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Time-quasiperiodic Majoranas are generalizations of Floquet Majoranas in time-quasiperiodic
superconducting systems. We show that in a system driven at d mutually irrational frequencies,
there are up to 2d types of such Majoranas, coexisting despite spatial overlap and lack of time-
translational invariance. Although the quasienergy spectrum is dense in such systems, the time-
quasiperiodic Majoranas can be stable and robust against resonances due to localization in the
periodic-drives induced synthetic dimensions. This is demonstrated in a time-quasiperiodic Kitaev
chain driven at two frequencies. We further relate the existence of multiple Majoranas in a time-
quasiperiodic system to the time quasicrystal phase introduced recently. These time-quasiperiodic
Majoranas open a new possibility for braiding which will be pursued in the future.

Introduction.— Majorana bound states, aka Ma-
joranas, are zero-energy excitations in topologi-
cal superconductors ninvariant under particle-hole
transformation1–3. Their zero-energy nature gives rise to
degenerate ground states, which can be used as nonlocal
qubits and memory4–6. Therefore, Majorana engineering
in a variety of platforms has been an simmering field of
study both theoretically7–17 and experimentally18–29.

Topological phases, however, also exist under nonequi-
liubrium conditions and can be realized by time-periodic
driving, known as Floquet engineering. Floquet topolog-
ical superconductors and superfluids were proposed to be
realized in either periodically driven cold atom systems13

or proximitzed nanowires30,31. Floquet topological
phases have also been explored experimentally32–36.

Interestingly, Floquet topological superconductors (or
superfluids) host a dynamical version of Majoranas,
dubbed Floquet Majoranas13,37. Rather than sitting at
zero enregy, Floquet Majoranas have quasienergies ε = 0
or ε = ω/2, where ω is the driving frequency. Because
energy is only defined modulo ω, ω/2 is a particle-hole
symmetric point in the spectrum just as ε = 0 is, and the
particle-hole symmetric nature of these Majoranas holds
in a time-dependent fashion at all times. Indeed, Floquet
Majoranas can form topological qubits and store quan-
tum information, just as their equilibrium counterparts
do37. Floquet Majoranas may therefore open a new route
for topological quantum computation using the time do-
main as a resource38.

A natural question arises: could topological behav-
ior also arise when a drive contains multiple frequen-
cies, without any time-translational invariance? If so,
could we obtain multiple Majorana modes associated
with these frequencies? This would be similar to fre-
quency multiplexing to enhance the hardware channel
capacity in optical fibers39. For concreteness, let us
consider a time-quasiperiodic superconductor driven at
two frequencies ω1 and ω2, where ω1/ω2 is an irrational
number, otherwise the system is time-periodic. We as-
sume the concept of quasienergy (as we will introduce
it later) also exist in this context, which is defined up
to n1ω1 + n2ω2 with n1, n2 ∈ Z. Thus, there are four

inequivalent particle-hole symmetric quasienergies: 0,
ω1/2, ω2/2, and (ω1+ω2)/2. This means one can at most
have four types of Majoranas, as shown in Fig. 1. On the
other hand, from a naive point of view, since n1ω1+n2ω2

could be made to yield arbitrary energy increments, as
long as |n1| , |n2| are large enough, the quasienergy spec-
trum will be everywhere dense, with multi-photon energy
arbitrarily small near resonances, and these Majoranas
appear fully unstable.

In this manuscript, we demonstrate that multi-
frequency driven systems can give rise to a new class
of time-quasiperiodic topological phases. Furthermore,
such time-quasiperiodic topological superconductors give
rise to Majorana edge states appearing at several fre-
quencies simultaneously. These multiple Majoranas are
stable and can coexist due to localization in the drive-
induced synthetic n1 and n2 dimensions, which also sup-
presses the hybridization between the Majorana edge
states, and bulk extended states. This renders the Majo-
rana edge modes as stable spatially localized edge states.
We confirm this by simulating a Kitaev chain driven at
two incommensurate frequencies, and show the existence
of Majorana edge states with half-frequency quasiener-
gies. Furthermore, we use our simulations to demonstrate
that time-quasiperiodic Majoranas are related to the
“time quasicrystal” phases introduced recently in time-
quasiperiodic spin chains40 (see also Refs.41–45); the half-
frequency Majoranas are essentially the single-particle
degrees of freedom characterizing the time-quasicrystal
phase, in the same vain that the Floquet Majoranas are
underlying the time-crystal period doubling of Refs.46–49.

Floquet recap— Let us start by briefly reviewing
Floquet states. Consider a time-periodic Hamiltonian
H(t) = H(t + T ), with driving angular frequency ω,
and period T = 2π/ω. The solutions to the time-
dependent Schrödinger equation are characterized by the
Floquet states, given by |Ψα(t)〉 = e−iεαt |Φα(t)〉, where
|Φα(t)〉 is a periodic function with the same period as
the Hamiltonian, which satisfies the eigenvalue equation
[H(t)−i∂t] |Φα(t)〉 = εα |Φα(t)〉 with eigenvalue εα. Here,
K(t) = H(t)− i∂t and εα are called quasienergy operator
and quasienergy, respectively.
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Figure 1. Schematic representation of time-quasiperiodic
Majoranas localized at the end of a 1D topological supercon-
ductor (in grey) driven at two frequencies ω1 and ω2. These
Majoranas are localized in both real space and the two syn-
thetic dimensions with coordinates n1 and n2.

It is important to note that quasienergies are not
uniquely defined. Indeed, εα and εα,n = εα + nω with
n ∈ Z actually describe the same physical state |Ψα(t)〉 =
e−iεαt |Φα(t)〉 = e−iεα,nt |Φα,n(t)〉, where |Φα,n(t)〉 =
einωt |Φα(t)〉 is also an eigenfunction of the quasienergy
operator at quasienergy εα,n. Thus, the quasienergy εα
is only uniquely defined modulo ω, e.g., in the range
−ω/2 ≤ ε < ω/2.

Floquet synthetic dimensions and Wannier-Stark
localization— Our construction of time-quasiperiodic
Majoranas requires recasting the driven Hamiltonian in
a time-independent way. Let us write out the Hamilto-
nian and Floquet states using their Fourier expansion of
H(t) =

∑
n e
−imωthn and |Φα(t)〉 =

∑
m e
−imωtφαm. The

eigenvalue equation for the quasienergies then becomes∑
m

hn−mφ
α
m − nωφαn = εαφ

α
n, (1)

which describes particles hopping in a 1D synthetic lat-
tice, spanned by the coordinate n, with ω playing the role
of a uniform force field. This is precisely the Hamiltonian
for a Wannier-Stark ladder, with energy difference ω be-
tween neighboring rungs. We will restrict ourselves to
nearest-neighbor-hopping models, i.e. hn = 0 for |n| ≥ 2.

It has been known that the electronic wave functions
in the Wannier-Stark ladder are localized, with a local-
ization length ∼ 1/ ln(ω/V ) when V < ω, with V being
the nearest neighbor hopping amplitude, known as the
Wannier-Stark localization50,51. Likewise we expect that
the Floquet states will be localized to the vicinity of a
particular n, which is a manifestation of energy conser-
vation.

Floquet Particle-hole symmetry in superconductors.
The hamiltonians of superconductors possess a unitary
matrix UP such that UPH(t)∗ = −H(t)UP for all times,
with “∗” denoting complex conjugation. This particle-

hole symmetry dictates that UPK(t)∗U†P = −K(t), and
that the Floquet states appear in pairs as |Φα(t)〉 and
UP |Φα(t)∗〉, with quasienergies ±εα, respectively.

Majoranas are special states that are particle-hole sym-
metric. Namely, with |ψ(t)〉 a Majorana state:

e−iεt |φ(t)〉 = |ψ(t)〉 = UP |ψ(t)∗〉 = eiεtUP |φ(t)∗〉 , (2)

which works if (UP |φ(t)∗〉) = e−ipω |φ(t)〉 = e−2iεt |φ(t)〉
with some p ∈ Z. Therefore, the majorana quasienergies
are restricted to ε = pω/2 with some p ∈ Z. And be-
cause shifts by ω are just a gauge choice, there are only
two inequivalent Floquet Majoranas13,37, with p ∈ {0, 1}
reduced to a Z2 variable.
Floquet Majoranas. Next consider a 1D Floquet topo-

logical superconductor, with Hamiltonian H(t) = HK +
M(ωt). The first term describes a static Kitaev chain

HK = −µ
N∑
j=1

c†jcj−
N−1∑
j=1

[(Jc†jcj+1+i∆cjcj+1)+h.c.]. (3)

with cj (c†j) annihilation (creation) operators at site j,
µ is the chemical potential, J is the hopping amplitude,
and ∆ is the p-wave pairing potential. The second term,

M(ωt) = −i∆′
N−1∑
j=1

(e−iωtcjcj+1 − eiωtc†j+1c
†
j), (4)

corresponds to a periodic drive. Introducing Nambu

spinors in momentum (k) space Ψ†k = (c†k, c−k), with

ck =
∑N
j=1 cje

−ikj/
√
N . For periodic boundary condi-

tions, we get the Bogoliubov–de Gennes Hamiltonian

H =
∑
k>0 Ψ†k[HK(k) +M(k, ωt)]Ψ(k),

HK(k) = τzξk + τx∆ sin k, M(k, ωt) = τx∆′ sin keiωtτz

(5)
where τx,y,z are the Pauli matrices in Nambu space, and
ξk = −J cos k − µ/2 is the normal state dispersion.

The spectrum of the driven Kitaev model can be in-
terpreted using the synthetic dimension and Wannier-
Stark-ladder approach of Eq. (1). For each k there are
two orbitals for each harmonic n. Thus, in the absence of
pairing potential, the system has two groups of equally-
spaced spectra εn,e/h = ±ξk +nω, with n ∈ Z. The + or
− signs indicate electron-like (e) or hole-like (h) states.
The static pairing potential ∆ opens a topological gap
at nω, when εn,e = εn,h, while the dynamical pairing ∆′

opens a topological gap at (n+1)ω/2 when εn+1,h = εn,e,
i.e., at the edge of the ‘Floquet zone’. In Fig. 2(a), we
show the spectrum of the ladder as a function of k in a
window between −ω and ω, with a set of parameters pro-
ducing the two topological gaps. An open chain, then,
supports two types of Floquet Majoranas at quasiener-
gies 0, ω/2, with same-rung equal superposition of elec-
tron and hole states (Fig. 2(b)), and between neighboring
rungs (see Fig. 2(c)), respectively.
Time-quasiperiodic Majoranas.— Our main result is

that Majoranas also emerge due to multi-frequency drive.
Consider a time-quasiperiodic Hamiltonian H(t) char-
acterized by d mutually irrational frequencies ω =
(ω1, . . . , ωd). The Floquet ansatz introduced previously
can be generalized to the time-quasiperiodic system52.
The function |Φα(t)〉, which becomes time-quasiperiodic
at frequencies specified by ω, satisfies the eigenvalue
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Figure 2. (a) Quasienergy spectrum as a function of k be-
tween −ω and ω, for the model defined in Eqs. (3,4). The
black dashed lines are obtained with J/ω = 0.51, µ/ω = 0.87,
∆/ω = 0.051, and ∆′/ω = 0.038. The solid red, green, and
magenta lines corresponding to the quasienergies εn,e/h when
setting ∆ = ∆′ = 0, for a certain (n, e/h), as indicated in the
figure with the same color. The two types of topological gaps
are indicated in the blue and brown dotted circles. (b) and (c)
are the Wannier-Stark ladders with two orbitals (black lines)
per rung (black dot), when εn,e ' εn,h and εn+1,h ' εn,e

respectively. The 0-Majoranas are formed from equal super-
position between states (n, e) and (n, h) (blue ellipses), while
the ω/2-Majoranas are formed from equal superposition be-
tween states (n+ 1, h) and (n, e)(green ellipses).

equation of the time-quasiperiodic quasienergy operator
K(t):

K(t) |Φα(t)〉 =

(
H(t)− i ∂

∂t

)
|Φα(t)〉 = εα |Φα(t)〉 (6)

with the quasienergy εα defined modulo n · ω.
Time-quasiperiodic Majoranas then emerge as

particle-hole symmetric states. These must have
quasienergies ε = p · ω/2, with p ∈ Zd. Further-
more, they fall into 2d groups, reducing p ∈ {0, 1}d,
corresponding to 2d types of Majoranas.

Contrary to a gapped Floquet topological phase, the
quasienergy spectra in a time-quasiperiodic system are
dense, since n·ω can approach any value. It seems, there-
fore, that time-quasiperiodic Majoranas do not have a
gap that could protect them from hybridizing with bulk
states due to local perturbations. Below we show that
these majoranas are stable not due to a gap, but rather
due to localization in the drive-induced synthetic dimen-
sions.

Multidrive synthetic Lattice and localization— Simi-
lar to the Floquet case, the time-quasiperiodic system
could be posed as a time-independent problem. The
quasienergy eigenvalue equation becomes a tight-binding
problem on a d-dimensional lattice whose coordinates are
given by n ∈ Zd embedded in the d-dimensional Eu-
clidean space Rd. In addition, a force field given by ω
pointing into the synthetic dimensions keeps track of the
energy of energy quanta absorbed from the drive53,54.

The equipotential surface perpendicular to the syn-
thetic electric field defines a (d − 1)-dimensional

n1

n2

Figure 3. 2D synthetic lattice with an electric field vec-
tor ω = (ω1, ω2) consisting of the driven frequencies. The
equipotential lines perpendicular to ω are denoted as black
dashed lines. One obtains a 1D quasicrystal in between the
two dashed lines denoted as the blue region. The nearest-
neighbor couplings within the quasicrstal are denoted as solid
red or blue lines, corresponding to the original horizontal and
vertical couplings. The two big arrows denotes the directions
along which there are localizations: Wannier-Stark (WS) vs.
Quasiperiodic (QP).

quasicrystal55. Fig. 3 describes the quasicrystal construc-
tion for d = 2, which is easily generalized to more dimen-
sions. The lattice sites in a narrow strip (contained in
the blue region) normal to the frequency vector ω make a
one-dimensional (1D) quasicrystal where the on-site en-
ergy goes up and down by ω2 and ω1. By shifting the
strip along ω, the whole two-dimensional (2D) lattice
will be covered, and every lattice sites will be uniquely
contained in one 1D quasicrystal. Hence, the original
system is equivalent to a Wannier-Stark ladder of 1D
quasicrystals. Now it is clear, however, what can pro-
tect majoranas from bulk hybridization. Motion in a
quasicrystal is fully localized if the hopping strength is
smaller than the quasiperiodic modulation of the on-site
potential56,57.

Therefore, Majoranas emerge from a combination of
three localization mechanisms: 1) real space localiza-
tion due to the superconducting gap; 2) Wannier-Stark
localization along the synthetic ‘electric’ field, ω ; 3)
Quasiperiodicity induced localization perpendicular to
ω. We focus on the time-quasiperiodic Kitaev chain
H(t) = HK + M(ω1t) + M(ω2t), following Eqs. (3, 4),

with ω2

ω1
=
√
5+1
2 . In the synthetic space, n1, n2, of har-

monics of the ω1, ω2 drives, the system is localized along
the ω direction due to Wannier-Stark localization. The
system is localized perpendicular to ω due to quasiperi-
odic localization when ∆′ < ω1, ω2. On a ring, there are
two orbitals per rung for each quasimomentum k. Ignor-
ing the pairing potentials ∆,∆′, the eigenvalues of this
system are εn1,n2,e/h = ±ξk + n1ω1 + n2ω2. By choos-
ing proper parameters, one has three special quasimo-
menta at which εn1,n2,e = εn1,n2,h, εn1+1,n2,h = εn1,n2,e,
and εn1,n2+1,h = εn1,n2,e. ∆ and ∆′, however, open
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Figure 4. (a)The quasipeirodic ladder perpendicular to ω in
the 2D synthetic lattice, with each rung corresponding to a
Kitaev chain. For a periodic chain, when k is close to three
special quasimomenta such that εn1,n2,e ' εn1,n2,h (top),
εn1+1,n2,h ' εn1,n2,e (middle), and εn1,n2+1,h ' εn1,n2,e (bot-
tom), topological gaps are induced. The three types of topo-
logical gaps give rise to three types of Majoranas in an open
chain. (b) Numerical solution of the 0-frequency and time-
quasiperiodic Majorana states on the 2D synthetic lattice of
size 15×15. Each site of the lattice corresponding to a Kitaev
chain of length N = 100. Left: |φn1,n2 |

2 for the 0, ω1
2

, and
ω2
2

Majoranas on the 2D synthetic lattice, where the darker
color corresponds to a larger magnitude. Right: the absolute
value of the corresponding Majorana wave function, summed
over the 2D synthetic lattice. The electron and hole compo-
nents φe, φh are plotted as red solid and blue dashed curves.
The other parameters are ω2/ω1 = (

√
5 + 1)/2, J/ω1 = 0.51,

µ/ω1 = 0.87, ∆/ω1 = 0.051, and ∆′/ω1 = 0.038.

topological gaps at these crossings. In an open chain,
these gaps give rise to three kinds of Majoranas, with
quasienergies 0, ω1/2 and ω2/2 (Fig. 4(a)). The exis-
tence, stability, and localization of these Majoranas are
verified via numerical simulation outlined in the supple-
mental material52. Fig. 4(b) shows these wavefunctions
φn1,n2

= (φn1,n2,e, φn1,n2,h) in the synthetic and real
spaces. Indeed, the wavefunction, which is identical for
the hole and electron components, is localized at a single,
or two neighboring sites, in the synthetic directions, and
near the edges in real space.

From Majorana multiplexing to time quasicrystal.—
The different types of Majoranas, gives rise to a
quasiperiodic oscillating pattern distinct from the driv-
ing pattern in the correlation function 〈Ô(t)Ô(0)〉 of a

local observable Ô, resembling the time quasicrystal of

Ref.40. Take, for instance, Ô to be γ1 = (c1 + c†1)/
√

2,

with c1, c
†
1 the electron creation and annihilation oper-

ators at the first site. The correlation function is then
closely related to the local spectral function, and is dom-
inated by the boundary modes, namely, the Majorana
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Figure 5. Left: Time evolution of 〈γ1(t)γ1(0)〉 simulated on
the time-quasiperiodic Kitaev chain, with the same parame-
ters as in Fig. 4. Right: The Fourier transform of 〈γ1(t)γ1(0)〉
in the frequency domain. There are three dominant peaks at
0, ω1/2, and ω2/2 ' 0.81ω1.

operators

γ1(t) = c0ψ0(t) + c1ψ1(t) + c2ψ2(t) + . . . (7)

where ψ0,1,2 are the time-quasiperiodic Majorana op-
erators at quasienergies 0, ω1/2 and ω2/2. Hence,
〈γ1(t)γ1(0)〉 generically contains peaks at frequencies, 0,
ω1/2 and ω2/2 (see Fig. 5), where the average is with re-
spect to the BCS vacuum at t = 0. In fact, the spectral
peaks at half-frequencies persist even we include tempo-
ral disorders or take commensurate frequencies (see the
Supp. Mat. Ref.52 for details).

If one applies a Jordan-Wigner transform of the time-
quasiperiodic Kitaev chain, we get a time-quasiperiodic
Heisenberg model. 〈γ1(t)γ1(0)〉 becomes the spin corre-
lation function 〈σx1 (t)σ1(0)〉. This shows that the time-
quasiperiodic Majoranas in a fermionic system are indeed
the single-particle degrees of freedom which are responsi-
ble for the formation of the time quasicrystal correlations
discussed in Ref.40.
Conclusion. — In this work, we establish the existence

of time-quasi-periodic topological phases, and generalize
the concept of Floquet Majoranas to time-quasiperiodic
systems. We show that there are at most 2d types of
Majoranas at quasienergies p · ω/2, with p ∈ {0, 1}d
with ω = (ω1, . . . , ωd) consisting of d mutually irrational
frequencies. Furthermore, we show that these Majorana
states are stable, fully-localized, edge states. We study
the time-quasiperiodic Kitaev chain with d = 2, and find
coexisting stable and robust Majoranas at quasienergies
0, ω1/2 and ω2/2. The localization in synthetic dimen-
sions, emerges as a resource that allows these localized
Majorana edge modes despite a dense quasienergy spec-
trum. These Majoranas are also the single-particle de-
grees of freedom which are relevant to the formation of
time quasicrystal40.

The existence of time-quasiperiodic Majoranas opens
a new direction for performing and controlling topolog-
ical quantum computations using the time domain as a
resource for topological anscilla qubits, for instance. In-
stead of using multiple static topological superconduct-
ing wires, one can dynamically generate multiple Majo-
ranas at different locations for manipulation, by driving
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a single superconductor at different frequencies in differ-
ent regions. While this raises issues of equilibration and
heating, protocols for finite time manipulation may keep
such problems at bay, even if these may be experimen-
tally challenging at present.
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