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The interplay between electronic orders and superconductivity is central to the physics of unconventional
superconductors, and is particularly pronounced in the iron-based superconductors. Motivated by recent experi-
ments on FeSe, we study the superconducting pairing in its nematic phase in a multiorbital model with frustrated
spin-exchange interactions. The electron correlations in the presence of the nematic order give rise to an en-
hanced orbital selectivity in the superconducting pairing amplitudes. This orbital-selective pairing produces a
large gap anisotropy on the Fermi surface. Our results naturally explain the striking experimental observations,
and shed new light on the unconventional superconductivity of correlated electron systems in general.

Introduction. High temperature superconductivity in the
iron-based superconductors (FeSCs) is a major frontier of
condensed matter physics [1–3]. New phenomena and in-
sights continue to arise in this area, giving hope for deep un-
derstandings of the ingredients that are central to the mecha-
nism of superconductivity. One such ingredient is the orbital-
selective Mott physics [2, 4]. It has been advanced for multi-
orbital models of the FeSCs [5–7], in which the lattice sym-
metry dictates the presence of interorbital kinetic hybridiza-
tions, and has been observed by angle-resolved photoemis-
sion spectroscopy (ARPES) [4, 8–10]. The orbital-selective
Mott physics connects well with the bad-metal normal state
[11, 12], as implicated by the room-temperature electrical re-
sistivity reaching the Mott-Ioffe-Regel limit and the Drude
weight having a large correlation-induced reduction [13]. An-
other closely related ingredient is the orbital-selective su-
perconducting pairing (OSSP), which was initially advanced
for the purpose of understanding the gap anisotropy of iron-
pnictide superconductors [14].

Among the FeSCs, the bulk FeSe system is of particular
interest. It is the structural basis of the single-layer FeSe on
an SrTiO3 substrate, which holds the record for the supercon-
ducting transition temperature Tc in the FeSCs [15–18]. It
has a nematic ground state, which reduces the C4 rotational
symmetry of a tetragonal lattice to C2 and in turn lifts the de-
generacy between the dxz and dyz orbitals.

More generally, FeSe provides a setting to study the inter-
play between the orbital selectivity and electronic orders. In-
deed, recent scanning tunneling microscopy (STM) measure-
ments in the nematic phase of FeSe have uncovered a sur-
prisingly large difference between the quasiparticle weights
of the dxz and dyz orbitals, suggesting the proximity to
orbital-selective Mott phase [19]. Moreover, they suggest a
strongly orbital-selective superconducting state, as reflected
in an unusually large anisotropy of the superconducting gap
[20]: the ratio of the maximum to the minimum of the gap,
∆max/∆min, is at least about 4. Recently, several of us have
suggested a microscopic picture for the orbital-selective Mott

physics in the nematic but normal (i.e., non-superconducting)
state [21]. Within a slave-spin approach, the electron correla-
tions in the presence of the nematic order are found to yield a
large difference in the quasiparticle weights of the dxz and dyz
orbitals while the associated band-splittings as seen in ARPES
are relatively small [22, 23].

In this Letter, we study the pairing structure in the nematic
phase of FeSe using this theoretical picture. We show that
the orbital selectivity in the normal state naturally leads to an
orbital-selective pairing, which in turn produces a large gap
anisotropy that is consistent with the STM results. Our work
not only provides a natural understanding of the experimen-
tal observations, but also sheds new light on the interplay be-
tween the orbital-selective pairing/Mott physics and electronic
orders, all of which appear to be important ingredients for the
unconventional superconductivity in FeSCs and beyond.

Model and Method. As a starting point, we con-
sider the five-orbital Hubbard model for FeSe. The Hamil-
tonian reads as H = Ht + Hint. Here, Ht =∑
ij,αβ t

αβ
ij c
†
i,α,σcj,β,σ, where c†i,α,σ creates an electron in or-

bital α(∈ xz, yz, x2 − y2, xy, z2), spin σ and at site i of
an Fe-square lattice. The tight-binding parameters are ob-
tained by fitting ab initio density-functional-theory (DFT)
bandstructure of FeSe, and Hint describes the on-site inter-
actions, which include the intra- and inter-orbital Coulomb
repulsions and the Hund’s coupling (see Suppl. Mater. [24]).
We use the U(1) slave spin method [25, 26] to study the cor-
relation effects of this model. In this representation, the elec-
tron creation operator is expressed as c†i,α,σ = S+

i,α,σf
†
i,α,σ ,

where S+
i,α,σ is the ladder operator of a quantum S = 1/2

slave spin and f†i,α,σ is the creation operator of a fermionic
spinon. The effective strength of the correlation effect in or-
bital α is characterized by the quasiparticle spectral weight
Zα ∼ |〈S†α〉|2 (here we have dropped the site and spin in-
dices). Zα > 0 describes the spectral weight for the coherent
itinerant electrons, while Zα = 0 refers to a Mott localization
of the corresponding orbital. We obtain Zα for each orbital in
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FIG. 1. Calculated Fermi surface in the nematic normal phase of
FeSe with η = 0.07 and λ = −0.03.

the nematic normal (i.e., non-superconducting) state via solv-
ing the slave-spin saddle-point equations detailed in Refs. 25
and 26. Calculations in Ref. [21] for the the nematic normal
state yield strongly orbital-dependent spectral weight of the
order Zxz : Zyz : Zxy = 1 : 4 : 0.5, which is consistent with
the values extracted from the STM measurements [19, 20, 27].
We will adopt this ratio for our calculation. An important ad-
vantage of the U(1) slave-spin approach in comparison with,
for instance, the Z2 counterpart [28–30], is that the slave-spin
operators can carry all the charge degree of freedom and the
f -fermions are left with carrying all the spin degrees of free-
dom. Consequently, in the bad-metal regime, we can get a
low-energy effective model by integrating out the incoherent
part of the electron spectrum (via the quantum fluctuation of
the slave spins) [2, 31, 32]. The resulting effective model can
be written in terms of the f -fermion operators as follows:

Heff =
∑
ij,αβ

(
√
ZαZβt

αβ
ij − λαδαβ)f†i,α,σfj,β,σ

−
∑
ij,αβ

Jαβij f
†
j,β,↓f

†
i,α,↑fi,α,↓fj,β,↑. (1)

It takes the form of a multiorbital t-J model with the spin-
exchange couplings Jαβij coming from the integrating-out pro-
cedure. The slave-spin calculations for the renormalization
factors, Zα for orbital α, is similar to those for the normal
nematic state of FeSe as described in Ref. 21, with a bare
Coulomb interaction being about 3.5 eV. The intraorbital com-
ponents Jα1 and Jα2 , for the nearest neighbor < ij > and next
nearest neighbor << ij >>, will be used.

To study the superconductivity, we define the pairing am-
plitude of the f -fermions to be ∆̃αβ

e = 1
N

∑
i〈fi,α,↑fi+e,β,↓〉,

where e ∈ {ex, ey, ex+y, ex−y} refers to a unit vector con-
necting nearest and next nearest neighboring sites. We treat
the four-fermion J terms through a Hubbard-Stratonovich de-
coupling, and self-consistently solve the pairing amplitudes
∆̃αβ

e in the resulting effective model. The pairing amplitude
of the physical electrons ∆αβ

e = 1
N

∑
i〈ci,α,↑ci+e,β,↓〉 is

∆αβ
e =

√
ZαZβ∆̃αβ

e . (2)

Nematic order. In the nematic phase, the breaking of the
C4 symmetry induces additional anisotropies to both the ki-
netic energy and exchange interactions. To take this effect

pairing channel D4h D2h pairing channel in real space

sx2+y2 τ0 A1g Ag
∑

e∈{ex,ey}

(
∆xz(e) + ∆yz(e)

)
sx2y2 τ0 A1g Ag

∑
e∈{ex±ey}

(
∆xz(e) + ∆yz(e)

)
sx2y2 τz B1g Ag

∑
e∈{ex±ey}

(
∆xz(e) − ∆yz(e)

)
dx2−y2 τ0 B1g Ag

∑
α∈{xz,yz}

(
∆α(ex) − ∆α(ey)

)

TABLE I. Symmetry classification of spin-singlet intra-orbital pair-
ing channels by theD4h andD2h point groups. Here, τi are the Pauli
matrices in the dxz, dyz orbital basis. A complete list involving these
orbitals and the dxy orbital is given in the Suppl. Mater.[24]

into account in a simple way, we introduce an anisotropy pa-
rameter η in the nearest-neighbor hopping parameters and the
exchange couplings of the dxz/yz orbitals as follows:

tx/y = t(1± η); Jx/y = J(1± η)2. (3)

For example, the nearest-neighbor hopping terms of the
dxz/yz orbitals contains the following in the nematic phase:

η
[
t1(c†xz,icxz,i+ex − c†yz,icyz,i+ey )

+ t2(−c†xz,icxz,i+ey + c†yz,icyz,i+ex)
]
.

The latter corresponds to a combination of the s- and d-wave
bond nematic orders [33]

η

[
t1 − t2

2
(cos(kx) + cos(ky))(nxz,k − nyz,k)

+
t1 + t2

2
(cos(kx)− cos(ky))(nxz,k + nyz,k)

]
.

Fermi surface in the nematic phase. We use the notation
of the 1-Fe Brilluion zone (BZ). In Fig. 1, we show the Fermi
surface in the nematic phase for η = 0.07. An atomic spin-
orbit coupling (SOC), of the form λS · L, is included in the
calculation for Fig. 1. The superconductivity considered here
is mainly driven by the magnetic interactions. Because the
SOC is much smaller than the magnetic bandwidth, its effect
on the pairing will be neglected. With increasing η, the inner
hole pocket near the Γ point quickly disappears; this evolution
is shown in Fig.S1 of the Suppl. Mater.[24]. The (outer) hole
pocket near the Γ point is elongated along the ky direction.
The electron pocket near the Mx [(π, 0)] point is also elon-
gated, along the kx direction. The electron pocket is dom-
inated by the dyz and dxy orbitals, whereas the hole pocket
mainly comprises the dxz and dyz orbitals (Fig. S2 [24]). The
hole pocket near the (π, π) point, which appears in our model
as a result of the known artefact of the DFT calculations [34–
36], does not come into play in our main result.
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FIG. 2. (Color online) Top panel: Evolution of the pairing amplitudes
(P.A.) with magnetic frustration parameter rL for several channels
according to the D4h representations. The parameters are η = 0.07,
rO = 0.3, and J2,xz/yz = 0.3. Bottom panel: Same as the top
panel but shown according to theD2h representations, demonstrating
a strong orbital-selective pairing with ∆yz � ∆xz/xy .

Pairing structure in the nematic phase. We next analyze
the influence of nematic order on the pairing structure. The
pairing can be classified by the irreducible representations of
the point group associated with the lattice symmetry, which is
summarized in Table I and in the Suppl. Mater.[24]. In the
tetragonal phase, the corresponding point group is D4h. For
example, the usual s-wave and d-wave pairings have an A1g

and a B1g symmetry, respectively. In the nematic phase, the
point group is reduced to D2h. In this case, both the A1g and
B1g representations ofD4h belong to theAg representation of
the D2h group. As a consequence, the s- and d-wave pairing
channels will generically mix.

We now turn to detailed calculations. Because the rele-
vant electronic states are dominated by the dxz ,dyz ,and dxy
orbitals, we only consider the nearest-neighbor and next-
nearest-neighbor intraorbital exchange interactions for these
three orbitals. As in the previous study of orbital-selective
pairing in the tetragonal phase [37], we introduce two ratios
rL and rO. Here, rL = J1

J2
, for each orbital, quantifies the

magnetic frustration effect; rO =
Jxy
2

J
xz/yz
2

=
Jxy
1

J
xz/yz
1

reflects

the orbital-selective effect between the xz/yz and xy orbitals.
(The inter-orbital pairings are negligibly small [37].)

In Fig. 2, we present the evolution of the pairing amplitudes
of several pairing channels with rL. The top panel shows the
pairing channels classified by the D4h group. The dominant
pairing always has an A1g symmetry. With increasing rL, it
crosses over from the sign-changing s-wave (with form fac-
tor cos kx cos ky) to an extended s-wave (with form factor
cos kx + cos ky). It is more transparent to show the pairing
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FIG. 3. (Color online) (Top): Variation of the superconducting gap
on the hole (top panel) and electron (bottom panel) pockets near Γ
and Mx points of the BZ, respectively. The angle φ is defined as
in Fig. 1. Along each pocket, the gap values are normalized by the
corresponding maximum. The calculations are for rL = 1.2, rO =
0.3, and η = 0.07.

amplitudes according to the irreducible representations of the
D2h group. As illustrated in the bottom panel of Fig. 2, we
find strong orbital-selective pairing with |∆yz|/|∆xz/xy| > 2.
Such an orbital-selective pairing is quite robust within a wide
range of rL and rO values.

The strong orbital selectivity in the superconducting pairing
is connected with that of the normal state. To see this, note
that from Eq. (2) we have the ratio of the pairing amplitudes

|∆yz|
|∆xz/xy|

=
Zyz

Zxz/xy

|∆̃yz|
|∆̃xz/xy|

. (4)

In other words, the orbital selectivity of the pairing amplitudes
is magnified by Zyz

Zxz/xy
, the ratio of the quasiparticle spectral

weights in the normal state.
Gap anisotropy. We now calculate the superconducting gap

on the normal-state Fermi surface. In Fig. 3 we plot the gap
variation on the hole (near Γ) and electron (near Mx) Fermi
pockets. Along each Fermi pocket, the gap values are normal-
ized by its corresponding maximal value, and the angle φ is
defined in Fig. 1. For the Fermi pocket near Γ, the gap max-
imum appears at φ = 0/π and the minimum is at φ = π

2 .
For the pocket near Mx, the maximum is at φ = π

2 and the
minimum is close to φ = 0. These positions of the gap maxi-
mum/minimum, as well as the large gap anisotropy on both
Fermi pockets, are consistent with the experimental results
[20]. More specifically: i) The ratio of the maximum gap of
the hole pocket to that of the electron pocket is of order unity,
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FIG. 4. (Color online) (Top): Overall and orbital resolved super-
conducting gaps along the Mx electron pocket. (Bottom): Weight
distributions of the xy and yz orbitals along the Mx electron pocket.

about 1.01 in our calculation. Experimentally, the ratio is
comparable to this: it is 1.5 (1.0) when the maximal gap on the
hole pocket is inferred from the STM [20] (laser-ARPES [38])
measurements; ii) The calculated ratio of the gap minimum to
gap maximum for the electron pocket (∼ 5%) is comparable
to its experimental counterpart (in the range 5%-30%) [20];
iii) Likewise, the calculated ratio for the hole pocket (∼ 25%)
is comparable to its experimental counterpart (4%-25%) [20].

Our results are understood as follows. At any given
point of the Fermi surface k, the overall gap ∆(k) =∑

∆α(k)Wα(k). Here, Wα is the orbital weight, and
∆α(k) =

∑
e∈{ex,ey,ex±ey} J

αα
e ∆α(e) cos(k · e) is the

orbital-resolved gap. As an illustration, we show the distri-
butions of the orbital-resolved gap and the corresponding or-
bital weight on the electron pocket near Mx in Fig. 4 (and for
the hole pocket in the Suppl. Mater.[24]). Along the elec-
tron pocket, near φ = π

2 , the yz orbital has the largest or-
bital weight. Thus, the gap there is dominated by the pair-
ing in the yz orbital, namely, ∆(φ = π

2 ) ≈ ∆yz . Similarly,
near φ = 0, the xy orbital has the largest orbital weight
and then ∆(φ = 0) ≈ ∆xy . The strong orbital-selectivity
in the pairing amplitude |∆yz(e)| � |∆xy(e)| gives rise to
a large gap anisotropy |∆(φ = π

2 )| ≈ |∆yz| � |∆xy| ≈
|∆(φ = π

2 )|. A similar argument applies to the hole pocket,
where |∆(φ = 0)| ≈ |∆yz| � |∆xz| ≈ |∆(φ = π

2 )|, as seen
in the Suppl. Mater. [24].

Discussions. In principle, additional factors may influ-
ence the gap anisotropy. For instance, it has been shown
that the magnetic frustration rL can tune the relative strength

of nearest-neighbor and next nearest-neighbor pairings, and
gives rise to a moderate level of gap anisotropy along the elec-
tron pocket in NaFeAs [14] . For FeSe, we have focused on
the regime rL ∼ 1: The absence of antiferromagnetic order in
the nematic state suggests a strong magnetic frustration with
rL ∼ 1, where the nearest-neighbor and next nearest-neighbor
pairings are quasi-degenerate.

In the calculations we have carried out, the nematicity has
multiple effects on the pairing structure. First, it enhances
the orbital selectivity in the spectral weight of the coherent
itinerant electrons, leading to strong orbital-selective pairing
amplitudes, as shown in Eq. (4). Second, the orbital weights
are largely redistributed along the distorted Fermi surface as
a combined effect of the additional anisotropy and orbital de-
pendent band structure renormalization in the nematic phase.
On each Fermi pocket, the dominant orbital character has a
large variation. Third, the nematicity induces additional mag-
netic anisotropy, which enhances the pairing in the ex direc-
tion but reduces the pairing in the ey direction. While this last
effect also contributes to the gap anisotropy, it is not the dom-
inant source in our case. In other words, the gap anisotropy
primarily originates from the first two effects, which dictate
the orbital-selective nature of the pairing amplitudes.

The orbital-selective pairing concerns superconductivity
driven by short-range spin-exchange interactions between the
electrons associated with the multiple 3d orbitals. For FeSe,
direct evidence exists that the local Coulomb (Hubbard and
Hund’s) interactions are strong [39, 40], and the orbitals thus
represent a natural basis to consider superconducting pairing.

We now discuss the broader implications of the orbital se-
lective pairing. There is accumulating evidence that supercon-
ductivity in the FeSCs is mainly driven by magnetic correla-
tions. Yet, it remains an open question about the precise role
of the nematicity on the superconductivity. Our study raises
the possibility that the main influence of the nematicity on the
magnetically driven superconductivity is through its influence
on the orbital selectivity.

Finally, the correlation effects provide intuition on how to
control low-energy physics by tuning local degrees of free-
dom. For instance, the multi-orbital nature affords a new han-
dle for engineering the low-energy electronic states and rais-
ing Tc. Even when the superconductivity is primarily driven
by magnetic correlations, tuning the orbital levels and orbital-
dependent couplings may optimize superconductivity. This
notion is consistent with experiments in the single-layer FeSe
[41], which indicate a further increased Tc by varying the
weight of particular 3d-orbitals near the Fermi energy.

Conclusions. We have studied the superconductivity in the
nematic phase of FeSe through a multiorbital model using a
U(1) slave-spin approach. The enhanced orbital selectivity
in the normal state by the nematic order is shown to yield
a strong orbital-selective superconducting pairing. The latter
produces sizable gap anisotropy on both the hole and electron
pockets, which naturally explains the recent experimental ob-
servations. The orbital-selective pairing raises the prospect of
harnessing the orbital degrees of freedom to realize still higher
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Tc, even when superconductivity is magnetically driven, and
provides new insights into the interplay between electronic or-
ders and superconductivity. As such, our results shed new
light not only on the physics of the iron-based compounds but
also on the unconventional superconductivity in a variety of
other strongly correlated systems.

Note added: This work was first presented at the January
2018 Aspen Winter Conference on “High Temperature Su-
perconductivity – Unifying Themes in Diverse Materials”,
http://aspen2018.rice.edu/poster-session/ .
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