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We use an effective model to calculate properties of the supercurrent carried by chiral edge states
of a quantum Hall weak link. This “chiral” supercurrent is qualitatively distinct from the usual
Josephson supercurrent in that it cannot be mediated by a single edge alone, i.e., both right and
left going edges are needed. Moreover, chiral supercurrent was previously shown to obey an unusual
current-phase relation with period 2¢¢ = h/e, which is twice of the period of conventional Josephson
junctions. We show that the “chiral” nature of this supercurrent is sharply defined, and is robust to
interactions to infinite order in perturbation theory. We compare our results with recent experimen-
tal findings of Amet et al.! and find that quantitative agreement in magnitude of the supercurrent
can be attained by making reasonable but critical assumptions about the superconductor quantum

Hall interface.

I. INTRODUCTION

Recently it has been recognized that proximity induced
coupling between edge state of a quantum Hall (QH)
system and a superconductor (SC) provides a rich play-
ground to observe novel and exotic phenomena. In par-
ticular, these systems were theoretically demonstrated
to support Majorana and parafermionic zero modes® 6.
Additionally, SC/QH/SC Josephson junctions can allow
for a new type of supercurrent carried by the chiral edge
states” !!. This “chiral” supercurrent is qualitatively dis-
tinct from the usual Josephson supercurrent in that it
cannot be mediated by a single edge alone, i.e., both
right and left moving edges need to be involved. Such
chiral supercurrents obey an unusual current-phase rela-
tion with the period 2¢y = h/e, which is twice as large as
the period of conventional Josephson junctions®. Joseph-
son currents in related systems have also been studied in
Refs. 12-17.

Interestingly, in the past few years several different
experiments have succeeded in creating a QH/SC inter-
face™'8 21 In particular, Amet et al.' found convincing
evidence of chiral supercurrents carried by the quantum
Hall edge states. In the semiclassical limit, the chiral
supercurrents are propagated by quasiparticles bound in
skipping orbits that are undergoing Andreev reflection
at the SC interface. Such quasiparticles are expected to
be slow such that this supercurrent might be too weak
to be observed, however a theoretical understanding of
the magnitude of the chiral supercurrent is lacking. Ad-
ditionally, in apparent contradiction with theory®?2223
(which suggests anomalous 2¢g = h/e periodicity), the
experiment observed usual ¢y = h/2e periodicity for the
current-phase relation, which would arise from tunneling
through a conventional (non-chiral) insulator.

In this article, we use an effective model to calculate
the supercurrent carried by chiral edge states of a spin
degenerate quantum Hall weak link in a geometry that
is similar to the experiments of Ref. 1 (see Fig. 1). We
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FIG. 1. Top view of the system, comprised of a quantum
Hall weak link attached to a pair of s-wave superconductors
with a phase difference ¢. Edge velocity vgn is renormalized

to vsc along the superconducting contacts. I is the chiral
suppercurrent through the weak link.

find that the obtained supercurrent, calculated for exper-
imentally reasonable parameters, is quantitatively con-
sistent with the measurement in Ref. 1. In particular,
we show that proximity induced edge velocity renormal-
ization along the SC contacts and surface transparency
(which is constrained by normal state conductance) play
a crucial role in controlling the magnitude of the super-
current. We then show that an ideal chiral quantum Hall
edge state, even when interactions are included to all or-
ders in perturbation theory, only carries chiral supercur-
rent, and claim that this can be used as a sharp definition
for “chiral” supercurrents. We are unable to explain the
¢o = h/2e periodicity observed in the experiment.

II. MODEL

We work within the geometrical setup depicted in
Fig. 1. We use x as a one dimensional coordinate for
the QH boundary which is in contact with the SC at



L<z<L+Wand2L+W <z < 2(L+W). Note
that = 0 is identified with = = 2(L + W). Without
the SCs, the continuum Hamiltonian describing the spin
degenerate chiral quantum Hall edge is given by Hqu =
—itwgy [ da¥i(2)0,¥(z). Here Ul(z) = (4] (x), ¥1(x))
is a two component spinor, wl /T(x) is the pseudo-spin
down/up Fermionic creation operator, and vgy, is the QH
edge velocity.

We now include the SCs and their couplings with the
QH edge to Hqn. The full Hamiltonian describing the
SC/QH/SC junction is Hyoy = Hqu + Hsc + Hy. Hsc
is the BCS mean field Hamiltonian describing the SCs;
we assume the SCs to be s-wave. H; is the Hamiltonian
describing normal electron hopping between the SC and
the QH edge along the superconducting interface. Note
that we have not included the QH bulk states in Hiot
since they are gapped.

Coupling with the SC induces a gap to the QH bound-
ary spectrum at the interface. In the experimentally rel-
evant limit where the superconducting gap |A| is much
smaller than the cyclotron frequency hAw,, this effect can
be accounted for by including a self-energy ¥ (w) to the
QH edge?*. Following the results of Ref. 24, we can write
the self-energy as:

E(w)z,)\w. (1)
/|A0|2 _ UJQ

Here 7 is the Pauli matrix in the ¥(x) spinor space (79 is
the 2 x 2 identity matrix) and A is a constant characteriz-
ing the SC/QH interface which increases as the coupling
(hopping) between the SC and QH becomes larger. A
is also related to the broadening of edge state’s single
particle spectral function caused by the coupling to the
SC.

The effective Hamiltonian of the QH edge proximate to
the SC (Hglf{/sc) can be defined by (w—Hqu—X(w)) ™!
(w— H&%/sc)fl- In the low energy limit, w < |Ag|, the
self energy (Eq. (1)) can be expanded to first order in w
and the effective Hamiltonian becomes:

7ithh )\AO

HE o= [ da¥t s | ().
s = [ do <‘”>[1+A/|A0|708U+AO|T (2)

(2)

The first term shows that the edge velocity vqy is strongly
renormalized t0 vgc = vgn/(1+A/|Ag]) in proximity to the
SC. Within the semiclassical skipping orbit picture, this
velocity renormalization can be attributed to the time
delay associated with Andreev reflection from the SC
surface. In each period, a skipping electron spends an
additional time of order /A in the SC, which changes
the the period from Ty, = m/w, to Ty = 7(1/we+h/Ao).
The finite (imperfect) transparency of the interface, [¢|,
can be considered as the probability of Andreev re-
flection and can be taken into account by modifying
Tse = 7 (1/we+ |t|h/Ag). This leads to a renormalized

edge velocity,

|thwc}‘1_ 3

Usc = Ugh [1 + A
We will use this semiclassical result to estimate the value
of A\. Our subsequent calculation shows that the veloc-
ity renormalization plays a crucial role in controlling the
magnitude of the chiral supercurrent.

The second term of Eq. (2) describes the typical prox-
imity induced superconductivity on a one-dimensional
system. Note that the induced superconducting order
parameter is also renormalized from its bare value by a
factor of 1/(1 4 |Ag|/A\). However, A > |Ap| in our pa-
rameter regime which is relevant to the experiment, and
the effect of Ay renomarlization is not significant as that
of the velocity.

The final aspect to consider in our model is the phase
difference between the two SCs. The superconducting
phase difference ¢ shown in Fig. 1 can be eliminated by
a gauge transformation that introduces a vector potential
a(x) given by:

—¢/2L for0 <z <L
¢/2L for L+ W <x <2L+W . (4)
0 elsewhere

a(r) =

Combining Hqy and Hlelf{/sc with the vector potential

a(x), we obtain the effective Hamiltonian describing the
entire edge of the QH junction:

H= / Az ¥ (z) [m(x)(fmaz — a(@)r) + A(z)7, | U(2).
(5)

Here v(z) and A(z) are the position dependent edge
velocity and superconducting order parameter satisfy-
ing v(x) = vgn and A(z) = 0 for 0 < = < L and
L+W <z < 2L+W; v(z) = vse and A(z) = A
elsewhere, where A is the induced superconducting or-
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der parameter A = penyv Ay.

III. JOSEPHSON SUPERCURRENT

The supercurrent in the SC/QH/SC junction is given
by the phase derivative of the free energy: I = —%g—g.
By expanding the free energy in imaginary time and ac-
counting for our gauge choice (Eq. (4)) the expression
for supercurrent can be written in terms of single parti-
cle Green’s functions?®,

I, = _egih Z [/OL der[G(m,x;iwm)Tz} (6)

m _
_ / dx Tr {G(xm;iwm)n” .
L

+W




Here G(z, z;iwy,) is the single particle Green’s function,
wWm = (2m+1)7/f is the Fermonic Matsubara frequency,
and 8 = 1/kgT is the inverse temperature. Note that
G(z,x;iwy,) is singular for Hamiltonians which are first
order in derivative (such as Eq. (5)). We regularize this
singularity as G(z, z;iwy,) = lim.o[G(x + €, z;iwy,) +
G(xz —e,x;iwm )] /2, however, our results are independent
of the regularization scheme we choose.

To calculate the Green’s function, we solve the defining
differential equation (iw,, — H) G(z, 2';iwy,) = 6(x—a').
Assuming 0 < z < L, integrating this equation around
the QH edge but the delta function §(z — z’) gives:

lim G(x — e, z;iwm,) =M | lim G(z + &, z;iwy,)
e—0t+ e—0t

(7)

M is an x independent 2 X 2 matrix given by (explicit
expression given in the Appendix),

2
- “;\,m( L +£) in-T

Van | vse ) o , (8)

M=e

where n is a three-component vector depending on the
parameters of the system. Integrating the differential
equation through the delta function from x — e to x + ¢
gives the second equation:

lim [G(a: + e, x5iwn) — Gz — e, 5 iwm)} = —i/hvgn.
e—0t
(9)

Egs. (7), (9) give a complete solution for the Green’s
function G(z,z;iwy,) in our regularization scheme. To-
gether with the straightforward extention of G(z, x; iw, )
for L+ W < z < 2L + W, we can calculate Iy, using
Eq. (6).

A. Chiral nature of supercurrent and its
Interaction robustness

The chiral nature of the supercurrent is manifest from
Eq. (6). To see this consider the case where only one
the left /right going edges exist, i.e., the other edge is ei-
ther obstructed or equivalently its length goes to infinity.
In this limit for w,, > 0, M — 0 which in turn shows
lim, o+ G(x — &, x; iw,) = 0. Plugging this results back
into Egs. (6), (9), together with the straightforward ex-
tention to w,, < 0, gives vanishing supercurrent Iy, = 0.
Note that the crucial condition leading to this results is
G(x — e, 259w, ) = 0, that is, absence of backward prop-
agation in a chiral edge. This property is the key feature
distinguishing chiral and non-chiral supercurrents (e.g.
in quantum spin Hall edge states®®).

One might wonder whether the introduction of inter-
actions allows chiral quantum Hall edge states to carry
non-chiral or conventional supercurrents through Cooper
pair transport on the edge. Such non-chiral supercurrent
could potentially explain the conventional supercurrent

FIG. 2. Typical Feynman diagrams used to calcu-
late backward propagating interacting Green’s fucntion,
lim,_, o+ G(z — €, 2; iwm). The solid lines are bare Fermionic
propagators and the wiggly lines are propagators for the in-
teraction. Note that our Feynman rule only allows a single
connected string of bare Fermionic Green’s function: this en-
sures that every diagram contributing to the backward prop-
agating ‘interacting’ Green’s fucntion contains at least one
backward propagating ‘bare’ Green’s fucntion, which leads to
lim,_,o+ G(x — €, z;iwm) = 0.

periodicity observed in the experiment'. However, this
turns out to be impossible and as we show below, a chiral
quantum Hall edge state can only carry a chiral super-
current.

To see this, we first note that Eq. (6) still holds in
the presence of interactions (since extra interaction terms
are not flux dependent). Green’s function defining equa-
tion will be modified to (iw,, — H — %) G(x, 2'; iw,) =
d(x — '), where X is the interaction induced self-energy
(not to be confused with the self-energy in Eq. (1)).
As long as ¥ is finite we can still integrate this equa-
tion to re-obtain Eq. (9). It is then easy to see that in
the absence of backwards propagation, lim._,o+ G(x —
g, T;iw,, ) = 0, supercurrent still vanishes, I, = 0. The
limit lim,_,0+ G(x — &, 2;iw;,) can be calculated using
Feynman diagrams of the type shown in Fig. 2. How-
ever, the presence of at least one backward propagating
bare Fermionic Green’s function in each diagram forces
all terms to vanish identically, which in turn guarantees
lim,_,o+ G(x —¢, z;iwy,,) = 0 and Iy, = 0 to infinite order
in perturbation theory.

B. Explicit form of the supercurrent

We now return to the explicit calculation of Is.. Di-
rectly solving Eqs. (7), (9) to obtain the Green’s function
and using the results in Eq. (6) gives,

Iie = — Z% sin ¢ sin? <§Z> [(1 + cos @) cos <2]§ZCV>

2 L !
+1 — cos ¢ — 2 cosh (wW ( + W))} :
h Uqh Usc
(10)

This equation gives the complete expression for the chi-
ral supercurrent carried by the chiral edge states for the
geometry in Fig. 1, and is consistent with the result of
Ref. 7 in the limit of L > W. In the high tempera-
ture limit, Sh < (L/vqn + W/vs), this equation can be



approximated as,

I, ~§Sin¢ sin? AW ex 2 i—i—l
T Bh hvsc P Bh Uqh VUsc .
(11)

IV. FRAUNHOFFER PERIODICITY

The current-phase relation can be obtained by includ-
ing an external flux through the QH region. This can be
incorporated by changing the gauge field a(z) (Eq. (4))
as,

—¢/2L + ¢./2L for 0 <z < L
$/2L + ¢ /2L for L+ W <z < 2L+ W |,
0 elsewhere

a(z) =
(12)

where ¢, is the dimensionless external flux related to
the actual flux eyt as Pext = @%- ¢o = h/2e, is the
superconducting flux quantum.

Including the flux ¢, in our calculation changes the
supercurrent in Eq. (10) to

Z sin ¢ sin ( AW)
hvse

X {(cos @e + COS @) cos <2$}W> ~+ cos ¢, — cos ¢

-1
—2cosh <2wm <L + W))] .
h Ugh  VUsc

We remark that in the parameter regime probed in the
experiment the cosh (2“"‘ (L + UE)) term is by far the

'Uqh
largest term of the denominator in the expression above.
Moreover the m = 0,—1 terms in the Matsubara fre-
quency dominate. We can then approximate I as (Tay-
lor expanding the denominator),

SC ¢€

(13)

sc(d) ¢e) ~ ( cho + Ichl COs ¢e) Slﬂ(ﬁ (14)

V. COMPARISON WITH THE
EXPERIMENTAL RESULTS

Using experimental parameters of Ref. 1 (A =
1.2meV = 139K, W = 2.4um, L = 0.3um, T = 40mK,
B = 1T, cyclotron radius r. = 25nm, and surface trans-
parency |t| ~ 0.7), we can estimate edge velocities semi-
classically (see Eq. (3)) as vgn & 7.0 x 10°m/s and vy &~
3.9 x 10*m/s. Substituting these values into Eq. (10)
gives the magnitude of supercurrent I, ~ 0.9nA, which
is remarkably close to experimental value of Iy, = 0.5nA.
One should note that the agreement is reached in spite
of the fact that I;. has exponential dependence on, and
is thus very sensitive to, the edge velocities (vqn and vs).

This demonstrates that a quantitative agreement in the
chiral supercurrent can be attained by making reason-
able and critical assumptions about the SC/QH inter-
face. Crucially, the exponential form of Eq. (11) shows
that the velocity renormalization and the surface trans-
parency along the SC/QH interface play the main role in
controlling the magnitude of supercurrent.

The supercurrent (Eq. (11)) depends exponentially in
both the width of the superconducting contact (W) and
the length of the QH sample (L). However, their coeffi-
cient in the exponent is very different in magnitude since
the edge velocity renormalization (Eq. (3)) results in an
order of magnitude difference between vq, and vs. From
this, one can observe that while W plays a crucial role
in controlling the value of Iy, varying L does not sig-
nificantly change its magnitude. This is consistent with
Ref. 1, where they observe such tendency while measur-
ing the supercurrents for devices with different dimen-
sions. Moreover, and perhaps counter-intuitively, we find
that decreasing the surface transparency of the SC/QH
interface [t| can lead to an increase in the magnitude of
Ii.. Eq. (3) suggests smaller value of || leads to larger
Vse, wWhich also results in a larger I, per Eq. (11). This
again agrees with the experiment in Ref. 1, as they ob-
serve larger value of I, in the p-doped devices. The p-
doped regime manifestly has worse surface transparency
due to the PN junctions that are formed close to the
contacts.

Let us now discuss the periodicity of the current-phase
relation. The external flux ¢. dependence of the criti-
cal chiral supercurrent Iy can be approximated as (from

Eq. (14)),
I:C(¢€) = maX¢ISC(¢a ¢e) ~

where the ¢, independent term is Isng = 0.9 x 10774,
and the ¢, dependent term has In; = 1.0 x 10711 A4, for
the parameters we use. In apparent contradiction with
the experiment (which is ¢y = h/2e periodic), this ex-
pression suggests the supercurrent has a 2¢g = h/e pe-
riodicity. However, it is notable that in our parameter
regime (which is also that of Ref. 1), external flux de-
pendence of Iy is strongly suppressed in the sense that
In1 is two orders of magnitude smaller than I.,g. Also
note the Fraunhoffer pattern of the chiral supercurrents
do not form nodes as in conventional supercurrents.
Given the strongly suppressed oscillations from the chi-
ral supercurrent, one might wonder whether the exper-
imentally observed period can be attributed to residual
non-chiral supercurrent propagating through the system.
Such non-chiral contributions can arise from, e.g., in-
homogeneities in the confining potential near the edge.
However, including such contributions (assuming they
are smaller than I.0) does not change the periodicity.
This work focuses on the magnitude of the supercurrent.
While we are able to show that the measured magnitude
of critical current is consistent with our theory, the pe-
riodicity is still off by a factor of two. This might still
be taken as evidence against interpreting the experiment

|Ich0 + Ich1 cos ¢e|7 (15)



as a chiral supercurrent. However, it is still possible that
non-perturbative interaction effects not accounted for in
our model leads to a shorter period modulation of the
critical current.

VI. DISCUSSION AND CONCLUSION

In this paper we have studied the chiral supercurrent in
a SC/QH/SC system for various system parameters. We
have found that the finite junction transparency (consis-
tent with normal state transport) and velocity renormal-
ization along the SC contacts is crucial to obtain the cor-
rect order of magnitude of the supercurrent. In addition,
we have found that in the high temperature limit, h <

(L/vgh + W/vse), both the flux averaged and flux de-
pendent (giving 2¢¢ = h/e periodic Fraunhoffer pattern)
chiral supercurrents go to zero exponentially with junc-

tion width with exponents W [% (Wﬁqh + UL)} and

oW [% (Wﬁ - + %)}, respectively.
q sc

We discussed the chiral nature of the supercurrent and
showed that this “chiral nature” can be used as a sharp
definition for chiral supercurrents even in presence of the
electron-electron interactions.
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Where v(x),a(xz) and A(z) are as defined in Eq. (5). This equation can then be integrated around the QH edge but
the delta function §(xz — ') to give,

lim G(x — e, x;iwy,) = M(x) | lim G(x + &, x; iwn) | - (A2)

e—0t e—0t

The explicit form of M () is calculated by integrating Eq. (A1) piecewise:

-2 Wm w )

M(z)=e T+ e

i _jAW i & AW _ipL==
e P02 oV iinge Te l 2 Tz o Tt huge Tx e P TRL T2 (A3)

Note that using the properties of the SU(2) group, M (z) can be written as in Eq. (8) and becomes independent of x.
Now, integrating the differential equation through the delta function from x — ¢ to x + ¢ gives Eq. (9),

lim [G(x + &, @y iwn) — Gz — &, 33 iwn)| = —i/hvg. (A4)

e—0t

Solving Eqgs. (A2), (A4):

. » 1 ap-1 b
6141)%1"’ G((E + E, :I;’ Zwm) - (1 M) h’Uqh ’
_ a1 b
51—1>Ig)1+ G(r —¢e,z;iwm) = —M(1 — M) ho” (A5)
With our regularization scheme, we obtain the Green’s function G(z, z;iw, ):
Gla,ayiton) = lim SETETIn) FG@ e mivn) _ 4y gyt L (A6)
e—0t 2 thh
Now Eq. (6) can be calculated using Eq. (A6).
2L+W
€Uqh Z / der{ (z,x; iwm)Tz} - / dx Tr {G(m, T; iwm)TZ]
L+W
- Ti Z ImTr [(1 +M)(1 - M)—%z]
m
4e _
= ) Imhr [(1 — M) 172} (A7)

Using our expression for M in Eq. (A3), and explicitly calculating the trace gives Eq.(10).
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