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The halon is a special critical state of an impurity in a quantum-critical environment. The
hallmark of the halon physics is that a well-defined integer charge gets fractionalized into two parts:
a microscopic core with half-integer charge and a critically large halo carrying a complementary
charge of ±1/2. The halon phenomenon emerges when the impurity–environment interaction is
fine-tuned to the vicinity of a boundary quantum critical point (BQCP), at which the energies of
two quasiparticle states with adjacent integer charges approach each other. The universality class
of such BQCP is captured by a model of pseudo-spin-1/2 impurity coupled to the quantum-critical
environment, in such a way that the rotational symmetry in the pseudo-spin xy-plane is respected,
with a small local “magnetic” field along the pseudo-spin z-axis playing the role of control parameter
driving the system away from the BQCP. On the approach to BQCP, the half-integer projection of
the pseudo-spin on its z-axis gets delocalized into a halo of critically divergent radius, capturing the
essence of the phenomenon of charge fractionalization. With large-scale Monte Carlo simulations, we
confirm the existence of halons—and quantify their universal features—in O(2) and O(3) quantum
critical systems.

I. INTRODUCTION

If coupled to a ground-state many-body environment,
an impurity—static or mobile, with or without internal
degrees of freedom—gets dressed into a quasiparticle (po-
laron). The bare impurity normally carries well-defined
intrinsic charges—discrete quantum numbers such as,
e.g., the electric charge, particle number, or spin/angular
momentum projection. (Some or all the intrinsic charges
of the impurity can have zero values.) The charges of the
polaron, however, are not supposed to be simply inher-
ited from those of the bare impurity. Even more impor-
tantly, the latter charges do not have to be well-defined:
In the presence of the environment charges, an impurity
charge can become a bad quantum number.

The dichotomy of charge being either a good or bad
quantum number is relevant not only to the properties
of impurities/polarons. It applies to any kind of elemen-
tary excitations (quasiparticles). The famous example
of elementary excitations characterized by well-defined
particle charge are the quasi-particles/holes of Landau’s
normal Fermi liquid. Two textbook examples of quasi-
particles that cannot be characterized by a well-defined

particle charge are phonons in superfluids and fermionic
elementary excitations in superconductors.

In what follows, we will be mostly concerned with a
static impurity, in which case (the expectation value of)
the impurity charge is given by the integral of the ex-
pectation value of the charge-density distortion, δn(r),
caused by the impurity (localized at the origin of the
coordinates):

q =

∫
δn(r) ddr. (1)

When the bare impurity has its own non-zero charge,
the latter should be added to the r.h.s. of Eq. (1). [For a
mobile impurity, there is an analog of Eq. (1), where the
integrand is the environment-impurity correlator.] The
definition (1) implies a strict order of taking limits. The
thermodynamic limit of infinite system size is taken first.
This guarantees that δn(r) vanishes at r →∞. Only then
the infinite-range integration over r is performed.

In the case when the charge of the dressed impurity
is a good quantum number, q takes on a certain inte-
ger value, which is generically insensitive to moderate
changes in the coupling, V , between the impurity and
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the medium. If the impurity charge is not a good quan-
tum number, then the value of q is a continuous func-
tion of V , and should be understood exclusively as an
expectation—rather than eigen—value.

A peculiar situation emerges in the case when the
charge, while being robust with respect to small changes
of the coupling V , is not integer. Two characteristic
examples are (i) the excitations on top of the Laughlin
(fractional quantum Hall) ground state, and (ii) spinons
(domain walls) in one-dimensional insulators with broken
translation symmetry. For the simple reason that all the
eigenvalues of the operator of the total number of par-
ticles are integer numbers, the fractional charge cannot
be a good quantum number with respect to all possi-
ble measurements. In particular, any fractional charge is
doomed to come as a fluctuating integer number within
a measuring protocol—nowadays experimentally achiev-
able with ultracold atoms in optical lattices—resulting in
measuring the positions of all the particles in the system.
Nevertheless, the robustness of the fractional charge in
the above-mentioned examples is guaranteed by distinct
topological properties of the wavefunctions and in this
sense, does reveal universally good quantum numbers—
corresponding topological charges.

In this paper, we explore a mechanism of charge frac-
tionalization, which does not involve topological quan-
tum numbers and is due to rather special critical condi-
tions taking place at a boundary quantum critical point
(BQCP) of the transition between two states with well-
defined charges1. For a static impurity, a necessary con-
dition for the effect to take place is vanishing charge com-
pressibility. On the other hand, a necessary condition for
the absence of a trivial integer quantization of the charge
is the absence of the charge gap. The two competing (!)
conditions can be met in quantum-critical environments.
For an impurity without internal degrees of freedom, the
BQCP is achieved by fine-tuning the coupling strength
V to the critical value Vc. The same type of BQCP
emerges for a (pseudo-)spin-1/2 impurity with an appro-
priate coupling to the charge density of the (particle-hole
symmetric) quantum-critical environment. Here no fine-
tuning is required, since the symmetry between “spin-up”
and “spin-down” states automatically guarantees that
the impurity is at the BQCP, also implying that the local
“magnetic” field—breaking the symmetry between “spin-
up” and “spin-down” states—plays the role of the control
parameter (V −Vc) driving the system across the BQCP.
On the approach to BQCP, the charge fractionalization
comes in the form of a critically divergent halo carrying
the charge ±1/2. At the transition point, there is only a
microscopic core (with half-integer charge in the case of
spinless impurity and a zero charge in the case of spin-1/2
impurity). Across the BQCP, the sign of the halo flips,
while the structure of the core remains intact. Given the
key role played by the halo, we propose the term “halon”
for this type of the critical impurity state. The numeric
part of our study is based on Monte Carlo simulations
with worm algorithm.

The rest of the paper is organized as follows. In
Sec. I A, we discribe possible scenarios of the effect of
the environment on the impurity charge. In Sec. I B, we
introduce the halon. In Sec. I C, we discuss the relevance
of the Bose Kondo model to the problem of charge quan-
tization and the halon effect. In Sec. I D, we discuss the
quantum rotor model in the context of the problem of the
impurity charge. The absence of charge quantization for
a static impurity in a charge-compressible environment
is shown in Sec. II. The upper critical dimension for the
halon effect is discussed in Sec. III. Section IV—based
on standard general considerations—establishes a num-
ber of universal relations for the halon. Section V deals
with numeric study of the O(2) halon in 2D; it is based
on worm-algorithm simulations of J-current model. In
Sec. VI, we study a model for O(3) halon in 2D. The
concluding remarks are presented in Sec. VII.

A. Effect of the environment on the impurity
charge: Possible scenarios

With respect to a certain conserved Noether charge
and a static impurity, corresponding environments fall
into three categories: (i) environments with a charge gap
in the excitation spectrum, (ii) gapless environments with
finite compressibility, (iii) gapless environments which is
charge-incompressible. (A subtle difference between the
cases of static and mobile impurity will be discussed in
the end of this section.)

In the presence of the charge gap, the response of the
environment is quasi-perturbative. Therefore, the im-
purity charge is a good quantum number. Tuning the
strength of the impurity-environment coupling can only
cause a switch between two states with different charges
at a certain “transition point” Vc. The transition, how-
ever, is merely nominal, because the charge gap protects
the upper state from the decay, as long as the energy
difference between the two states remains lower than
the value of the gap, ∆. Hence, for each “transition”
point Vc, there are two associated end points: V+ > Vc
and V− < Vc; see Fig. 1. Normally, the charge-gapped
environment is also characterized by well-defined parti-
cle/hole elementary excitations (carrying the charge ±1)
with parabolic dispersion in the long-wave-limit; Mott
insulator being a very typical example. In this case,
the physics of the end point is universally captured by
the single-particle Schrödinger equation. When V ap-
proaches the end point V+ from below, the charge-M im-
purity experiences a dramatic evolution towards a loose
dimer consisting of a well-localized charge-(M + 1) im-
purity and a weakly bound quasihole, the latter being
described by the single-particle Schrödinger’s equation
with a trapping boundary condition at the origin. At
the end point V+, the quasihole unbinds. A similar pic-
ture, up to interchanging M + 1↔M and replacing the
weakly bound hole with a weakly bound particle, takes
place when V approaches the end point V− from above.
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FIG. 1. Schematic behavior of impurity in a charge-gapped
environment: The ground-state energy E as a function of the
impurity-environment interaction strength V , for two com-
peting ground states. The value Vc corresponds to a nominal
transition between the state of the impurity charge M and
the state of the impurity charge M + 1. The values V− and
V+ correspond to the two end points (black dots) defined by
the condition that the energy difference between the two com-
peting states is exactly equal to the charge gap ∆.

For a static impurity in a charge-compressible environ-
ment, there is a theorem—see Sec. II—stating that the
charge is not quantized. The theorem stems from the
fact that at V = 0, the linear response of the charge
q to a small change in V is proportional to the com-
pressibility of the environment. If the compressibility is
finite, then an arbitrarily small change in V causes a
change of the impurity charge, meaning the absence of
charge quantization. Of special interest is the case when
the compressible environment spontaneously breaks the
charge symmetry. Such an environment generates—via
the anomalous averages—an effective external field mix-
ing the states with different local charges, thus implying
that a local charge cannot be a good quantum number—
no matter whether the impurity is static or mobile.

The case (iii) is quite rich and intriguing. If the charge
is not quantized, there is little to discuss further. In con-
trast to that, the quantized charge under the conditions
of the case (iii) brings about an interesting problem of the
nature of the transition between two states with different
charges, as a function of the coupling strength V . The
absence of the gap renders the upper state generically
unstable with respect to the decay into the lower state.
Nevertheless, the asymptotic metastability can take place
in the limit V → Vc [see Fig. 2 (a)]. Such a scenario
is characteristic, for example, for the Fermi polaron2.
The necessary and sufficient condition for the asymptotic
metastability is the vanishing (in the V → Vc limit) ratio
of the decay width of the upper state to the energy dif-
ference between the upper and lower states. As a result,
the upper state is progressively well defined—and well
separated from the lower state—when V approaches Vc.
The critical point is thus essentially the same as in the
gapped case of Fig. 1: a doubly degenerate ground state
of the impurity at V = Vc.

There also exists a scenario [see Fig. 2 (b)]—observed
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FIG. 2. Schematic behavior of impurity in a gapless,
symmetry-preserving environment in the case when the im-
purity charge is a good quantum number: The ground-state
energy E as a function of the impurity-environment coupling
V . Two distinct scenarios are possible: (a) Two quasiparti-
cle states with quantized charge meet at a “first-order” phase
transition point, similar to that of Fig. 1. The difference with
the gapped environment here is that the upper states are de-
caying away from the critical point, the asymptotic metasta-
bility taking place in the limit V → Vc. (b) Two quasiparticle
states with quantized charge are connected by a continuous
phase transition—a boundary quantum critical point. The
notion of an excited quasiparticle state is ill defined here.

in our recent numeric study1—when Vc is the critical
point of a fluctuational quantum phase transition for the
impurity state, i.e., a boundary quantum critical point.
With respect to each of the two competing ground states
of the impurity, the BQCP plays the role of the end point
(with the halon effect taking place on the approach to it
from either side). It is this scenario that will be addressed
in detail in the present paper.

There is a subtle difference—with respect to the
charge-quantization properties—between the cases of
static and mobile impurity. For a mobile impurity, the
charge can be a good quantum number even in a com-
pressible environment, provided the charge symmetry is
not broken. An important example is the normal Fermi
liquid. In this environment, the charge of a static impu-
rity is not quantized, which is guaranteed by the above-
mentioned general theorem, as well as by the (system-
specific) Anderson orthogonality catastrophe3,4. In a
sharp contrast to that, a mobile impurity—the Fermi
polaron—features a well-defined charge2,3.

Our discussion of the impurity charge in various envi-
ronments will certainly be incomplete if we do not men-
tion the effect of trapping collapse—an infinitely large
charge of a static attractive impurity—that takes place
in mean-field critical environments5. We refer the reader
to Ref. 5 for more details.
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B. The halon

In the family of gapless but charge-incompressible (and
symmetry-preserving) environments, of a particular in-
terest are quantum critical systems, especially if the crit-
icality is described by a Wilson–Fisher conformal field
theory. When an impurity is put into a quantum critical
system, its interaction with the macroscopic fluctuations
often leads to nontrivial emergent physics6–12.

Recently, we addressed the charge quantization prob-
lem for a static impurity in a two-dimensional superfluid–
Mott-insulator quantum critical system1. Specifically, we
performed worm-algorithm simulations of the standard
Bose-Hubbard model on the square lattice, with the im-
purity (a trapping center) located at the site i = 0:

H = −
∑
〈ij〉

b†i bj+
U

2

∑
i

ni(ni−1)−µ
∑
i

ni+V ni=0. (2)

Here b†i and bi are, respectively, bosonic creation and an-
nihilation operators on the site i; the symbol 〈. . .〉 stands
for nearest-neighbors; U is the on-site interaction in units
of hopping amplitude, the latter being set equal to unity.
The simulations were performed at unit filling factor,
setting U and the chemical potential, µ, equal to their
critical values, Uc = 16.7424(1), µc = 6.21(2)13,14. We
observed a scenario of Fig. 2 (b), with a peculiar critical
behavior of the charge distribution, Fig. 3, which is likely
to be generic for all fluctuational transitions between the
two charge-quantized impurity states. When the cen-
ter strength V approaches its critical value Vc = 6.86(8),
the integer impurity charge separates into a short-ranged
half-integer core and a large halo carrying the comple-
mentary charge of ±1/2. The sign of the halo changes
across the transition and the radius of the halo, r0, di-
verges on the approach to Vc, following the critical law

r0 ∝ |V − Vc|−ν̃ , ν̃ = 2.33(5). (3)

We presented the following argument explaining why the
exact half-integer quantization of the halo charge—and,
correspondingly the charge of the core—follows from the
very fact of existence of the halo with diverging size r0.
The relativistic long-range physics of the U(1) quantum
criticality is particle-hole symmetric. Therefore, there
should exist two halo solutions that differ only by the sign
of the density distortion. In terms of these two solutions,
the net change of the impurity charge across the transi-
tion equals (plus/minus) two times the absolute value of
the halo charge. Since the change of the net charge is
±1, the halo charge has to be ±1/2. More generally, the
emergent particle-hole symmetry at V → Vc implies the
self-duality of the boundary quantum phase transition.

One can also show1 (corresponding analysis is rendered
in our Sec. IV) that the exponent ν̃ controls some other
critical properties; for example, the nonperturbative con-
tribution to the energy:

E(Vc)− E(V ) ∝ |V − Vc|ν̃ , (4)

VVc

q = M

M+1/2 M+1/2 M+1/2

-1/2 +1/2

q = M+1q = M+1/2

FIG. 3. Emergence of the halon. Tuning the impurity-
environment interaction strength V drives the quasiparticle
state across a boundary quantum critical point Vc. the inte-
ger impurity charge separates into a short-ranged half-integer
core and a large halo carrying the complementary charge of
±1/2. When V crosses the transition point, the charge in the
core remains the same, while the charge of the halo changes its
sign, thus providing the change of ±1 in the net quasiparticle
charge.

as well as the power-law charge distribution in the inner
part of the halo:

|δn(r)| ∝ 1

r2−s0 rs
, s = 1 + 1/ν̃ (r � r0) . (5)

In the present paper, we perform a comprehensive
study of the universal properties of the above-described
BQCP. In particular, we find the value of the critical ex-
ponent controlling the response to the local field break-
ing the U(1) symmetry. We also evaluate some univer-
sal constants. Our numeric analysis is based on a spin-
1/2 bosonic Kondo-type model, capturing the universal-
ity class of our BQCP, as explained in the next section.

C. The spin-1/2 Bose Kondo model

Consider a model where a static (pseudo-)spin-1/2
impurity couples to the U(1) Wilson–Fisher conformal
bosonic field by the following interaction Hamiltonian.

HBK = γ [ Ŝ+ ψ̂(r = 0) + Ŝ− ψ̂
†(r = 0) ] + hzŜz. (6)

Here ψ̂(r) is the field operator, Ŝz is the z-component of

the operator of spin, and Ŝ−+ and Ŝ− are corresponding
ladder operators.

The coupling (6) preserves the global U(1) symmetry of
the conformal field theory—with the global U(1) trans-
formation involving corresponding rotation of the spin
variables in the xy plane—leading to the conservation of
the Noether’s charge

Q = Ŝz +

∫
ddr ψ̂†ψ̂. (7)
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The U(1) Wilson–Fisher conformal bosonic field theory
is particle-hole symmetric. At hz = 0, the coupling (6)
respects this symmetry as well, with the particle-hole
transformation accompanied by flipping the spin vari-
ables with respect to the z-axis.

As long as we accept the concept of universality of
critical phenomena, we have to conclude that the model
(6) captures the universality class of the halon physics
of the Hamiltonian (2). An advantage of the model (6)
compared to (2) is that the particle-hole symmetry [emer-
gent in the model (2) in the long-wave limit at U = Uc,
µ = µc, and V → Vc] now takes place at the microscopic
level at hz = 0, meaning that the latter condition defines
the halon BQCP. The correlation length of the critical
response to small hz,

ξz ∝ |hz|−νz , (8)

defines the halo radius:

ξz ≡ r0, νz ≡ ν̃. (9)

At the halon BQCP, there is yet another exponent, inde-
pendent of ν̃ and associated with the correlation length
of the response to the local U(1)-breaking field. In terms

of the model (6), corresponding term, h⊥Ŝx or h⊥Ŝy, is
generated by coupling the spin to the magnetic field in
the xy-plane. For the associated correlation length we
then have

ξ⊥ ∝ |h⊥|−ν⊥ . (10)

The other critical exponents can be related to νz and ν⊥
by general arguments of the theory of critical phenomena.

The model (6) is known in literature11, along with
other models of impurities coupled to a bulk critical
environment8–10. However, the relevance of the model to
the halon physics was realized only recently, by Whit-
sitt and Sachdev in Ref.15, and by us in the present
paper. Whitsitt and Sachdev employed the model for
renormalization-group calculations, yielding, in particu-
lar, the values of the exponents νz and ν⊥. In what
follows, we present the results of worm-algorithm simu-
lations of a microscopic counterpart of (6) featuring the
built-in U(1)×Z2 symmetry at the critical point hz = 0.
In particular, we demonstrate (by showing that νz = ν̃
within the error bars) that the spin-1/2 impurity model
captures the universality class of the BQCP of the model
(2). We also produce a controlled numeric result for the
exponent ν⊥.

Kondo-type models, where a spin-1/2 impurity couples
to this or that gapless charge-conserving environment—
most notably, the bosonic one, giving rise to the family of
Bose Kondo models6–9,11—are particularly suited (while
being also interesting in a broader context) for addressing
the properties of the medium with respect to the quan-
tization of the impurity charge. In the absence of mag-
netic field applied to the spin-1/2 impurity: hz = 0, the
state of the impurity naturally corresponds to the critical

point Vc of the transition between two charge-quantized
states (if any, see Fig. 2.) The absence of charge quan-
tization corresponds to the Kondo effect, when the im-
purity entangles with the environment to form a singlet-
type state. The case of Fig. 2 (a) corresponds to the
absence of the Kondo effect. Here the impurity is essen-
tially disentangled from the bulk of the system. In terms
of the Kondo effect, the critical situation of Fig. 2 (b) is
marginal. In a sense, the effect does take place at hz = 0,
when the spin of the impurity entangles with the whole
system. However, the resulting state is critical and thus
is dramatically affected by a finite hz: The characteristic
length of the entanglement region—the halo—becomes fi-
nite. Note also that the ±1/2 charge of the halo naturally
follows from the first term of Eq. (7), and the self-duality
of the halon phase transition is seen at the microscopic
level by the hz → −hz symmetry.

In the renormalization group language applied to Bose
Kondo models (6), the two scenarios of Fig. 2, along with
the case of no charge quantization, are related to the
known three different types of the infrared fixed points
for the running coupling constant γ (at hz = 0)16. The
weak-coupling fixed point γ = 0 and the intermediate-
coupling fixed point γ > 0 represent the cases (a) and
(b), respectively, while the strong-coupling fixed point
γ =∞ represents the case of no charge quantization.

D. O(N) quantum rotor model

The Bose Hubbard model (2), a prototypical model for
the halon effect, has a disadvantage of not being particle-
hole symmetric at the microscopic level. As a result, ex-
plicit upgrading the Hamiltonian (2) to the Bose Kondo
model by replacing the last term with a spin-1/2 impu-
rity, along the lines of Eq. (6), has little practical sense.
The halon BQCP will take place at a certain finite non-
universal value of hz, analogous to non-universal finite
Vc.

The O(2) quantum rotor model captures the univer-
sality class of the quantum phase transition of the Bose
Hubbard Hamiltonian while having the desired micro-
scopic Z2 (particle-hole) symmetry. Furthermore, the
quantum rotor model is naturally formulated for the
group O(N) with any N ≥ 217:

ĤR =
g

2

∑
i

L̂2
i − J

∑
〈i,j〉

n̂i · n̂j . (11)

The rotor living on the site i of a certain lattice is de-
scribed by the operator n̂i of a unit vector in a gener-
alized N -dimensional coordinate space. Corresponding
momentum p̂i is introduced by the commutation rela-
tions [

n̂
(α)
i , p̂

(β)
i

]
= iδα,β , (12)

with α, β = 1, 2, . . . , N labelling the components. The
rotor angular momenta L̂i are the generators of the N -
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dimensional rotational symmetry group O(N); they have
N(N − 1)/2 independent components:

L̂
(αβ)
i = n̂

(α)
i p̂

(β)
i − n̂(β)i p̂

(α)
i . (13)

The first term in the Hamiltonian (11) is the inner prod-
uct of two angular momentum operator and plays role of
the kinetic energy of the rotors with 1/g the rotor mo-
ment of inertia, while the second term (with J > 0) is the
“ferromagnetic” coupling between the rotor orientations
on neighboring sites.

While elementary quantum rotors do not exist in na-
ture, the universality of quantum critical phenomena ren-
ders the model (11) relevant to a broad class of exper-
imentally realizable systems. As we already mentioned,
the N = 2 case captures the universality class of the
superfluid–Mott-insulator transition in the Bose Hub-
bard (and similar) models. Moreover, in the limit of large
integer filling factor, the Bose Hubbard model becomes
microscopically equivalent to the O(2) rotor model. In

this case, n̂
(1)
j and n̂

(2)
j are related to the bosonic cre-

ation operator by b̂†j ∝ (n̂
(1)
j + in̂

(2)
j )/2. The angular

momentum operator L̂j now has only one independent

component L̂
(12)
j . In terms of the underlying Bose Hub-

bard model at large integer filling factor, this opera-
tor corresponds to the deviation of the on-site occupa-
tion number from its expectation value. In the case of
N = 3, the quantum rotor model describes the spin-1/2
“dimerized” antiferromagnets, where each unit cell con-
tains even number of spins. In those systems, the angu-
lar momentum L̂j has three components corresponding
to three local magnetization projections.

The type of the ground state of the model (11) is con-
trolled by the dimensionless parameter g/J . At g/J � 1,
the first term dominates, leading the system to a quan-
tum “paramagnetic” state. On the other hand, the in-
teraction term in Eq. (11) is minimized by aligning the
rotors. This term dominates at g/J � 1, bringing the
system to a “magnetically” ordered state with 〈n〉 6= 0.
The competition between the two states leads to a con-
tinuous quantum phase transition at a certain critical
point (g/J)c. The model (11) is thus representative of
the O(N) quantum criticality (known to have emergent
Lorentz symmetry). In what follows, we will be assuming
that the ratio g/J is kept precisely at (g/J)c.

A static spinless impurity responsible for the halon ef-
fect in the quantum rotor model is introduced in a direct
analogy with the Bose Hubbard model (2): The impu-
rity has to couple to a Noether charge density operator.
Without loss of generality, we assume that correspond-
ing local field is applied to one of the components of the
orbital angular momentum, say L̂(12), on the site i = 0:

ĤR → ĤR + V L̂
(12)
i=0 . (14)

This term breaks the global symmetry from O(N) to
O(2)×O(N − 2), where the O(2) symmetry guarantees

that the total (12)-component of the angular momentum,

Q =
∑
i

L̂
(12)
i , (15)

is still a conserved charge.
Increasing the strength V of the local field causes the

trapped charge to change. If the charge is quantized—
and our unbiased simulations show that it is quantized
at least for N = 2 and N = 3, boundary quantum phase
transitions occur at certain finite critical values of V ,
with a certain finite interval around the point V = 0
corresponding to zero trapped charge. The Z2 (particle-
hole) symmetry of the rotor model guarantees the equiv-
alence between the positive and negative critical values
of Vc, but tells nothing about the critical values them-
selves. A more interesting situation takes place when
one introduces a spin-1/2 impurity [cf. Eq. (6)]:

ĤR → ĤR + γ
[
Ŝ+ n̂

(−)
i=0 + Ŝ− n̂

(+)
i=0

]
+ hzŜz, (16)

where

n̂
(±)
i = (n̂

(1)
i ± in̂

(2)
i )/2 (17)

are the ladder operators for the (12)-component of the
angular momentum:

[n̂
(±)
i , L̂(12)] = ∓n̂(±)i . (18)

In this model, the global Noether charge—the analog
of (15)—becomes

Q = Ŝz +
∑
i

L̂
(12)
i , (19)

and the Z2 (particle-hole) symmetry guarantees that
hz = 0 is the BQCP corresponding to the transition be-
tween the states with Q = +1/2 and Q = −1/2.

In the long-wave-length limit, the effective field theory
for the d-dimensional quantum rotor model at the quan-
tum critical point is a (d+1)-dimensional critical φ4 field
theory, where φ is a continuous O(N) vector field. The
most interesting case takes place at d = 2, where the crit-
icality is described by a non-trivial O(N) Wilson–Fisher
conformal quantum field theory.

II. ABSENCE OF CHARGE QUANTIZATION
FOR A STATIC IMPURITY IN A

CHARGE-COMPRESSIBLE ENVIRONMENT

Without loss of generality, we will be assuming that
the charge in question is associated with the number of
particles of the environment, and that we are dealing with
a continuous-space system, so that the static impurity is
represented by an external potential U(r):

Himp =

∫
U(r)n(r) ddr, (20)
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where n(r) is the operator of the number density.
The statement of the section title immediately follows

from the general relation

δq

δU(r)

∣∣∣∣
U≡0

= κ, (21)

where

κ =
∂n

∂µ
(in the grand-canonical variables) (22)

is the compressibility; the partial derivative being taken
in the grand-canonical variables, i.e., at fixed volume and
temperature. We thus proceed with deriving Eq. (21).

Consider a cubic d-dimensional system of linear size L,
at a small but finite temperature T . The compressibility
of the system is given by

κL ≡ κL(µ, T ) =

(
∂n

∂µ

)
L,T

=

〈
(∆N)2

〉
TLd

. (23)

In this formula, the first equality is nothing but the def-
inition, while the second equality—with

〈
(∆N)2

〉
be-

ing the variance of the total number of particles—is a
straighforward implication of the definition, coming di-
rectly from the grand canonical distribution.

A subtlety arises when (23) is used—in particular, in
unbiased numeric simulations—to extract the thermody-
namic value κ0 of the ground-state compressibility. Here
the limits T → 0 and L → ∞ have to be taken under
the condition of TLd → ∞, or equivalently, in the strict
order (from left to right):

κ = lim
L→∞

κL, κ0 = lim
T→0

κ. (24)

The crucial role of the requirement

TLd →∞, (25)

fixing the order of limits in (24), is clear from the very
structure of the rightmost expression in Eq. (23). The ef-
fects of finite-size quantization get completely eliminated
only in the limit of diverging variance of the particle-
number fluctuations, and the condition (25) is necessary
and sufficient for this to happen.

Similarly, the definition of the impurity charge, Eq. (1),
is insensitive to the finite-size effects, if the grand canon-
ical ensemble is used and the ground-state thermody-
namic limit is taken under the constraint (25), or equiv-
alently, the order of limits is exactly the same as in (24).
Here the requirement (25) guarantees the absence of the
spurious contributions to the integral (1) coming from
the distances of the order of the system size.

Using Kubo formula, for the variational derivative in
the l.h.s. of (21) we have

δq

δU(r)

∣∣∣∣
U≡0

=

∫
K(r− r′, τ) ddr′dτ (26)

K(r, τ) = 〈 [n(0, 0)− n̄] [n(r, τ)− n̄] 〉, (27)

where n(r, τ) and n̄ are, respectively, the Matsubara op-
erator and the expectation value of the number density.
The integration over r′ converts the number density op-
erator into the operator of the total number of particles
(here we also use n̄Ld = N̄ and the fact that N(τ) ≡ N ,
since the operator N commutes with the Hamiltonian):∫

K(r− r′, τ) ddr′ = 〈 [n(0, 0)− n̄] [N − N̄ ] 〉. (28)

The τ -independence of the r.h.s. of (28) trivializes the
integration over τ in (26). The last simple step we need
to take to convert the r.h.s. of (26) into the r.h.s. of (23)
is the observation that translation invariance allows us
to replace [n(0, 0)− n̄] in (28) with (N − N̄)/Ld.

III. UPPER CRITICAL DIMENSION FOR THE
HALON EFFECT

The mapping of the halon problem onto the Bose
Kondo problem is very convenient for establishing the
upper critical dimension for the halon effect. Here we do
it for the O(N) quantum critical environment by render-
ing the known results for the spin-1/2 impurity.

Beyond the critical dimension, the physics is perturba-
tive, see Fig. 2 (a). The condition for this picture to take
place is

lim
hz→0

Γ(hz)/hz → 0, (29)

where Γ(hz) is the decay width of the upper branch as
a function of the energy splitting hz > 0. Without loss
of generality, we assume that our microscopic Hamilto-
nian is the quantum rotor model (16), and use the Fermi
Golden rule in the interaction picture

Γ =

∫ ∞
−∞
〈Ĥimp(0) Ĥimp(t)〉 dt, (30)

Ĥimp(t) = eihztŜ+ n̂
(−)
i=0(t) + e−ihztŜ− n̂

(+)
i=0(t). (31)

We thus see that Γ(hz) is given by the frequency-hz
Fourier component of the temporal correlator (being in-
terested in the hz → 0 limit, we use the universal long-
time asymptotic form of the correlator)

〈T n̂(−)i=0(0) n̂
(+)
i=0(t)〉 ∝ 1/|t|d+z−2+η. (32)

Here z = 1 is the dynamic exponent and η is the anoma-
lous critical exponent of the (d + 1)-dimensional O(N)
universality class. (The exponent η is nonzero only be-
low the upper critical dimension d = 3.) Performing the
Fourier integral then gives

Γ(hz) ∼ γ2hd−2+ηz . (33)
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We conclude that the upper critical dimension for the
halon physics is d = 3, the same as for the quantum crit-
ical environment: Equation (33) becomes meaningful—
consistent with (29)—at d > 3.

While clearly characterizing the situation at d > 3,
Eq. (33) leaves open the question of what happens at
d = 3. Here the r.h.s. of (33) is directly proportional to
hz, meaning that as long as γ is small enough, we have
Γ� hz, which seems to justify using Fermi Golden rule,
but the result we get this way is not consistent with (29)
thus calling for a more delicate analysis.

The analysis clarifying the situation in three dimen-
sions has been performed in Refs.6,11,15 by the meth-
ods of perturbative renormalization group. The per-
turbative renormalization group treatment for a generic
Bose Kondo model has been developed in Ref.6,7,11. The
method is based on the dimensional regularization d =
3−ε. It becomes controllably accurate at ε→ 0, which is
the case of our interest. The results of Refs.6,11,15 show
that the low-energy theory at the Z2 symmetric point
hz = 0 is controlled by an infrared fixed point described
by a Bose Kondo impurity model with an effective cou-
pling strength γ∗ ∼ ε. At ε = 0, the effective coupling γ∗
vanishes, meaning that the (renormalized) impurity and
the environment are completely decoupled, which corre-
sponds to the scenario Fig. 2 (a). Hence, the situation in
three dimensions is essentially the same as at d > 3.

When ε > 0, the infrared fixed point of the perturba-
tive RG treatment has an intermediate coupling strength
0 < γ∗ < ∞, suggesting a nontrivial BQCP at d = 2.
Although ε is not a small parameter here, the leading-
order calculation seems to properly capture the qualita-
tive physics of the system. Furthermore, comparison to
our unbiased Monte Carlo results demonstrates that the
third-order d = 3 − ε calculation performed recently by
Whitsitt and Sachdev15 is quite accurate in reproducing
the boundary quantum critical exponents.

IV. GENERAL PROPERTIES OF THE HALON

In this section, we will discuss some general properties
of the halon. Without loss of generality, we will be using
the language of the Bose Kondo model (6) in the vicinity
of the BQCP.

Our starting point is the hyperscaling ansatz of the
BQCP. As explained in the introduction, the BQCP is
controlled by two independent boundary quantum criti-
cal exponents νz and ν⊥. The former is the scaling di-
mension of the Z2-symmetry-breaking field hz, the lat-
ter is the scaling dimension of the local U(1)-symmetry-

breaking field h⊥, which is coupled to Ŝx (or Ŝy) of the
impurity. In the absence of dangerously irrelevant terms,
one can write down the hyperscaling ansatz in the vicin-
ity of the BQCP for the singular part of free energy,

Fs = b−zΦ(hzb
1/νz , h⊥b

1/ν⊥ , ...), (34)

for an arbitrary rescaling parameter b, which rescales the

spatial variable as x→ x/b and imaginary time variable
as τ → τ/bz. Here and in what follows, we adopt a con-
vention of omitting regular parts in critical relations. The
dynamic exponent z > 0 is the scaling dimension of time
variable of the bulk quantum criticality. In the following
discussion, we will assume that z = 1 because a bosonic
system with (emergent) particle-hole symmetry normally
already implies (emergent) Lorentz invariance. However,
certain edge cases (say, Lifshitz points) may have z > 1,
and our main results can also be easily adapted.

In the above hyperscaling ansatz, we assume that both
the system size L and the inverse temperature β = 1/T
are much larger than the correlation length ξz,⊥ [as in
Eq. (8) or Eq. (10)]. Physically, it means that one needs
to take the thermodynamic limit before approaching the
BQCP as hz, h⊥ → 0.

We will consider two characteristic trajectories ap-
proaching the BQCP. One is (hz → 0, h⊥ = 0), and
the other is (hz = 0, h⊥ → 0). Along these two tra-
jectories, the characteristic length scales are ξz and ξ⊥,
respectively. For each trajectory, there is only one rel-
evant term in the hyperscaling hypothesis Eq. (34), so
that we can choose the rescaling parameter b to be the
corresponding correlation length itself.

A. Halon Dynamics

Let us discuss the universal (i.e., low-frequency) halon
dynamics. Without loss of generality, we will be using
the language of the Bose Kondo model, in the Matsubara
(imaginary-time or imaginary-frequency) representation.
Matsubara correlation functions are directly observable
in Monte Carlo simulations. Their real-frequency coun-
terparts (linear response functions)—directly observable
in the experiment—can be obtained by numeric analytic
continuation.

For the spin-1/2 impurity in the XY Bose Kondo
model, there are two independent spin correlation func-
tions,

χα(τ) ≡ 〈δŜα(τ)δŜα(0)〉, (35)

where α can be either longitudinal index z, or trans-
verse index ⊥, and δŜα ≡ Ŝα − 〈Ŝα〉 is the spin fluctua-
tion operator. The two correlators yield two Matsubara
(imaginary-frequency) local susceptibilities:

χα(iωn) =

∫ β

0

χα(τ) e−iωnτ dτ. (36)

The behavior of the singular part of the static local
susceptibility, χα(iωn = 0), follows from the hyperscaling
ansatz (34):

χα(iωn = 0) =
∂2Fs
∂h2α

∼ ξ2/να−1α . (37)

On the approach to BQCP, the correlation length di-
verges as ξα ∼ |hα|−να , implying that the correlation
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function scales as

χα(τ) ∼ 1

ξ
2−2/να
α

Ψα(τ/ξα). (38)

Since the short-time (τ � ξα) dynamics should be in-
dependent of the correlation length, we conclude that

Ψα(x) ∼ 1

x2−2/να
, x� 1, (39)

or

χα(τ) ∼ 1

τ2−2/να
, τ � ξα. (40)

Given that the correlation function can not diverge, we
get a lower bound on the critical exponents:

να > 1. (41)

The long-time (τ � ξα) behavior is qualitatively dif-
ferent. Now the boundary-critical fluctuations are sup-
pressed and the correlations are due exclusively to the
critical fluctuations of the environment, the only effect of
the impurity being the renormalization of the global am-
plitude of the correlator. [In the language of the mapping
onto a (d + 1)-dimensional classical model, the environ-
ment “shunts” the one-dimensional “wire” representing
the impurity, imposing its correlations onto it at τ � ξα.]
We thus have (r is an arbitrary spatial position appro-
priately far from impurity, r � ξα):

χz(τ) ∝ 〈 n̂(τ, r) n̂(0, r) 〉 (τ � ξz), (42)

χ⊥(τ) ∝ 〈T ψ̂(τ, r) ψ̂†(0, r) 〉 (τ � ξ⊥). (43)

The r.h.s of (42) is known to demonstrate a power-
law behavior ∼ 1/τ2d, because the scaling dimension
of the particle number density—or the Noether charge
density—is d, which coincides with its canonical dimen-
sion. The r.h.s of (43) behaves as ∼ 1/τd−1−η, where η is
the anomalous scaling dimension of the order parameter
field. Therefore,

Ψz(x)→ 1

x2d
, Ψ⊥(x)→ 1

xd−1−η
(x� 1). (44)

The experimentally relevant observable is the retarded
dynamic susceptibility χ̃α(ω), which depends on the real
frequency ω. The function χ̃α(ω) can be obtained by
analytic continuation of the Matsubara function χ(iωn)
to real frequencies:

χ̃α(ω) = χα(iωn → ω + i0+). (45)

Using this relation in combination with Eq. (38) yields:

χ̃α(ω) ∼ ξ2/να−1α Φα(ωξα), (46)

with the universal functions Φα such that

Φα(x) ∼ x1−2/να (x� 1), (47)

Φz(x) ∼ x2d−1, Φ⊥(x) ∼ xd−2−η (x� 1). (48)

Let us discuss the transverse dynamic susceptibility χ̃⊥
in more detail. In view of the above-mentioned shunting
effect of the environment, the exponent of the function
Ψ⊥(x) at x � 1 should be smaller or equal than the
exponent of this function at x � 1. In accordance with
(39) and (44), this implies the condition

ν⊥ ≤
2

3− d+ η
. (49)

In the most interesting case of d = 2, we get the following
upper bound: ν⊥ ≤ 2/(1 + η) < 2 (since the condition
η > 0 holds for any nontrivial bulk quantum criticality).
Consistent with this bound, the exponent for the O(2)
bulk quantum criticality in 2D is ν⊥ = 1.15(3) (see next
section).

In Fig. 4, we illustrate the functions χ̃z(ω) and χ̃⊥(ω)
for O(2) bulk quantum criticality in 2D. The two be-
have very differently. The low-frequency part of χ̃z(ω) is
∼ ω3, thus vanishing at ω → 0. The high-frequency part
of χ̃z(ω) behaves as ω1−2/νz . With νz = 2.33(5) > 21,
we conclude that, in the high-frequency limit, χ̃z(ω) de-
velops a slowly diverging pseudo plateau ω0.14(2). In a
sharp contrast with χ̃z(ω), the function χ̃⊥(ω) diverges
at ω → 0 and vanishes at ω →∞, and is likely to feature
a shoulder at the crossover scale ω ∼ 1/ξ⊥. The details
of the crossover behavior can be established by numeric
simulations. We plan to address this issue in the near
future.

??
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FIG. 4. The longitudinal (left) and transverse (right) dy-
namic susceptibilities of the impurity [for O(2) bulk quan-
tum criticality in 2D]. The crossover from the low- to high-
frequency regimes takes place at ω ∼ 1/ξz,⊥.

It is instructive to compare the dynamics of the XY
Bose Kondo model to that of the SU(2) Bose Kondo
model8,9. The latter can be found in a two-dimensional
O(N ≥ 3) quantum critical environment such as the
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paramagnetic-antiferromagnetic quantum critical point.
Due to the SU(2) spin-rotational symmetry, the trans-
verse and longitudinal dynamic susceptibilities are now
essentially the same, and νz = ν⊥ = ν̃. The low-
frequency part of the susceptibility is then expected to
diverge as 1/ωη when ω → 0, and the high-frequency
part decays as 1/ω2/ν̃−1 as ω → +∞, where the expo-
nent satisfies the above-discussed inequality ν̃ < 2. As
a result, in the SU(2) Bose Kondo model, not only the
transverse dynamic susceptibility but also the longitudi-
nal one behaves as ν⊥ in Fig. 4. From this comparison we
learn that the behavior of νz in Fig. 4 is a rather unique
property of the XY Bose Kondo model.

B. Halon Charge Density Profile

ns

r

𝐌+ 𝟏/𝟐

−𝟏/𝟐
𝑟uv 𝑟*

~
1

𝑟*-./𝑟/

linear response tail

FIG. 5. The charge density profile of the halon. The charge
is separated into a non-universal part and an universal part.
The non-universal part is localized at a microscopic scale
ruv. The universal part carries the charge ±1/2, which is
distributed up to a critically large length scale r0. At r � r0,
the density profile acquires a linear-response shape.

Let us discuss the density profile of the halon, confining
our analysis to the (most experimentally relevant) trajec-
tory (hz → 0, h⊥ = 0). In this case, the only macroscopic
characteristic length scale of the system is ξz. The phys-
ical meaning of this length scale in the spatial directions
is the healing length,

r0 ≡ ξz ∼ |hz|−νz . (50)

At r � r0, the bosonic field is strongly influenced by the
impurity and the correlation functions are controlled by
the boundary quantum criticality; while at r � r0, the
impurity degrees of freedom get screened and the cor-
relation functions of the bosonic field restore their bulk
quantum critical behavior. In the halon case, r0 naturally
gives the radius of the halo.

Using the standard thermodynamic relation for the av-
eraged partial derivative of the Hamiltonian, we find the
following result for the singular part of the z-projection
of the impurity spin (negative/positive sign corresponds

to positive/negative hz):

〈Sz〉 =
∂Fs
∂hz

∝ ∓|hz|νz−1 ∝ ∓r1/νz−10 . (51)

where Fs is the singular part of the free energy given by
Eq. (34).

A crucial difference between Eqs. (51) and (34) is that
the critical (singular) contribution to the free energy
comes from the distances ∼ r0, while the z-projection
of the impurity spin is an essentially local quantity. The
latter circumstance is quite important: It implies that
Eq. (51) is representative of the scaling of the singular
part of any generic local observable.

In view of the divergent radius r0 and scale invariance
of the long-wave properties of the critical environment,
the structure of the halo has to be described by a scal-
ing function f shared by all the systems within a given
universality class of the boundary quantum phase tran-
sition:

δn(r) = ±r−d0 f(r/r0) (r � ruv). (52)

Here ruv � r0 is a system-specific ultraviolet cutoff.
The generic scaling for local observables, Eq. (51), im-

plies the following structure of the halo at r � r0:

f(x) ∝ 1

xs
(x� 1), (53)

s = d− 1 + 1/νz. (54)

To arrive at (53)–(54), observe that by continuity, the
relation (52) remains meaningful—at the level of order-
of-magnitude estimates—down to r = ruv, where we have

δn(ruv) ∼ |hz|νz−1 ∼ r
1/νz−1
0 . It is also useful to write

the law (53)–(54) in the form

δn(r) ∝ 1

rd−s0 rs
(ruv � r � r0). (55)

Note that the above-mentioned bound νz > 1, implying
s < d, guarantees the following two consistency condi-
tions for the halo: (i) The integral over r should converge
at r → 0 and (ii) the amplitude of the singular inner part
of the halo should vanish on approach to BQCP.

The shape of the outer part of the halo is dictated
by a very simple perturbative physics. At r � r0,
the boundary-critical fluctuations are suppressed leaving
no room for non-linear effects. The environment thus
demonstrates a generic linear response identical—up to
the global amplitude—to the response caused by weak
local perturbation

Hpert = Ṽ n̂(r = 0). (56)

Hence, at r � r0, the charge density profile satisfies the
Kubo formula

δn(r) ∝
∫
dτ〈[n̂(r, τ)− n̄][n̂(0, 0)− n̄]〉. (57)
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Although in a quantum-critical environment, the parti-
cle number, which is a Noether charge, does not have
anomalous scaling dimension and its density has a scaling
dimension d. Actually, since the bulk system features the
Lorentz symmetry, the space-time density-density corre-
lator in the r.h.s. of (57) is expected to demonstrate a
power-law behavior: ∼ 1/(r2 + τ2)d. We thus have

f(x) ∝ 1

xα
, α = 2d− 1 (x� 1), (58)

or, equivalently,

δn(r) ∝ rα−d0

rα
(r � r0). (59)

As we discussed in Sec. II, the vanishing compressibility
is a necessary condition for charge quantization. In terms
of the correlator (57), that means α > d or d > 1. The
very same condition follows from the requirement that
the integral of δn(r) over r be convergent at r → ∞.
Then, according to (59), the condition α > d implies the
divergence of the amplitude of the linear-response tail on
the approach to BQCP.

C. Total Compressibility

A quantum-critical system is rather fragile so that even
a single halon can change substantially certain macro-
scopic response functions, such as, e.g., the total com-
pressibility. This quantity controls the response of the
total number of particles to an infinitesimal change of the
chemical potential. Since the total particle number is a
conserved quantity, the scaling dimension of the chemical
potential is the same as that of the temperature, and the
scaling ansatz for the total compressibility readily follows
from the hyperscaling hypothesis, Eq. (34):

κtot ≡
∂2Fs
∂µ2

=
1

T
C(hzT

−1/νz ), (60)

For simplicity, we only consider the hz field. Since the
temperature in experiments is finite, we take the temper-
ature T = 1/β as the inverse characteristic length scale.
In some experimental systems, like ultracold atoms in
optical lattices, the system sizes L can be comparable
to the correlation length. Then the universal function
C(x) also depends on the space-time ratio β/L. We also
note that the total compressibility contains no analytic
(β and L)-independent contributions. This follows from
the observation18 that a small detuning from the bulk
QCP can drive the system into an incompressible insula-
tor phase.

At the BQCP, the total compressibility C(0)/T con-
tains contribution from both the impurity and the envi-
ronment. When tuning away from the BQCP, the total
compressibility saturates to C(∞)/T . In this limit, the
impurity degree of freedom is frozen, so that the universal
constant C(∞) is the same as the total compressibility

of a bulk quantum critical system without the impurity.
It is then natural to define the impurity compressibility
at the BQCP as the difference,

κimp =
C(0)− C(∞)

T
. (61)

If the system size is finite, the difference C(0) − C(∞)
also depends on the space-time ratio β/L. Indeed, for
β/L = 0, which is the thermodynamic limit, Ref.15 cal-
culates the impurity compressibility in an O(2) quantum
critical environment to be roughly 0.734; while for the
ratio β/L = 1, our Monte Carlo simulations determine
the impurity compressibility to be 0.264(3) (see Sec. V).
For other space-time ratios in the range (0, 1), a number
in between is expected for the impurity compressibility.

In the spin language, the impurity compressibility κimp

should be regarded as the effective impurity spin suscep-
tibility. Since this quantity has a Curie-like divergence
at low temperatures, similar to the SU(2) Bose Kondo
problem in the Ref.8, one can define an effective spin S∗
for the impurity. The universal value of S∗ does not de-
pend on the microscopic physics and can be derived from
S∗(S∗+ 1)/3 = C(0)−C(∞). In general, it is neither an
integer nor a half-odd integer.

It is instructive to compare the behavior of κimp at
the BQCP to alternative regimes of spin impurity. For
the transition point of the type of Fig. 2 (a), the spin
impurity is effectively decoupled from the environment,
and we expect here the physics of a free spin κimp =
S(S + 1)/3T = 1/4T (with S = 1/2). If the spin impu-
rity is entirely screened by the environment, the impurity
degree of freedom is no longer visible in a global response
function, so that the impurity contribution κimp will be
zero. Hence, measuring the total compressibility allows
one to distinguish those three scenarios.

V. NUMERIC SIMULATIONS: 2D O(2)

Simulations by worm algorithm allow us to perform a
comprehensive study of the universal properties of the
halon in 2D O(2) quantum critical environment. As long
as we are interested in the critical properties only, we are
allowed to maximally simplify the model to gain an in-
crease in efficiency. This can be achieved by (i) working
with the improved J-current model, in which the bulk
finite-size corrections are almost absent and (ii) simulat-
ing the Bose Kondo model instead of the static impurity
model, so that the symmetry of the both sides of BQCP
is implemented at the microscopic level. We confirm that
the Bose Kondo model (16) captures the universal crit-
ical physics of the static impurity model (14). We also
extract the values of the critical exponents and various
universal constants for the halon boundary phase transi-
tion.



12

A. J-current model

The simplest model for simulating the O(2) criticality
is the (fully classical) J-current model 19. In the d =
2 + 1 = 3 case, the model consists of integer currents
J living on the bonds of a three dimensional L2 × Lτ
cubic lattice, with L as the size of the spatial dimensions
and Lτ as the size along the “temporal” direction (in
the absence of the impurity, all the three dimensions are
absolutely equivalent). The currents are subject to the
zero-divergence constraint,

div J = 0, (62)

meaning that at each site, the algebraic—incoming minus
outgoing—sum of all the currents is zero. To have a really
minimalistic model, one also confines the allowed values
of the bond currents to just three numbers:

J = 0, ±1. (63)

The Hamiltonian of the model reads

HJ =
1

2K

∑
i,ê

J2
i,ê (ê = x̂, ŷ, τ̂). (64)

Here the vector i = (x, y, τ) labels the sites on the cubic
lattice by three discrete coordinates: x, y, and z; x̂, ŷ,
and τ̂ are the lattice unit translation vectors in corre-
sponding directions; Ji,ê ≡ −Ji+ê,−ê is the J-current of
the bond going from the site i in the direction ê.

In terms of the mapping onto a two-dimensional sys-
tem of lattice bosons (at an integer filling factor), the
closed loops of currents should be understood as the
worldlines of O(2) charge quanta, with Ji=(x,y,τ),τ̂ having
the meaning of the particle/hole charge on the site (x, y)
at the imaginary-time moment τ . The zero-divergency
constraint guarantees the “conservation of charge”: The
quantity

Q =
∑
x,y

J(x,y,τ),τ̂ (65)

is the same for any τ . This way the model (62)–(64)
describes the universal properties of the insulator-to-
superfluid criticality; the corresponding transition takes
place at the critical value Kc = 0.3332052(20)20 of the
control parameter K.

Although we can simulate systems with size as large
as L = 512, many universal observables still suffer from
significant non-universal finite-size corrections. To sup-
press those corrections caused by the renormalization of
the effective coupling K, we find that it is very useful
to introduce an improved J-current model by making the
coupling strength K in Eq. (64) to be current-dependent,

H ′J =
∑
i,ê

1

2K(Ji,ê)
J2
i,ê (ê = x̂, ŷ, τ̂). (66)

The coupling K(J) needs to be fine-tuned so that the
finite-size corrections caused by the renormalization of
K are minimized. In the case when there are five al-
lowed values for the currents (0,±1,±2), we find the
optimized coupling strengths to be K(0) = K(±1) =
0.32944986(10) and K(±2) = 0.16891892 at the space-
time ratio Lτ/L = 1. In what follows, by default, we
present the results for the minimal J-current model (64).
However, for some quantities with large finite-size cor-
rections, we will employ the improved J-current model
(66).

We now discuss the impurity problem in the J-current
models. A static spinless impurity (call it a center to
avoid confusion with the spin-1/2 impurity) is introduced
by the following term

Hcenter = V
∑
τ

J(0,0,τ),τ̂ , (67)

with V controlling the strength of the impurity [in view
of the particle-hole symmetry of the model (62)–(64), the
sign of the impurity plays no role]. We studied the model
(64) with (67) in our previous work1, where we found that
the halon BQCP is Vc = 1.5056(5), and the value of the
exponent is ν̃ = 2.33(5).

Here we must admit that the model (62)–(67) is not yet
optimal. Indeed, adding the term (67) to the model (62)–
(66) breaks the particle-hole symmetry of the latter, so
that one has to fine-tune the parameter V to the unknown
a priori critical Vc. A more efficient approach is to intro-
duce a spin-1/2 impurity thus preserving the particle-hole
symmetry at zero magnetic field, analogously to how it
is done for the quantum rotor model, see Eq. (16). This
amounts to requiring that on the bonds going from the
sites (0, 0, τ) in the direction τ̂ , there lives a half-integer
current

Sτ = ±1/2. (68)

For the sites involving the half-integer currents S, the
zero-divergency condition also includes the algebraic
sum of the two half-currents associated with this site,
which guarantees the conservation of charge: the τ -
independence of the quantity Q, where

Q = Sτ +
∑
x,y

J(x,y,τ),τ̂ . (69)

Following the principle of minimalism, we also restrict
the values of the J-currents on those bonds to zero:

J(0,0,τ),τ̂ = 0. (70)

One should not confuse this constraint with decoupling
the spin-1/2 impurity from the J-current environment.
The coupling is still there due to the currents J(0,0,τ),x̂
and J(0,0,τ),ŷ; see Fig. 6 for an illustration. [In terms
of the analogy (a slight contrast) to the quantum ro-
tor model (16), our spin-1/2 impurity interacts with the
nearest-neighboring rotors, which allows us to apply the
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𝜏 Impurity

FIG. 6. Illustrative configuration of the bond currents for
the J-current model with a spin-1/2 impurity at the origin in
(1 + 1) dimension. The impurity half-currents Sτ are shown
with arrows. The impurity couples to the environment via
the bond currents in the spatial direction.

constraint (70) thus safely removing the rotor on the im-
purity site.]

To complete the minimalistic model, we just need to
introduce the coupling between the half-currents and the
magnetic field:

Hspin = hz
∑
τ

Sτ . (71)

It is, however, important to mention that the finite-size
effects prove to be rather sensitive to the strength of the
coupling of the impurity to the environment. To con-
trol those effects, we change the weights of the currents
J(0,0,τ),x̂ and J(0,0,τ),ŷ in the Hamiltonian (64):

1

2K
J2
(0,0,τ),ê →

1

2KI
J2
(0,0,τ),ê (ê = x̂, ŷ), (72)

so that while the value of K is fixed at Kc, the value of KI

is a free parameter, which can be optimized to improve
the efficiency of the scheme.

B. Global Response Functions

Here we study the evolution of the universal compress-
ibility on the approach to BQCP along the trajectory
(hz → 0, hx = 0). We set the space-time ratio to be
unity (Lτ/L = 1), so that the scaling ansatz Eq. (61) for
the total compressibility predicts κtot/L ∼ C(hzL

1/νz ),
where C(x) is a universal function.

First, we simulate the J-current model (64) with a spin
impurity at the origin to study the universal function
C(x) at x = 0, i.e., at the critical point hz = 0. In Fig. 7,
we present the finite-size flows for the rescaled compress-
ibility at the BQCP, which is expected to saturate to

a universal constant C(0) in the thermodynamic limit.
We compare the flows of the J-current model at different
strengths of the impurity-environment interaction KI . In
all the cases, the flows extrapolate to the same univer-
sal constant C(0) = 0.780(3), consistent with the idea of
sharing the same universal long-wave theory. The oppo-
site trends at KI < 0.6 and KI > 1.0 indicate that there
is an intermediate coupling strength 0.6 < K∗ < 1.0
at which the leading finite-size correction vanishes. It
is thus reasonable to choose KI ≈ K∗ to minimize the
finite-size systematic error.

We also calculate the flow of the static impurity model
(67). Interestingly, the flow is almost identical to that of
the spin impurity model with a coupling strength KI =
Kc, where Kc is the bulk critical coupling strength in
Eq. (64).
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1/L
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0.80

C
(0

)
=
〈 δQ2

〉

KI = 10. 0

KI = 2. 0

KI = 1. 0

KI = 0. 6

KI = 0. 4

KI =Kc

Center

FIG. 7. The finite-size flows of the rescaled charge compress-
ibility at the boundary critical point: the spin impurity model
with different coupling strength KI and the static spinless
impurity model. All the flows tend to converge to the same
universal value C(0) = 0.780(3).

We now turn to the hz-dependence of the univer-
sal compressibility. In the simulation of the original J-
current model (64), we find that the data for the com-
pressibility suffers from significant finite-size deviations
caused by the renormalization of the environment cou-
pling strength K and the impurity-environment coupling
strength KI . Therefore, we minimize the renormalization
of K by working with the improved J-current model (66)
at KI = 0.43, which proves to be the optimal coupling
strength for this model.

After rescaling the magnetic field hz → hzL
1/νz , we

find—see Fig. 8—that all the curves—even for relatively
small system sizes—collapse nicely by setting the bound-
ary critical exponent to be νz = 2.33. The master curve
is the universal compressibility C(x). The universal value
at the BQCP proves compatible with the universal value
C(0) = 0.780(3) obtained from the original J-current
model (64). Note also that C(x) eventually saturates to
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a constant C(∞) at large hz and low temperature. The
value of C(∞) is consistent with the universal constant
0.5160(6), which is the total compressibility calculated
for the bulk quantum critical system when the impurity
is absent20. We find the effective impurity spin suscepti-
bility at the BQCP to be [C(0)−C(∞)]/T = 0.264(3)/T .
Despite the fact that the spin impurity is strongly cou-
pled to the environment, the effective spin susceptibility
is only slightly different from that of an isolated spin im-
purity, which is S(S + 1)/3T = 1/4T (with S = 1/2).

0 2 4 6 8 10

hzL
1/ν̃z

0.50

0.55

0.60

0.65
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C
(h

z
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1
/ν̃

z
)
=
〈 δQ̂2

〉

0.5160(6)

L= 16

L= 24

L= 32

L= 48

L= 64

L= 128

bulk

FIG. 8. The universal compressibility as a function of the
rescaled detuning hzL

1/νz from the boundary critical point.
This function is obtained by collapsing the compressibility
curves for different system sizes. The critical exponent νz =
2.33 is used. The black horizontal line shows the universal
compressibility of the system in the absence of spin impurity.

C. Impurity Dynamics

We now turn to the correlators, χα(τ), α = z,⊥ [see
Eq. (35)], associated with the response of the spin im-
purity to local magnetic fields hz and h⊥, respectively.
We calculate these correlators with the original J-current
model (64) and an optimized impurity-environment cou-
pling strength KI = 0.6.

In Fig. 9, we show the transverse correlation func-
tion χ⊥(τ) at the BQCP for different system sizes. In
the thermodynamic limit L → ∞, the asymptotic decay
of the correlation function follows the power law. The
power-law decay is consistent with Eq. (40), which trans-
lates the decay exponent 0.26(3)—obtained by fitting the
data—into

ν⊥ = 1.15(3). (73)

In Fig. 10, we show the longitudinal correlation func-
tion χz(τ) at the BQCP for different system sizes. While

100 101 102

τ

100

χ
(τ

)

∼ 1/τ0. 26(3)
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L= 128

L= 2560.00 0.03 0.06
1/Lτ
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40

70

χ
(i
ω

0
)

∼L 0. 74(3)
τ

FIG. 9. The transverse correlation function χ⊥(τ) at the
BQCP for different system sizes L. In the thermodynamic
limit L→∞, there develops a power-law tail (the dashed line)
expected from the general analysis, and yielding ν⊥ = 1.15(3).
The inset shows how this exponent is extracted from the
finite-size scaling of the zero-frequency transverse correlation

function: χ⊥(iω0 = 0) ∼ L2/ν⊥−1
τ (see Sec. IV).

this figure is the counterpart of Fig. 9, the way we pro-
cess the thermodynamic-limit power-law tail is different.
Since we already know νz = 2.33(5), we simply make
sure that the data is consistent with the prediction of
Eq. (40), the dashed line.
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τ
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L= 16

L= 32

L= 64

L= 128

L= 256

FIG. 10. The longitudinal correlation function χz(τ) at the
BQCP for different system sizes L. In the thermodynamic
limit L→∞, there develops a power-law tail (the dashed line)
expected from the general analysis (see the text), consistent
with νz = 2.33(5).

Once moving away from the BQCP with a small mag-
netic field hz, a large correlation time ξz ∼ |hz|−νz
emerges. The universal correlation function Ψz(x) [see
Eq. (38)] behaves very differently in the short- and long-
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time limits. The short-time behavior within the correla-
tion time coincides with the universal correlation func-
tion right at the BQCP, as in Fig. 10, while the long-
time behavior is expected to be ∼ x−4. Due to the rela-
tively large exponent, the long-time physics turns out to
be extremely difficult to resolve within a single simula-
tion box. We overcome this subtlety by using the flow-
gram method21,22; see Fig. 11. First, we calculate various
longitudinal correlation functions for different magnetic
fields, then rescale τ → τhνzz and χz(τ) → χz(τ)h2νz−1z

to match the universal parts of different correlation func-
tions. We observe an excellent collapse of the data onto a
single master curve yielding the universal function Ψz(x),
covering both the short- and long-time scales. From
Fig. 11, we clearly see that the universal function starts
with x2/νz−2 at small x and eventually decays as x−4

at large x. The challenge of bruit-force observation of
the long-time tail is clearly seen from this figure. Tak-
ing hz = 1.0 as an example, the tail starts to dominate
beyond the time scale ∼ 20. However, the amplitude of
the correlation function at this time scale drops to 10−6,
which is already comparable to the typical statistical er-
ror in our Monte Carlo simulations.
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FIG. 11. The data collapse for the function functions χz(τ)
at different values of the magnetic field hz at a given system
size L = 128. Both axes are properly rescaled so that the uni-
versal parts of the correlation functions match each other thus
yielding the master curve. This curve starts with a boundary
critical behavior x2/νz−2 with νz = 2.33(5) at small x and
eventually evoles into asymptotic behavior x−4 at large x.

VI. O(3) HALON IN A LATTICE SPIN SYSTEM

While the O(N) quantum rotor model captures all the
universal properties of the O(N) halon, it is important—
from the experimental viewpoint—to discuss real-world
quantum models as well. So far, we have done that
for O(2) halon only. This section deals with an exper-

imentally relevant implementation of the O(3) halon in a
dimerized Heisenberg antiferromagnet.

Consider a square-lattice spin model with two different
coupling strengths,

ĤAF = J
∑
〈i,j〉

Ŝi · Ŝj + J ′
∑
〈k,l〉′

Ŝk · Ŝl. (74)

Here Ŝi is the spin-1/2 operator on the lattice site j;
the exchange couplings between different sites form a
coupled-dimer pattern shown in Fig. 12. The sym-
bol 〈. . .〉 means that the corresponding two (nearest-
neighbor) sites are connected by the bond J , while the
symbol 〈. . .〉′ means that the corresponding two (nearest-
neighbor) sites are connected by the bond J ′. The dimen-
sionless coupling J ′/J controls the ground-state phase
diagram of the system. When the intra-dimer coupling
J ′ dominates, the ground state is a paramagnet consist-
ing of an array of spin-singlets. On the other hand, when
the inter-dimer coupling J dominates, the ground state is
an antiferromagnet where neighboring spins point in the
opposite directions. A continuous quantum phase tran-
sition happens at J ′/J = 1.9096(2)23, and the infrared
physics of this critical point is described by a (2 + 1)-
dimensional O(3) critical theory.

This model has wide applications in condensed matter
physics. It describes dimerized antiferromagnetic materi-
als like TlCuCl3. It is also relevant to the effective physics
of many exotic electron systems, such as the CuO2 lay-
ers of the cuprate superconductors24 and double-layered
integer quantum Hall systems25. The model can also be
realized with ultracold fermions in 2D optical double-well
superlattice potential26–28.

𝐽𝐽′

V Ŝz(r0)+V Ŝz(r0 + êx)

FIG. 12. A composite local-magnetic-field impurity in a
dimerized Heisenberg antiferromagnet. The environment is a
spin system on a coupled-dimer lattice. The exchange cou-
plings are J ′ for the solid red bonds and J for the blue bonds.
The impurity is a local magnetic field coupled to the spin-z
projection of a pair of spins in the same unit cell.

It is known17 that the long-wave properties of the
dimerized antiferromagnet are captured by the O(3)
quantum rotor model (11). The rotor is defined for each
unit cell and can be considered as an effective represen-
tation of a pair of antiferromagnetically coupled spins.
The rotor orientation operator n̂i corresponds to the lo-
cal staggered magnetization Ŝi− Ŝj where i, j are sites in
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the same unit cell. The rotor angular momentum opera-
tor L̂i, which plays the role of the Noether charge density,
corresponds to the local uniform magnetization in each
unit cell Ŝi + Ŝj .

Given the above-described mapping, a counterpart of
the impurity Hamiltonian Eq. (14) can be implemented
as

Ĥimp = V [Ŝz(r0) + Ŝz(r0 + êx)]. (75)

Here the impurity is represented by the local magnetic
field V coupled to two spins in the same unit cell. When
V reaches the critical value Vc, the singlet state in the
unit cell breaks down to a direct-product state, caus-
ing the total charge Q to abruptly change by one spin-
projection quantum.

On the quantitative side, we perform large-scale sim-
ulations of the model (74)–(75) by the worm algorithm.
In Fig. 13, we show the data—both raw and rescaled—
for the total charge Q as a function of V . With the
data collapse upon rescaling (see the inset), we find
Vc/J = 2.40(2) and νz = 2.32(8). Similar to its O(2)
counterpart, the exponent νz is larger than 2, and the
general analysis of Sec. IV applies.
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FIG. 13. The total uniform magnetization in the dimer-
ized Heisenberg model as a function of the (rescaled in the
inset) strength of the local field at different system sizes. The
simulation is performed in the grand-canonical ensemble.

Let us briefly discuss the Bose-Kondo-impurity coun-
terpart of the coupling (75). While being less relevant
to the experiment, the model is interesting on its own.
The key observation is that the degeneracy between the
singlet/direct-product states at BQCP can be effectively
described by a pseudo-spin-1/2 degree of freedom. The
Bose Kondo model is then introduced by replacing two
physical spins in the same unit cell with one pseudo-1/2-
spin, and coupling the pseudo-spin to the neighboring
physical spins via an XY-type interaction,

ĤAF → ĤAF + γ
∑
n

[
Ŝ+ Ŝ−(rn) + H.c.

]
+ hzŜz. (76)

Here the sum runs over all the nearest neighbors of the
unit cell replaced with the pseudo impurity. One ad-
vantage of working with this model is that the BQCP
is exactly known to be hz = 0 by the explicit spin-flip
symmetry.

VII. CONCLUSIONS AND OUTLOOK

We have discussed, both qualitatively and quantita-
tively, the physics of a (static) halon—a special fine-
tuned state of a (static) impurity in a gapless and in-
compressible 2D O(N), N ≥ 2, quantum-critical envi-
ronment, with a special emphasis on the O(2) case and
also paying a considerable attention to the O(3) case.
While generically supporting charge quantization, the en-
vironment allows for a non-trivial charge fractionaliza-
tion phenomenon—the halon effect—on approach to the
boundary quantum critical point (BQCP), at which the
charge of the impurity changes by ±1. On approach to
the BQCP, the well-defined integer charge carried by the
impurity gets fractionalized into two parts: a microscopic
core with half-integer charge and a critically large halo
carrying a complementary charge of ±1/2.

The microscopic details of the impurity can be rather
different, provided the following two necessary conditions
are satisfied: (i) the impurity couples to the Noether’s
charge density associated with this or that U(1) symme-
try in such a way that the coupling respects the symme-
try and thus the conservation of the total U(1) charge;
(ii) the quantum-critical environment features the (emer-
gent) particle-hole symmetry with respect to the U(1)
charge. In a general case, the U(1) group in question is
a subgroup of a larger symmetry group, the latter being
respected by the quantum-critical environment, but not
the impurity.

As observed independently by Whitsitt and Sachdev15

and us, the universality class of halon BQCP is captured
by a Bose Kondo model of pseudo-spin-1/2 impurity cou-
pled to the quantum-critical environment, in such a way
that the rotational symmetry in the pseudo-spin xy-plane
is respected, with a small local “magnetic” field along
the pseudo-spin z-axis playing the role of control pa-
rameter driving the system away from the BQCP. On
the approach to BQCP, the half-integer projection of the
pseudo-spin on its z-axis gets delocalized into a halo of
critically divergent radius, capturing the essence of the
phenomenon of charge fractionalization.

The Bose Kondo model sheds an extra light on the
universal properties of halon, characterized by two inde-
pendent boundary critical exponents. One exponent, νz,
controls the impurity charge dynamics (or the longitu-
dinal dynamics in the Bose Kondo model), another one,
ν⊥, controls the order-parameter field dynamics (or the
transverse dynamics in the Bose Kondo model) near the
impurity site. The response functions related to these
two cases are qualitative different. The exponent νz also
controls the universal and nontrivial (featuring integrable
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singularity) charge density profile of the halon at short
distances.

By changing the pattern of global charge fluctuations,
the halon has a significant effect on the total compress-
ibility of the system—comparable with the contribution
of the rest of the system. As a result, the critical total
compressibility increases by a nontrivial universal con-
stant.

Our quantitative study of halons in O(2) and O(3)
quantum-critical 2D systems is based on large-scale
worm-algorithm Monte Carlo simulations. In the O(2)
case, we simulated effective classical models for both the
trapping center problem and its Bose Kondo counterpart.
We verified various universal scaling relations and quan-
tified the universal features. In particular, we found the
two independent critical exponents to be νz = 2.33(5)
and ν⊥ = 1.15(3). We also simulated a lattice spin sys-
tem of O(3) quantum criticality and demonstrated that
a local-magnetic-field impurity (counterpart of the trap-
ping center) does lead to a halon BQCP. Here the critical
exponents νz is found to be 2.32(8), which is very close
to the O(2) case. The next-leading order ε-expansion
calculations performed by Whitsitt and Sachdev15 yield
νz ≈ 2.66 and ν⊥ ≈ 1.08 for O(2) case and νz ≈ 2.78
for O(3) case. Those results agree quite well with our
unbiased data.

Ultracold bosonic atoms in optical lattices 29—being a
nearly ideal realization of the Bose-Hubbard model (2)—
provide a natural experimental context for the halon ef-
fect. In view of the mapping of the halon physics onto
that of the Bose Kondo model, one can also view this
experimental setup as an implementation of the Bose
Kondo model. The trapping center (a potential bump
or well) can be introduced by applying a tightly focused
laser beam, perpendicular to the plane of the 2D lattice.
Thanks to recent advances in single-site techniques30,31,
the trapping center can be rendered as small as a single
site, thus directly implementing the impurity Hamilto-
nian (2).

Obvious experimental challenges are the uniformity of
the system, low temperature, and small deviation from
the unity (or any other integer) filling of the lattice. Each
of the three circumstances leads to systematic errors im-
posing an upper bound, rsyst, on the halo size r0, the
universal halon regime taking place only at r0 � rsyst.

For enhanced control of the quantum criticality in the
bulk as well as for accurately tuning the trapping cen-

ter to the BQCP, the experiment can take advantage of
the data obtained from unbiased numeric simulations of
the Hamiltonian (2). The most desired experimental ob-
servables are the ones revealing the static and dynamic
properties of the halon discussed in Sec. IV. Of special
interest is the halon dynamics that cannot be addressed
by unbiased numerical methods. In view of the mapping
onto the Bose Kondo model, the study of the halon dy-
namics can shed a certain light on the impurity dynamics
in some real materials 8,9.

For the future study of the halon physics, the following
two circumstances seem very intriguing.

(i) The fact of fractionalization of the charge implies
that the charge of the core and the halo charge are
entangled. Diverging radius of the halo thus results
in the long-range entanglement. Going from a static
singe halon to mobile halons of finite concentration then
leads to an extremely nontrivial system with most exotic
(entanglement-assisted) long-range interaction.

(ii) In recent years, it has been established that
in two spatial dimensions, the superfluid near the
quantum critical point features the critically defined
massive-Goldstone mode (also known as the Higgs mode)
causing a sharp resonance peak in relevant spectral
functions32–39. There is also numerical evidence show-
ing that a massive-Goldstone-like mode may also exist
in the critical Mott-insualtor or even in the critical liq-
uid regime34,36,38. It would be interesting to understand
how/whether the halon (or the quasi-halon in the criti-
cal superfluid and the critical Mott-insulator regimes) is
coupled to the massive-Goldstone mode: Can one see the
massive-Goldstone signal in the response function of the
trapped charge?
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