilayer graphene converges
to 1.7◦ as the global twist angle approaches 0◦, which
agrees with the results of a recent real space approach9.

At small twist angles, large domains that have 0◦

local twist angle can appear. This is related to the
commensurate-incommensurate transition that occurs in
nearly-aligned bilayers, such as the graphene-hBN sys-
tem with lattice size mismatch7. The commensurate-
incommensurate transition, which would cause a discon-
tinuity in our configuration space model, has been stud-
ied rigorously but is only well understood in the one-
dimensional case under certain assumptions (the Frenkel-
Kontorova model)39. A discussion of how our method re-
lates to the Frenkel-Kontorova model is presented in our
formal study of the mathematical problem35.

To show that these phenomena are general, we cal-
culate relaxed structures for various twist angles in Fig.
5. We note that Ui(r) is aperiodic and captures incom-
mensurate structure even though u(b) is periodic on Γ.
Consequently, the moiré domains in Fig. 4 and 5 can-
not be obtained from a supercell approach since they do
not exactly repeat. The relaxations for graphene and 0◦

MoS2 are almost indistinguishable, except the twist an-
gle needed in 0◦ MoS2 is roughly twice what is needed
in graphene for a comparable relaxed structure. For all
three structures, the strain solitons and nodes shrink in
configuration space proportionally to the twist-angle. As
translating the relaxation in configuration space to real
space involves a factor of θ−1, the shape of solitons and
nodes in real space are unaffected by the twist angle at
sufficiently small angles. This is expected, as there is an
optimal width for a strain soliton. As the twist angle
decreases the walls do not change in width, but only in
their length as the domains become larger.

When considering multilayer systems, where the num-
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FIG. 4. Relaxation for a graphene and 180◦ MoS2 bilayer with a 3◦ relative twist. Interlayer coupling was amplified by a
factor of 100 for easy visualization. (a): The graphene displacement field u over Γ. (b): VGSFE(b+ 2u1(b)) over Γ that shows
the moiré pattern in configuration space for graphene. (c): The graphene atomistic positions after applying the displacement
fields. (d),(e),(f) are the corresponding plots for MoS2

FIG. 5. Configuration relaxation results for twisted bilayers with five incommensurate twist angles each. The left panel of each
column shows VGSFE(b + 2u(b)) over Γ (the relaxation pattern in configuration space) and the right panel shows VGSFE(r)
(over real space).

ber of layers p is greater than two, this formalism gener-
alizes but produces a more difficult PDE. In a p-layered
system, each layer has p − 1 unique configurations with
respect to other layers. Therefore, the configuration
space is a 2(p − 1) dimensional torus21. The configura-
tion space can still be sampled using a uniform mesh,
and the interlayer stacking energy is easy to evaluate
once one has defined the proper interpolation scheme

given the system geometry. The intralayer strain en-
ergy is less straightforward as the in-plane connections
between lattice sites span a 2-dimensional submanifold
of the 2(p− 1)-dimensional torus. This strain energy, al-
though not impossible to implement, makes the resulting
PDE non-elliptic and may be difficult to properly opti-
mize. For additional information, please see Ref. 21.

In conclusion, we have presented an approach for
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modeling relaxations in incommensurate systems. The
methodology, based on treating the incommensurate sys-
tem consistently, has led to identification of key physical
ingredients for predicting what relaxations may occur. If
the lattices are aligned close to a commensurate angle
which yields a small cell, large-scale domain-wall forma-
tion is expected. As the lattices are twisted away from
such an angle, the domains will become smaller and their
boundaries less sharp until almost no relaxation occurs
at large misalignment. The geometry of the domains and
walls is determined by the number and nature of the crit-
ical points in the interlayer energy functional, and their
domain size scales with the twist angle. This naturally
creates regular patterns of uniformly stacked bilayers di-
vided by thin strain solitons. If the bilayer geometry
encodes important topological information for electrons,

or if the strain and sharp stacking potentials act as a
useful source of electron confinement, small twist angles
can create regular networks of confined 1D states which
are easily realized in experiment.
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