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Motivated by experiments on twisted bilayer graphene, we study the emergence of superconduc-
tivity from weak repulsive interactions in the Hubbard model on a honeycomb lattice, with both spin
and orbital degeneracies, and with the filling treated as a tunable control parameter. The attraction
is generated through the Kohn-Luttinger mechanism. We find, similar to old studies of single layer
graphene, that the leading superconducting instability is in a d-wave pairing channel close to Van
Hove filling, and is in an f -wave pairing channel away from Van Hove filling. The d-wave pairing
instability further has a twelve-fold degeneracy while the f -wave pairing instability has a ten-fold
degeneracy. We analyze the symmetry breaking perturbations to this model. Combining this with
a Ginzburg-Landau analysis, we conclude that close to Van Hove filling, a spin singlet d+ id pairing
state should form (consistent with several other investigations of twisted bilayer graphene), whereas
away from Van Hove filling we propose an unusual spin and orbital singlet f -wave pairing state.

I. INTRODUCTION

Recent experiments observe superconductivity [1]
proximate to an insulating state [2] in twisted bilayer
graphene with magic twist angle θ ≈ 1.05◦. Remark-
ably, the superconductivity exhibits a relatively high crit-
ical temperature Tc with a small Fermi surface. To be
explicit, the temperature ratio Tc/TF , where TF is the
Fermi temperature, is close but higher than most of the
currently known high temperature superconductors. The
carrier density-temperature phase diagram demonstrates
two superconducting domes on both sides of the insulat-
ing phase. These features, which resemble those observed
in high Tc materials, have triggered an explosion of in-
terest in the twisted bilayer graphene systems. Given
the similarity of the observed phase diagram to that of
high Tc materials, it has been widely assumed that the
pairing is mediated by repulsive electron-electron inter-
actions, as in the high Tc materials. We also make this
assumption, although we cannot exclude the possibility
of phonon mediated pairing.

The theoretical analysis of the twisted bilayer graphene
system can be divided into two distinct parts: the devel-
opment of a suitable model Hamiltonian capturing the
key features of the problem, and the analysis thereof. It
is known that the system exhibits a Moiré pattern [3–7]
at small twist angles, where a superlattice with extremely
large unit cells emerges. The corresponding low energy
regime manifests four nearly flat minibands and a rel-
atively large gap from the other bands. A number of
works have proceeded from here to derive an effective
low energy theory [8–13], for example, by deriving the
symmetry allowed maximally localized Wannier orbitals.
We will make use here of the model Hamiltonian from
Ref. 9 and 12, which takes the form of a Hubbard model
on the honeycomb superlattice with a two-fold orbital
degeneracy in addition to spin degeneracy.

The question then arises as to how this model should be
analyzed. Many investigations in this field have employed
a strong coupling approach, assuming that the interac-

tions are large compared to the bandwidth [8, 10, 14, 15].
Here we take the opposite approach, and ask: what if the
residual bandwidth is still large enough to exceed the in-
teraction strength, such that the system is best described
by a weak coupling approach? This approach can be mo-
tivated by considering, for example, twist angles slightly
away from the magic angle. Our basic logic is to thor-
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FIG. 1. Phase diagram of superconductivities in the two
orbital honeycomb lattice model. The black outer hexagons
are the Brillouin zone boundaries of honeycomb lattice, while
the inner green curves represent the Fermi surfaces. Near the
Van Hove filling, a d + id chiral superconductivity is dom-
inant, within the Kohn-Luttinger approach. The phase of
order parameter winds ±4π around the Fermi surface, where
the angle θ = ±2π/3 is defined. In the other regimes, a
f -wave superconductivity is favored. Both of the dominant
superconductivities manifest spin singlet pairing.
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oughly explore the superconducting physics in the weak
coupling regime, in the hope that this may provide in-
sight into the experiments. We therefore analyze the on-
set of superconductivity in the model from Ref. 9 and
12, assuming weak coupling, at a range of doping levels.
Since the experimental phase diagram looks similar to
that for high Tc materials, we assume that the supercon-
ductivity arises from a purely electron mechanism. Due
to the large lattice constant in the Moire superlattice,
we further assume that the electron-electron repulsion
can be well approximated by an onsite ‘Hubbard’ repul-
sion. Finally, we assume that the pairing arises from the
Kohn-Luttinger mechanism [16–21], which is the most
generic method for obtaining pairing from repulsion at
weak coupling. Of course, weak coupling superconduc-
tivity generically involves transition temperatures much
lower than Fermi temperatures, whereas experimentally
Tc/TF is not that small, so we do not expect this pic-
ture to be quantitatively accurate. Nevertheless, it may
provide insight into what is going on.

We pay particular attention to the SU(4) spin and or-
bital degeneracy, and to its lifting. The assumption of
full SU(4) symmetry greatly simplifies the analysis. We
use the Fierz identity [22–25] to decompose the interac-
tions into pairing channels characterized by the SU(4)
irreducible representations. These pairings can be inter-
preted as combinations of singlets and triplets of orbital
and spin pairings. Adopting a patch description of the
Fermi surface, we perform the Kohn-Luttinger analysis
and determine the potential superconducting states in a
broad range of fillings (Fig. 1). Near the Van Hove filling,
we find dominance of d-wave superconductivity, whereas
away from Van Hove filling, f -wave superconductivity
dominates. These findings are similar to earlier investiga-
tions of Kohn-Luttinger superconductivity on the honey-
comb lattice [20]. We then turn to the lifting of the SU(4)
degeneracy. We show that an effective anti-Hund’s cou-
pling emerges from the renormalization of bare Hund’s
coupling. Combining this with a Ginzburg-Landau anal-
ysis, we conclude that close to Van Hove filling, a spin
singlet d+ id pairing state should form (consistent with
several other works). Away from Van Hove filling, we
predict an unusual spin singlet and orbital singlet f -wave
pairing state, which would be forbidden in the absence
of orbital degeneracy by Fermi statistics.

We now briefly discuss how our work relates to the
prior literature. Where the larger graphene literature
goes, our work builds directly on old analyses of super-
conductivity in doped single layer graphene [18–20]. The
key difference from that older literature is in the incor-
poration of the orbital degeneracy (absent in single layer
graphene), and the analysis of lifting the resulting en-
larged degeneracy. Where the more recent twisted bi-
layer graphene literature is concerned, the closest paral-
lels are to other works taking a weak coupling approach
[21, 26–29]. However, these works focus on the vicinity
of Van Hove filling, whereas we consider a broader dop-
ing range. The methods employed are also different. In

Ref. 26 and 27 the random phase approximation (RPA)
is employed, whereas in Ref. 29 a parquet renormaliza-
tion group analysis similar to Ref. 19 is performed. In
the immediate vicinity of Van Hove filling, the nesting of
the Fermi surface gives rise to various competing insta-
bilities, and this competition is difficult to resolve within
RPA or Kohn-Luttinger type approaches. In contrast,
the parquet renormalization group analysis [29] has the
advantage of treating all instabilities on an equal footing,
and predicting a leading instability. On the other hand,
the Kohn-Luttinger analysis that we perform has the ad-
vantage of being extremely transparent, as well as easy
to extend away from Van Hove filling. It is in any case
reassuring that RPA calculations, parquet renormaliza-
tion group, and Kohn-Luttinger calculations all predict a
spin singlet d + id chiral superconductor near Van Hove
filling (similar also to the old literature on single layer
graphene [19]). The Kohn-Luttinger analysis of Ref. 21
is an outlier, predicting p-wave pairing, in contrast to
our analysis. We do not understand the discrepancy, but
speculate that it comes from a different choice of model
Hamiltonian. None of these works consider the pairing
far from Van Hove filling, where we find an unusual spin
singlet f -wave pairing state.

II. MODEL

We start with the analysis of an SU(4) symmetric two
orbital Hubbard model on the honeycomb lattice [9, 12]

H = −t
∑
〈ij〉

(
c†i cj + h.c.

)
+
U

2

∑
i

(
c†i ci

)2

− µ
∑
i

c†i ci.

(1)
Each vector ci = (cix↑, cix↓, ciy↑, ciy↓)T describes the
four onsite degrees of freedom composed of two orbitals
τ = x, y and two spins σ =↑, ↓. The corresponding Pauli
matrices ~τ = (τ0, τ ) and ~σ = (σ0,σ), where τ0 = σ0 = 1,
serve as convenient representations in later analysis. We
choose the hopping constant t > 0, the onsite repulsion
U > 0, and the chemical potential µ as real numbers,
where the weak coupling condition U � t is imposed.
The lattice spacing is set as unity.

A. Noninteracting theory

The noninteracting theory manifests two bands with
dispersion energies

± εk = ±t

√
1 + 4 cos

3kx
2

cos

√
3ky
2

+ 4 cos2

√
3ky
2

. (2)

Each band manifests four-fold degeneracy, corresponding
to the SU(4) symmetry of the model. We focus on the
positive bands with µ > 0, while the analysis of negative
bands is similar. The noninteracting Hamiltonian can be
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expressed as

H0 =
∑
k

ξkc
†
kck, (3)

where ck is redefined as the positive energy modes. The
relative energy to the Fermi level is ξk = εk − µ.

The Brillouin zone is a hexagon with six corner Dirac
points (0,±4π/3

√
3) and (±2π/3,±2π/3

√
3). Starting

from the full filling µ = 3t, the decrease of filling mani-
fests a deformation of Fermi surface from the center point
to a hexagon at Van Hove filling µ = t. The six corner
Van Hove points (±2π/3, 0) and (±π/3,±π/

√
3) exhibit

logarithmically divergent densities of states, known as the
Van Hove singularity. When the filling further decreases
0 < µ < t, the Fermi surface splits into six distinct arcs,
and shrinks into the Dirac points at the half filling µ = 0.

B. Interaction and pairing channels

Our main purpose is to probe the potential supercon-
ductivity induced by the Kohn-Luttinger renormalization
[16]. Despite the constant repulsion in the bare theory,
the renormalized interaction can acquire momentum de-
pendence from the high order corrections. We take the
interaction with general momentum dependence

Hint = −1

2

∑
kk′

Vk−k′(c†kck′)(c†−kc−k′) (4)

as a starting point for the analysis of pairing channels.
The zero momentum pairing and the minus sign are im-
posed as in conventional studies of superconductivity.

The Fierz identity is frequently utilized to derive the
pairing channels from the four fermion interactions [22–
25]. A first attempt regards the constraint of Fermi
statistics. We separate the four fermion part in Eq. (4)
into two pairing channels

(c†kck′)(c†−kc−k′) =
1

4

[
(~P sk)† · ~P sk′ + (~P ak )† · ~P ak′

]
. (5)

The pairing operators consist of the (anti)symmetric
SU(4) irreducible representations [8, 22]

(~P s,ak )† = c†k
~Ms,a[γ(c†−k)T ], (6)

thereby feature the (anti)symmetric pairing of quantum
numbers. Analogous to the time reversal operator iσy for
spin-1/2 systems, the unitary operator γ = i(iτy)(iσy)
is defined with γ2 = −1. The 10(6) component vector
~Ms(a) represents the (anti)symmetric SU(4) irreducible

representations normalized by Tr[Ms,a
ζ (Ms,a

ζ )†] = 4,
where η denotes the characteristic quantum number for
a pairing channel.

The symmetric and antisymmetric pairing channels
can be interpreted more clearly in the singlet-triplet rep-
resentation. Consider the combinations of singlets and

triplets between the orbital and spin pairings. While the
symmetric pairings are composed of either two singlets
or two tripletsMs

ζ = τ0σ0, τ iσj , the antisymmetric pair-

ings feature one singlet and one tripletMa
ζ = τ0σi, τ iσ0.

With the aid from the orbital pairings, both spin sin-
glet and triplet pairings can appear in the two pairing
channels. This feature indicates that the model with two
orbitals Eq. (1) can potentially support pairing states
that are unavailable in the usual systems.

The judgement of pairing channels also requires an
analysis of the momentum dependent interaction Vk−k′ .
Due to Fermi statistics, the interactions experienced by
symmetric and antisymmetric quantum number pairings
are

V s,ak−k′ =
1

2
(Vk−k′ ∓ Vk+k′) , V s,ak−k′ = ∓V s,ak+k′ . (7)

The absence of V
a(s)
k−k′ for (anti)symmetric quantum num-

ber pairings can be confirmed by examining the cancel-
lation between ±k′ domains in the interaction Eq. (4).

From the analysis of compatibility with Fermi statis-
tics, the Hamiltonians in the two pairing channels are
determined

Hs,a =
∑
k

ξkc
†
kck −

1

8

∑
kk′

V s,ak−k′(~P
s,a
k )† · ~P s,ak′ . (8)

In general, the interaction V s,ak−k′ is not diagonal in mo-
mentum space representation. This necessitates solving
the related eigenvalue problem and evaluating the pairing
channels with different momentum space configurations.
We address this issue in the next subsection.

C. Patch models

In the low filling regime, the Fermi surface is domi-
nated by some ‘hot spots’. These hot spots constitute a
simplified patch model [19, 20] for the Fermi surface. The
choice of patch models depends strongly on the electron
filling (Fig. 2). Near Van Hove filling µ ≈ t, we conduct
the analysis in two kinds of patch models. Patch model I
exhibits the patches near the six Van Hove points, while
in patch model II the patches sit near the six edge cen-
ters of Fermi surface. For the lower fillings 0 < µ < t,
only patch model II is adopted. The patches are now
placed at the centers of the six Fermi arcs. In these
patch models, the fermionic operators exhibit three com-
ponents c± = (c±1, c±2, c±3) defined by the patch mo-
menta K±α’s. In this convention, the momentum space
summation becomes the summation over patch indices.

The pairing channels are determined by diagonalizing
the interaction matrix V s,a

V s,a =

 V s,a0 V s,aQ V s,aQ

V s,aQ V s,a0 V s,aQ

V s,aQ V s,aQ V s,a0

 . (9)
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FIG. 2. (a) Patch model II near the half filling. (b) Patch
model I (left) and patch model II (right) near the Van Hove
filling. The black outer hexagons indicate the Brillouin zone
boundaries, while the green inner curves represent the Fermi
surfaces. The patches are represented by the brown solid
circles and are connected by the linking momenta Q’s.

The diagonal elements V s,a0 = (V0 ∓ V2K)/2 are intra-
patch interactions, while the offdiagonal ones V s,aQ =

(VQ∓ VQ+2K)/2 work between patches with linking mo-
mentum Q. After the diagonalization, the Hamiltonians
in the pairing channels take the form

Hs,a(i) =
∑
κ=±

ξκc
†
κcκ −

1

2
gs,a(i)(~P s,a(i))† · ~P s,a(i). (10)

The interactions gs,a(i)’s are the eigenvalues of the inter-
action matrix V s,a

gs,a(0) = V s,a0 + 2V s,aQ , gs,a(1) = gs,a(2) = V s,a0 − V s,aQ .

(11)
Correspondingly, the pairing operators

(~P s,a(i))† = c†+d
(i) ~Ms,a[γ(c†−)T ] (12)

are defined by the diagonal representations of orthonor-
mal eigenstates d(0) = (1/

√
3)diag(1, 1, 1), d(1) =

(1/
√

6)diag(2,−1,−1), and d(2) = (1/
√

2)diag(0, 1,−1).
Notice an extra factor of 4 in the interaction due to the
double counting of ±α for the pairing operators.

III. SUPERCONDUCTIVITY FROM WEAK
ELECTRONIC REPULSION

Having derived the pairing channels, the next task is to
analyze the potential pairing instabilities that can arise in

these channels. This seems impossible at first glance due
to the bare repulsive interaction. However, as the high
order corrections are taken into account, the repulsive
interaction can be screened or even overscreened. The
realization of attractive interaction and superconductiv-
ity therefore becomes possible. This mechanism is known
as the Kohn-Luttinger renormalization [16].

A. Superconducting features of pairing channels

Before embarking on the Kohn-Luttinger analysis, we
inspect the potential superconducting features of the
pairing channels [20, 30]. The standard analysis regards
the gap function and the corresponding order parameter

∆
s,a(i)
αηη′ = d(i)

αα
~Ms,a
ηη′ · ~∆s,a(i), ~∆s,a(i) =

gs,a(i)

2
〈~P s,a(i)〉,

(13)
where α, i, and η label the patches, eigenvectors, and
quantum numbers, respectively. When the quantum
number pairing is symmetric, the gap function is odd

under inversion ∆
s(i)
α = −∆

s(i)
−α . One f -wave and two de-

generate p-wave pairing channels are identified. For the
antisymmetric quantum number pairings, the even gap

functions ∆
a(i)
α = ∆

a(i)
−α indicate one s-wave and two de-

generate d-wave pairing channels. We label these pairing
channels by l = s, p1, p2, d1, d2, f in the following context.

B. Kohn-Luttinger renormalization

In the original model, the only interaction is the con-
stant onsite repulsion Vk−k′ = −U/2. Only the s-
wave pairing channel experiences a finite repulsion gs =
−3U/2. Under the Kohn-Luttinger renormalization, the
interaction is corrected by the second order diagrams
(Fig. 3). These diagrams are described by the static po-
larization bubbles Πq = −T∑ω

∫
p
GpωG(p+q)ω, where

Gpω is the free fermionic propagator. The negative sign
is introduced so that the polarization bubbles are posi-
tive semidefinite. With a summation over all diagrams,
the correction to the interaction is determined

δVk−k′ =
U2

4
(2Πk−k′ −Πk+k′) . (14)

Notice that the first term is absent when there is only
spin-1/2 degeneracy [16, 17, 20], since the diagrams char-
acterized by Πk−k′ cancel out all together.

Calculating polarization bubbles is significantly sim-
plified in the patch models. The domain of momentum
integral in Πq reduces to the patch pairs with linking
momentum q. We derive the renormalized interactions
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in the pairing channels

gf =
3U2

8
(Π0 −Π2K + 2ΠQ − 2ΠQ+2K) ,

gp =
3U2

8
(Π0 −Π2K −ΠQ + ΠQ+2K) ,

gs = −3U

2
+
U2

8
(Π0 + Π2K + 2ΠQ + 2ΠQ+2K) ,

gd =
U2

8
(Π0 + Π2K −ΠQ −ΠQ+2K) .

(15)

In f -wave and p-wave pairing channels, the only differ-
ence from single layer graphene is an extra factor of three
in the corrections [20]. However, opposite signs arise in
s-wave and d-wave pairing channels, necessitating a com-
prehensive reexamination.

For the single layer graphene, the dominant pairing
channels at different fillings have been examined [20].
The analysis reveals d-wave superconductivity in the
vicinity of Van Hove filling, while f -wave superconductiv-
ity takes over away from Van Hove filling. In the two or-
bital model adopted to describe twisted bilayer graphene,
similar results are obtained. We briefly summarize our
main results in the remaining part of this section. A
comprehensive analysis is presented in Appendix A.

Away from Van Hove filling, all patch pairs provide
similar contributions. The analysis can be executed by
counting the available patch pairs in the polarization
bubbles. We utilize patch model II near the half fill-
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FIG. 3. (a) Particle-particle channel with bare repulsion. (b)
The second order diagrams in the Kohn-Luttinger renormal-
ization. The four diagrams are described by the polarization
bubbles 4Πk−k′ , −Πk+k′ , −Πk−k′ , and −Πk−k′ , respectively.
A summation over these diagrams provides the correction to
the interaction Eq. (14).

ing. The evaluation of interactions Eq. (15) reveals the
dominance of f -wave superconductivity. Notice that the
interaction is three times stronger than that in the sin-
gle layer graphene. This enhancement is caused by the
enlarged contribution from the internal fermion loop in
two orbital model. Similar analysis also applies to the
regimes near but finitely distant from Van Hove filling.
With the examination of both patch models, the domi-
nance of f -wave superconductivity is again confirmed.

The analysis becomes more complex in the vicinity of
Van Hove filling. Due to the Van Hove singularity and
the nesting of Fermi surface, the polarization bubbles ac-
quire logarithmically divergent scalings as either ln(Λ/T )
or ln2(Λ/T ). Here Λ is an ultraviolet cutoff determined
by the patch size. In patch model I, an attractive cor-
rection with divergent scaling ln2(Λ/T ) arises only in the
s-wave pairing channel. However, the second order cor-
rection is not expected to overcome the bare repulsion in
perturbation theory. On the other hand, patch model II
exhibits attrative corrections in both s-wave and d-wave
pairing channels, where the s-wave pairing channel again
remains repulsive. This suggests the dominance of d-
wave superconductivity in the vicinity of Van Hove filling,
much as occurs for single layer graphene. Notice however
that the attractive correction acquires a logarithmic di-
vergence ln(Λ/T ), instead of the more divergent scaling
ln2(Λ/T ) arising in single layer graphene [20].

Of course, the logarithmic divergences in polariza-
tion bubbles suggest the breakdown of perturbation the-
ory. Furthermore, the existence of competing order-
ing tendencies near Van Hove filling implies that Kohn-
Luttinger analysis alone is not trustworthy. The parquet
renormalization group [19, 29, 31] is the standard way to
solve these problems. However, parquet analysis at Van
Hove filling still yields the leading superconducting insta-
bility in the d-wave pairing channel [32]. The conclusion
of our Kohn-Luttinger analysis is therefore reinforced.

With the Kohn-Luttinger renormalization, the poten-
tial superconductivities at different fillings have been de-
termined. We expect d-wave pairing close to Van Hove
filling, and f -wave pairing away from Van Hove filling.

IV. BREAKDOWN OF DEGENERACIES

We have discussed the potential pairing instabilities
in the model Eq. (1). Large degeneracies are present
due to various quantum number pairings and momentum
space configurations. In practice, such degeneracies are
likely lifted by symmetry breaking perturbations. Here
we examine the splitting of degeneracies exhibited by the
d-wave and f -wave superconductivity.
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A. d-wave superconductivity

1. Effective anti-Hund’s coupling

Since the d-wave pairing channels exhibit antisymmet-
ric quantum number pairings, the breakdown of degen-
eracy can benefit from the onsite perturbations. In mul-
tiorbital systems, the spin configurations are usually de-
termined by the Hund’s coupling [8, 9]

HJ = −J
∑
i

∑
ττ ′

Siτ · Siτ ′ . (16)

We consider the effect of perturbative Hund’s coupling
J � U on the degenerate d-wave pairing channels. With

the fermionic representation Siτ =
∑
σσ̃ c

†
iτσ(σσσ̃/2)ciτσ̃,

a four fermion interaction is obtained

HJ = −J
4

∑
i

∑
ττ ′

∑
σσ̃σ′σ̃′

(σσσ̃ · σσ′σ̃′) c†iτσc
†
iτ ′σ′ciτ ′σ̃′ciτσ̃.

(17)
The identity σσσ̃ ·σσ′σ̃′ = 2δσσ̃′δσ′σ̃−δσσ̃δσ′σ̃′ is exploited
to decompose the Pauli matrices. While the second term
enhances the onsite repulsion U trivially, the first term
provides a nontrivial perturbation.

We ignore the trivial part and apply the Fierz identity.
While the orbital representation exhibits the normal in-
ner product ~τ(iτy) · (iτy)†~τ †, the spin representation is
transposed [~σ(iσy)]T · (iσy)†~σ†. An expression in terms
of pairing channels arises

HJ =
J

16

∑
kk′

[
−(~P τ

0σ
k )† · ~P τ0σ

k′ + (~P τσ0

k )† · ~P τσ0

k′

]
,

(18)
where the antisymmetric pairing is demanded due to
Fermi statistics. Notice a splitting of onsite repulsion
δU ∼ ±J between the spin singlet and triplet pairings.
The spin singlet pairing channels gain larger onsite re-
pulsion U , thereby experiencing a stronger attractive in-
teraction after the Kohn-Luttinger renormalization. We
conclude that the d-wave superconductivity near Van
Hove filling manifests the spin singlet pairing.

The preference of spin singlet pairing due to Hund’s
coupling deserves a special discussion. In the bare the-
ory with Hund’s coupling, the spin triplet pairings gain
lower energy than the spin singlet pairing. A dominant d-
wave superconductivity with spin triplet and orbital sin-
glet pairings is therefore identified in an effective model
with strong coupling [8]. However, the experimental re-
sults indicate a spin singlet pairing in the superconduc-
tivity of twisted bilayer graphene [1]. This can be demon-
strated in models with either a violation of Hund’s first
rule [14] or an anti-Hund’s coupling [27]. We argue that
the anti-Hund’s coupling can be regarded as a result of
Kohn-Luttinger renormalization. In the pairing channels
with superconductivity, the splitting of degeneracy be-
tween spin singlet and triplet pairings is determined by
the second order corrections Eq. (15). The bare Hund’s

coupling Eq. (16) is converted to an effective anti-Hund’s

coupling J̃ ∼ −UJ under Kohn-Luttinger renormaliza-
tion. With this effective anti-Hund’s coupling, the spin
singlet pairing is favored in the superconductivity. No-
tice that this effect does not occur in the normal channels,
where the interaction remains repulsive.

The degeneracy can be further reduced by the pertur-
bative pair hopping interaction [9]

HJ′ =
J ′

2

∑
i,ττ ′σσ′

c†iτσc
†
iτσ′ciτ ′σ′ciτ ′σ (19)

with J ′ � U . While the spin representation remains
the original inner product, the orbital representation ex-
hibits a single product [(−iτy)(iτy)][(iτy)†(−iτy)†]. The
expression

HJ′ =
J ′

8

∑
kk′

(P τ
yσ0

k )†P τ
yσ0

k′ (20)

indicates the dominance of a single pairing channel. With
τy = (i/

√
2)[(−

√
2τ+) +

√
2τ−], we identify the orbital

pairing as |1 0〉y = (i/
√

2)(|1 1〉 + |1 − 1〉). Such per-
turbation from the pair hopping interaction can also be
identified as a part of the effective anti-Hund’s coupling.

We have seen a breakdown of degeneracy due to the
introduction of bare Hund’s coupling. After the Kohn-
Luttinger renormalization, the bare Hund’s coupling is
converted into an effective anti-Hund’s coupling, thereby
favors the spin singlet pairing. Despite the original six-
fold degeneracy in the quantum number pairings, only
one pairing channel dominates under the perturbations,
and this channel is spin singlet.

2. Ginzburg-Landau theory

There is still a two-fold degeneracy due to different d-
wave configurations. The breakdown of this degeneracy
can be analyzed through the Ginzburg-Landau theory
[19]. Writing the partition function as a coherent path
integral and applying the Hubbard-Stratonovich trans-
formation, we derive the free energy near the critical
temperature Tc (see Appendix B)

F [∆̄1,2,∆1,2] = r
(
|∆1|2 + |∆2|2

)
+ u

(
|∆1|4 + |∆2|4

)2
− u

3

[
2|∆1|2|∆2|2 −

(
∆2

1∆̄2
2 + ∆̄2

1∆2
2

)]
.

(21)
Each order parameter ∆i corresponds to a d-wave pairing
channel. While the quadratic coefficient r = α(T − Tc)
with α > 0 changes sign across the critical temperature
Tc, the quartic coefficient u is always positive. The min-
imal free energy occurs when |∆1| = |∆2| = ∆ with

∆ =
√
−r/4u, and ∆2/∆1 = ±i. Correspondingly, the

gap function in the patch representation is

∆d
ηη′ = (τyσ0)ηη′∆

1√
3

(1, e±2πi/3, e∓2πi/3). (22)
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The phase of the gap function exhibits a winding e±2iφ

along the Fermi surface, where φ is the polar angle in
the momentum space. A phase ±4π is gained after a full
winding. This state can be identified as a d + id chiral
superconductivity with broken time reversal symmetry
and nontrivial topological features [8, 19].

B. f-wave superconductivity

The f -wave pairing is symmetric in quantum numbers
(therefore antisymmetric in its real space structure), and
so its degeneracy cannot be lifted by onsite perturbations.
To break the degeneracy, we must introduce extended
interactions. Consider the extended Hubbard model with
significantly decaying repulsions. Previous investigation
[20] indicates a proportionality of leading correction to
the second neighbor repulsion δgf ∼ −U2. Introduce a
spin exchange interaction

HJ2 = J2

∑
〈〈ij〉〉

∑
ττ ′

Siτ · Sjτ ′ (23)

with J2 � U2. By similar decomposition to the treat-
ment of Hund’s coupling, we arrive at the expression

HJ2 =
J2,k−k′

16

∑
kk′

[
−(~P ~τσ

0

k )† · ~P ~τσ0

k′ + (~P ~τσk )† · ~P ~τσk′

]
(24)

and an additional trivial correction −J2 to the repulsion
U2. For most materials described by the Hubbard mod-
els, the spin exchange exhibits the antiferromagnetic fea-
ture J2 > 0. The repulsion U2 is suppressed more in the
spin singlet pairing channel. Therefore, the f -wave su-
perconductivity manifests the spin singlet pairing. When
the opposite situation occurs, the spin triplet pairing is
favored by a ferromagnetic spin exchange J2 < 0. No-
tice that the superconductivity is triggered only when
the Kohn-Luttinger renormalization overcomes the bare
extended repulsion.

V. DISCUSSION AND CONCLUSION

We have demonstrated how superconductivity emerges
from weak electronic repulsion in an effective two or-
bital honeycomb superlattice model. The pairing chan-
nels exhibit an approximate SU(4) symmetry. Utiliz-
ing the patch models, we conduct the Kohn-Luttinger
renormalization to probe the potential superconductiv-
ities in a broad range of fillings. Near the Van Hove
filling, the dominant pairing channel is d-wave, whereas
away from Van Hove filling it is f -wave. We have inves-
tigated the lifting of degeneracy by perturbations. We
have shown that a bare Hund’s coupling is converted to
an effective anti-Hund’s coupling under Kohn-Luttinger
renormalization, and thereby selects a single spin singlet
pairing channel for the d-wave pairing. Performing also

a Ginzburg-Landau analysis, we therefore predict a spin
singlet d+id pairing state close to Van Hove filling. Away
from Van Hove filling, f -wave pairing dominates. The
degeneracy now is only lifted when extended interactions
are taken into account. With an antiferromagnetic spin
exchange, spin singlet pairing is favored.

Our study provides a clean and systematic analysis of
superconductivity born of weak repulsion in an effective
model for twisted bilayer graphene. How robust the con-
clusions are to the details of the model remains to be
established, but it may be hoped that the conclusions
are robust. One important feature that has not been
addressed is the insulating state observed near the su-
perconducting dome [1, 2]. This insulating state may be
related to the density wave states in the weak coupling
regime. Exploring the competition between supercon-
ducting and density wave states is an important open
problem, that we however leave to future work [31].
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Appendix A: Kohn-Luttinger renormalization

In the Kohn-Luttinger renormalization, the static part
Πq of the polarization bubble

Πqω̃ = −
∑
ω

∫
p

GpωG(p+q)(ω+ω̃) (A1)

is defined by the limit ω̃ → 0. Here Gpω = 1/(−iω+ξp) is
the free fermionic propagator. The Matsubara frequen-
cies ω and ω̃ correspond to the fermionic and bosonic
modes, respectively. After the Matsubara frequency sum-
mation, the polarization bubble is transformed into

Πqω̃ =

∫
p

f(ξp+q)− f(ξp)

iω̃ − (ξp+q − ξp)
, (A2)

where f(z) = 1/(ez/T + 1) is the Fermi function.
We follow the analysis of different pairing channels at

various fillings in Ref. 20. Away from Van Hove fill-
ing, the Fermi surface is not nested, and the density of
states is finite. Since all patch pairs provide similar con-
tributions, the corrections can be analyzed by counting
the numbers Nq of patch pairs involved in the polariza-
tion bubbles. Things become significantly different in the



8

vicinity of Van Hove filling. Whenever a patch pair expe-
riences the divergent density of states, a logarithmically
divergent factor ln(Λ/T ) arises. Here the ultraviolet cut-
off Λ corresponds to the size of patches. The same factor
also shows up when the patch pairs access the nesting
of Fermi surface, where ξp+q = −ξp for momenta p’s
in the patches. Due to these divergent characteristics,
the corrections become remarkably different and requires
special studies.

a. Near half filling

When the system is close to the half filling µ & 0,
the patches are approximated by the six Dirac points.
In this approximation, the momenta Q and Q + 2K
are equivalent to 0 and 2K up to some reciprocal lat-
tice vectors. The corresponding polarization bubbles
can also be identified with each other, where Π0 = ΠQ

and Π2K = ΠQ+2K. While the zero momentum 0 links
N0 = 6 patches to themselves, each momentum 2K con-
nects N2K = 3 pairs of patches. This counting implies
an approximate relation between the polarization bub-
bles Π2K ≈ Π0/2. From Eq. (15), we find attractive cor-
rections to interaction in both s-wave and f -wave pairing
channels. The s-wave pairing channel remains repulsive
due to the bare repulsion, while the f -wave pairing chan-
nel exhibits a nontrivial attractive interaction

gf ≈ 9U2

16
Π0. (A3)

Therefore, the f -wave superconductivity dominates in
this regime. Notice that the polarization bubble Π0 is
determined by the density of states. The proportionality
to the chemical potential Π0 ∼ µ indicates the onset of
superconductivity only at finite filling µ > 0.

b. Near Van Hove filling

The features of superconductivity vary significantly
when the system is close to Van Hove filling µ = t.
We first examine the corrections in patch model II. As
the system is finitely distant from Van Hove filling, the
counting of patch pairs still applies. With the numbers
of patch pairs for linking momenta N0 = 6, N2K = 1,
and NQ = NQ+2K = 2, the retention of f -wave super-
conductivity is confirmed. Notice the potential degener-
acy with p-wave pairing channel in these regimes. When
the extended repulsions are introduced, the dominance
of f -wave pairing channel is retrieved [20]. The correc-
tions in the vicinity of Van Hove filling require special
studies. Due to the nesting of Fermi surface, the polar-
ization bubble Π2K becomes logarithmically divergent.
The interaction in the f -wave pairing channel becomes
negative, and the corresponding superconductivity disap-
pears. However, attractive corrections with logarithmic

divergences ln(Λ/T ) arise in the s-wave and d-wave pair-
ing channels. While the s-wave pairing channel remains
repulsive due to the bare repulsion, the d-wave pairing
channel acquires an attractive interaction. Therefore, the
d-wave superconductivity can arise in this regime.

The examination of patch model I is also necessary.
When the filling is away from Van Hove filling, the po-
larization bubble Π0 is the largest, and the f -wave super-
conductivity is dominant [20]. When the Van Hove fill-
ing is approached, the divergent density of states results
in logarithmic divergences ln(Λ/T ) in the polarization
bubbles Π0 = Π2K. The other two polarization bubbles
ΠQ = ΠQ+2K gain the additional access to the nesting
of Fermi surface, thereby manifest the more divergent
scaling ln2(Λ/T ). The only attractive correction with di-
vergence ln2(Λ/T ) arises in the s-wave pairing channel.
However, the second order correction can not exceed bare
interaction in perturbation theory. Therefore, there is no
superconductivity in patch model I, and the only pairing
instability arises in the d-wave channel from the states
captured by patch model II.

Appendix B: Ginzburg-Landau theory

In this section, we derive the free energy in terms of
order parameters near the critical temperature Tc. The
analysis starts with the coherent path integral formula-
tion of partition function

Z =

∫
D(ψ†, ψ)e−S[ψ†,ψ], (B1)

where the action is

S[ψ†, ψ] =

∫
τ

{∑
κ=±

ψ†κ(∂τ + ξκ)ψκ

− 1

2
gd
[
(P d1)†P d1 + (P d2)†P d2

]}
.

(B2)

With the Hubbard-Stratonovich transformation, the
quartic interaction is decoupled by the bosonic order pa-
rameters ∆1 and ∆2. Define the Nambu spinor

Ψ =

(
ψ+

γ(ψ†−)T

)
(B3)

and the inverse Gor’kov Green’s function

G−1 =

(
−∂τ − ξ+

∑
i ∆id

(i)τyσ0∑
i ∆̄id

(i)τyσ0 −∂τ + ξ−

)
. (B4)

The partition function is expressed as a path integral of
Nambu spinor and order parameter

Z =

∫
D(∆̄1,2,∆1,2)D(Ψ†,Ψ)e−S[∆̄1,2,∆1,2,Ψ

†,Ψ], (B5)
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where the action becomes

S[∆̄1,2,∆1,2,Ψ
†,Ψ] =

∫
τ

(
2

gd

∑
i

|∆i|2 −Ψ†G−1Ψ

)
.

(B6)
Impose the static condition ∆i(τ) = ∆i and con-
vert to the Matsubara frequency representation Ψ(τ) =√
T
∑
ω Ψωe

−iωτ . Integrating out the Nambu spinor, we
arrive at the partition function

Z =

∫
D(∆̄1,2,∆1,2)e−F [∆̄1,2,∆1,2]/T (B7)

along with the free energy

F [∆̄1,2,∆1,2] =
2

gd
(
|∆1|2 + |∆2|2

)
− Tr lnG−1. (B8)

Notice that the identity ln detG−1 = Tr lnG−1 has been
utilized. The Gor’kov Green’s function in momentum
frequency space representation is

G−1 =

(
G−1

+

∑
i ∆id

(i)τyσ0∑
i ∆̄id

(i)τyσ0 G−1
−

)
, (B9)

where we define the free electron and hole propagators
as G± = 1/(iω ∓ ξ±).

We expand the free energy in the vicinity of critical
temperature Tc. Define G−1

0 = G−1(∆1,2 = 0) and ∆̂ =

G−1−G−1
0 . Ignoring the constant part, the expansion up

to quartic order takes the form

F [∆̄1,2,∆1,2] =
2

gd
(
|∆1|2 + |∆2|2

)
+

1

2
Tr(G0∆̂)2 +

1

4
Tr(G0∆̂)4,

(B10)

where

(G0∆̂)2 =
∑
ij

d(i)d(j)diag(G+G−∆i∆̄j,G−G+∆̄i∆j)

(B11)
serves as the small parameter of the expansion. With the
nonzero quartic traces Tr(d(1))4 = Tr(d(2))4 = 1/2 and
Tr[(d(1))2(d(2))2] = Tr(d(1)d(2)d(1)d(2)) = 1/6, we arrive
at the free energy

F [∆̄1,2,∆1,2] = r
(
|∆1|2 + |∆2|2

)
+ u

[ (
|∆1|4 + |∆2|4

)
+

4

3
|∆1|2|∆2|2 +

1

3

(
∆2

1∆̄2
2 + ∆̄2

1∆2
2

) ]
.

(B12)
The quadratic coefficient r = 2/gd+4Tr(G+G−) exhibits
a linear scaling r = α(T − Tc) with α > 0, and a change
of sign occurs at the critical temperature Tc. Meanwhile,
the quartic coefficient u = Tr(G+G−G+G−) is always
positive so that the theory is stable.

The symmetry breaking in the ordered phase T < Tc
is derived from the minimization of free energy. Denote
the relative phase between the two order parameters as
Arg(∆2/∆1) = θ. The free energy can be rewritten as

F [∆̄1,2,∆1,2] = u
(
|∆1|2 + |∆2|2 +

r

2u

)2

− r2

4u

− 4u

3
sin2 θ|∆1|2|∆2|2,

(B13)

and the minimum occurs at |∆1| = |∆2| =
√
−r/4u with

θ = ±π/2.
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