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A quantum Maxwell demon is a device that can lower the entropy of a quantum system by provid-
ing it with purity. The functionality of such a quantum demon is rooted in a quantum mechanical
SWAP operation exchanging mixed and pure states. We describe the setup and performance of a
quantum Maxwell demon that purifies an energy-isolated system from a distance. Our cQED-based
design involves two transmon qubits, where the mixed-state target qubit is purified by a pure-state
demon qubit connected via an off-resonant transmission line; this configuration naturally generates
an iSWAP gate. Although less powerful than a full SWAP gate, we show that assuming present-day
performance characteristics of a cQED implementation, such an extended quantum Maxwell demon
can purify the target qubit over macroscopic distances on the order of meters and tolerates elevated
temperatures of the order of a few Kelvin in the transmission line.

I. INTRODUCTION

Maxwell’s demon1 is a putative device that is capable
of observing and controlling the microscopic degrees of
freedom of a thermodynamic system. The existence of
such a demon permits the cyclic extraction of work in
a heat engine with unit efficiency and thus apparently
violates the Second Law of Thermodynamics. After a
century long debate2, it has been realized by Landauer3

and by Bennett4 that the demon’s functionality requires
a memory in which to store the results of its observations.
The cyclic operation of the engine then must include an
element that erases the information in the demon’s mem-
ory. According to Landauer, this erasure involves an en-
tropy increase per bit of ∆S = kB ln 2. A crucial element
in furthering the argument is to include the demon, which
is situated in the immediate proximity of the system,
as a part of the system. As a natural consequence, the
thermodynamic cost of erasing the demon’s memory then
is accounted for in the engine’s overall entropy budget,
thereby restoring the validity of the Second Law. Ther-
modynamic machines utilizing the functionality of such
a locally operating classical Maxwell demon have been
recently demonstrated in several systems5–8.

Within a quantum mechanical framework, new oppor-
tunities arise, e.g., a demon has been conceived9 that
allows to reduce the entropy of an energy-isolated sys-
tem. This has inspired the proposal for an engine that
features separated cycles10,11, an energy cycle that trans-
forms heat into work without thermal waste and an en-
tropy cycle that restores the Second Law. These findings
motivate the question about the distance over which such
a quantum Maxwell demon can perform its beneficial ac-
tion. In this paper, we analyze the performance of an ex-
tended quantum Maxwell demon (QMD); specifically, we
determine the demon’s maximal spatial separation and
its operating conditions that allow for an entropy reduc-
tion of a distant energy-isolated quantum system. This
lifts the question about a possible local violation of the

Second Law to a quantitative level. Furthermore, such
separation between the system and the demon is of prac-
tical relevance as it naturally protects the system against
undesired heating during the demon’s Landauer purifica-
tion; within the context of quantum information process-
ing, an extended demon can be used to feed pure states
to an ongoing quantum computation. In a wider context,
the coherent communication between quantum systems
separated by large distances12,13 is of great relevance,
e.g., in distant entanglement14, in recent Bell tests15,16

and in quantum state transfer17.
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FIG. 1: Schematic setup for an extended quantum Maxwell
demon swapping the mixed state of the target qubit (left) with
the pure state of the demon qubit (right) via an autonomous
and energy-conserving process. The qubits are formed by
the two low-energy states of a transmon device comprised of
a SQUID loop with two Josephson junctions with energies
EαJ1 and EαJ2 , capacitively shunted by a large capacitor Cα

(α = L,R); for the transmon, EαC = e2/2Cα � EαJ1,2 . The
off-resonant transmission line of length ` connecting the two
qubits is filtered to a frequency band ∆ω around ω0 and gener-
ates an XY -type interaction that remains effective at macro-
scopic distances ` and elevated temperature Tline � Tqubit.

A first version of a quantum Maxwell demon has been
proposed by Lloyd18 in the context of nuclear magnetic
resonance experiments, see also Refs. [19–21], based on
the idea that such a device exchanges the mixed quan-
tum state of a target system with a more pure quan-
tum state of the demon. Such an exchange is realized
in the course of the coherent unitary evolution of the
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joint target–demon system. In contrast to the classi-
cal version, the quantum demon utilizes its quantum pu-
rity as a thermodynamic resource and does not measure
the state of the target system, hence its functionality
roots in purity rather than information22. Several pro-
posals for QMD-assisted thermodynamic machines have
been suggested10,23–27 but only few have been realized
experimentally28–30. Here, we describe a practical de-
sign of a spatially distributed QMD setup that is able to
purify the state of a distant quantum system, the tar-
get qubit, by deterministically transforming its unknown
mixed state into a given pure quantum state that is pro-
vided by the demon.

Below, we focus on a circuit QED implementation
with two distant transmon qubits31, the target- and the
demon-qubits, that are capacitively coupled via a bosonic
bath in the form of a transmission line32, see Fig. 1.
This setup leads to an XY-type interaction between the
qubits that naturally generates an iSWAP gate—the lat-
ter’s purification power is reduced as compared to a full
SWAP gate. However, the simpler implementation and
enhanced robustness to decoherence of the iSWAP gate
motivates us to focus on this simpler version of a quan-
tum demon in our analysis below. We then address two
main questions: i) what spatial separation between tar-
get and demon qubits can be achieved for such an ex-
tended quantum demon, given the finite coherence time
of the components, and ii) what are the requirements for
the thermodynamic state of the bosonic bath, the trans-
mission line, that mediates the interaction between the
systems. We find that, given typical parameters describ-
ing present days cQED systems, a distance ` of the order
of a few meters can be reached with a transmission line
operating in the Kelvin range, i.e., about two orders of
magnitude higher than the operating temperature of the
qubits.

II. CQED SETUP OF EXTENDED QUANTUM
DEMON

A target–demon setup of the type outlined above is
described by the Hamiltonian

Ĥ =
∑
α=L,R

∞∑
i=0

εαi |i〉α α〈i|+ Ĥline (1)

+
∑
α=L,R

∞∑
i=0

[
qαi+1,iV̂

α(xα) |i+1〉α α〈i|+ h.c.
]
,

where εαi and |i〉α describe the energy levels of the left
and right (α = L,R) transmon qubits positioned at

xL = −`/2 and xR = +`/2 and V̂ (x) is the voltage at po-
sition x along the transmission line. The latter generates
an additional voltage drop βαV̂ α(xα) across the qubit ca-
pacitor, where the reduction factors βα = Cαg /(C

α
g +Cα)

account for the capacitors’ geometries, see Fig. 1. This
voltage drop couples to the Cooper pairs n̂α transferred

between the transmon capacitor with the effective charge
qαi+1,i = 2e βαα〈i + 1|n̂α|i〉α, where we incorporate the
geometrical factor βα. Finally, the Hamiltonian of the
transmission line is

Ĥline =
1

2

∫
dx
{
C[V̂ (x)]2 + L[Î(x)]2

}
, (2)

where Î(x) and V̂ (x) are electric current- and voltage-
fields along the transmission line with C and L the capaci-
tance and inductance per unit length. The fields Î(x) and

V̂ (x) are obtained through a standard canonical quanti-
zation procedure of the transmission line equations33, see
Appendix A.

In order to allow for optimizing the performance of
the device (see below), we assume the modes ωk of the
transmission line to be off-resonant with respect to the
transition frequencies ωαi,j = (εαi − εαj )/~ of the trans-
mons. The ensuing weak coupling allows for a perturba-
tive treatment of the qubit–mode interaction. We make
use of a unitary transformation of (1), Ĥ → Ĥ = ÛĤÛ†,
in order to eliminate the transmission-line modes to low-
est order. We choose the ansatz Û = exp

[
Ŝ − Ŝ†

]
and

Ŝ =
∑
α,i q

α
i+1,i|i+ 1〉α α〈i| Q̂αi , where Q̂αi is a linear form

of the bosonic operators, see Appendix B for details.
A rotating wave approximation then provides us with
an effective interaction between the qubits mediated via
virtual-photon exchange34,

Ĥint =
∑
ij

Jij |i+ 1〉L L〈i| ⊗ |j〉R R〈j+1|+ h.c. (3)

The effective couplings Jij involve the commutator[
Q̂αi , [V̂

β ]†
]

between photonic field operators at the op-
posite ends of the transmission line that contributes the
factor (with α = R,L and α 6= β; we assume a long
transmission line `� λ, where λ is the wavelength of the
transmission line modes)[

Q̂αi , [V̂
β ]†
]

=
1

2C`

∫
dω

ωαi+1,i

(ωαi+1,i − ω)2
, (4)

and its combination with the charge factors qαi+1,i pro-
vides us with the expression for the effective couplings

Jij=
qL
i+1,iq

R
j,j+1

2C`

∫
dω

[
ωL
i+1,i

(ωL
i+1,i−ω)2

+
ωR
j+1,j

(ωR
j+1,j−ω)2

]
. (5)

Its inverse-length dependence Jij ∝ 1/` derives from

the finite propagation velocity v = 1/
√
LC of the elec-

tromagnetic modes inside the transmission line, imply-
ing an exchange time τ = `/v for the virtual photons
that scales linearly with distance `, thus reducing the
coupling strength between the qubits as they are fur-
ther separated. In the following, we assume that the
transmission line modes are filtered to a frequency inter-
val [ω0 − ∆ω/2, ω0 + ∆ω/2], with |ω0 − ωαi,j | ∼ ω0 and
∆ω � ω0, simplifying (5) to

Jij =
qL
i+1,iq

R
j,j+1

2C`

[
∆ω ωL

i+1,i

(ωL
i+1,i−ω0)2

+
∆ω ωR

j+1,j

(ωR
j+1,j−ω0)2

]
. (6)
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Furthermore, the transition energies of the target and
demon qubits are chosen equal, ωL

1,0 = ωR
1,0 = ω1,0;

otherwise, the interaction Hamiltonian Hint would not
conserve energy, implying that the transition amplitudes
|i + 1, j〉 → |i, j + 1〉 are suppressed due to oscillating
phase factors (this feature can be used to switch the
coupling on/off). With all other transitions chosen off-
resonance, we can restrict the Hilbert space of the two-
qubit system to the two lowest pairs of energy states and
arrive at the effective system Hamiltonian

Ĥqb =
∑
α=L,R

~ω1,0|1〉α α〈1|+ J
[
|1, 0〉〈0, 1|+|0, 1〉〈1, 0|

]
, (7)

with a real-valued coupling constant J ≡ J00,

J = κLκR
∆ω ω1,0

(ω1,0−ω0)2
hv

`
. (8)

The dimensionless qubit–transmission-line couplings κL

and κR read (we use qαj,j+1 = −2ieβα[(1 + j)/2]1/2

(EαJ /8E
α
C)1/4)

κα = βα
( EαJ

2EαC

)1/4√ Z0

RQ
, (9)

with EαJ and EαC the Josephson- and charge energies of
the transmon qubit α, RQ = h/e2 is the resistance quan-
tum, and Z0 = 1/vC is the characteristic impedance
of the transmission line. For typical values β ∼ 0.1,
Z0 = 50 Ω, and EJ/EC ∼ 100 one arrives at κ ∼ 0.01.

III. DEMON (I)SWAP OPERATION

The XY-type interaction HXY = (J/2)
[
σ̂xσ̂x + σ̂yσ̂y

]
in the two-qubit Hamiltonian (7) naturally leads to an
iSWAP quantum gate35 when running the evolution (we
define ωJ = J/~)

Û(τ) =

 1 0 0 0
0 cos(ωJτ) −i sin(ωJτ) 0
0 −i sin(ωJτ) cos(ωJτ) 0
0 0 0 1

 (10)

during the time τiSWAP = π/2ωJ . On the other
hand, the optimal interaction for the SWAP gate
SWAP( |ψ〉L |χ〉R ) = |χ〉L|ψ〉R is the isotropic Heisenberg

interaction ĤXYZ = (J/2)
[
σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z

]
; acting

during the time interval τ = h/4J it produces the unitary

ÛSWAP = e
iπ
4 exp

[
−i(π/4)

(
σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z

)]
. (11)

Given our setup, we have only the XY-interaction at
our disposal, from which one can generate a SWAP gate
through a gate sequence involving square-roots of iSWAP
operations and single-qubit rotations, see Fig. 2,

ÛSWAP = e
iπ
4

[
Û†y ⊗ Û†ye−i

π
8 [σ̂xσ̂x+σ̂yσ̂y ]Ûy ⊗ Ûy

]
(12)[

Û†x ⊗ Û†xe−i
π
8 [σ̂xσ̂x+σ̂yσ̂y ]Ûx ⊗ Ûx

]
e−

iπ
8 [σ̂xσ̂x+σ̂yσ̂y ],

where Ûx = e−iπσ̂x/4 and Ûy = e−iπσ̂y/4 are π/2 ro-
tations around the x- and y-axis, respectively. Indeed,
making use of the commutativity [σ̂α ⊗ σ̂α, σ̂β ⊗ σ̂β ] = 0
for α, β = {x, y, z} and the unitary transformations of

the Pauli matrixes, Û†xσ̂yÛx = −σ̂z and Û†y σ̂xÛy = σ̂z,
one easily verifies the validity of Eq. (11). This SWAP
gate implementation is twice faster than the one with
three iSWAP gates suggested in Ref. [35] and takes a time
τ = 1.5 τiSWAP (we assume that all single-qubit rotations
can be done infinitely fast); according to the discussion
in Refs. [36,37] it is optimal.

FIG. 2: Construction of the SWAP gate from three
√

iSWAP
gates augmented with single-qubit rotations Ûx(π/2) and

Ûy(π/2) and its conjugates.

The SWAP gate can fully purify any state ρ̂t of the
left (target) qubit by exchanging its state with a pure
state ρ̂d = |χ〉〈χ| of the right (demon) qubit. Moreover,
preparing the demon state with equal energy as the target
qubit, Tr{ĤRρ̂d} = Tr{ĤLρ̂t}, one arrives at a device
which non-locally pushes the entropy of the target qubit
to zero without changing its energy, thus defining our
desired quantum Maxwell demon.

FIG. 3: Comparison of ideal entropy gain ∆S ≤ 0 of a
thermal-state target qubit for the SWAP (thick line) and
iSWAP (thin line) operation with a pure demon qubit as a
function of the excited level occupation p1. As p1 → 0, the
target is already pure and the entropy gain vanishes.

However, in practice the qubits are not ideal and prone
to decoherence, thus restricting the available time re-
quired for the QMD operation. A way to relax this time
restriction is to replace the SWAP gate by the naturally
appearing iSWAP operation: since a full SWAP involves
three

√
iSWAP operations, an iSWAP demon performs

its task at least 1.5 times faster, which is quite benefi-
cial given the time constraints due to decoherence. Fur-
thermore, as shown below, the iSWAP demon is less af-
fected by decoherence. On the other hand, one has to
admit that the iSWAP demon comes with a reduced pu-
rification power38, see Fig. 3: starting out with a ther-
mal state of the target qubit ρ̂th = p0|0〉〈0| + p1|1〉〈1|
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FIG. 4: (a) Final entropy of the target qubit (vertical axis in bits) after the execution of the SWAP-QMD (thick lines) and the
iSWAP-QMD (thin lines) as a function of pure dephasing time Tφ (horizontal axis in units of τiSWAP = h/4J , relaxation effects
are neglected). The color/dashes indicate different temperatures of the qubit environment and the dotted lines mark the level
of the target qubit’s initial entropy. (b) Final entropy of the target qubit as a function of relaxation time T1 in the absence of
dephasing effects.

and an equal-energy pure state ρ̂p = |χth〉〈χth| with
|χth〉 =

√
p0|0〉+

√
p1|1〉 for the demon qubit, the iSWAP-

QMD generates a non-entangled but classically corre-
lated state of the two qubits,

Û(τiSWAP)
(
ρ̂th ⊗ ρ̂p

) τiSWAP→
p0 [|ψ−〉〈ψ−|]⊗ |0〉〈0|+ p1 [|ψ+〉〈ψ+| ⊗ |1〉〈1|], (13)

where |ψ±〉 =
√
p0|0〉 ± i

√
p1|1〉. The resulting en-

tropy of the final target state ρ̂(τiSWAP) = p0|ψ−〉〈ψ−| +
p1|ψ+〉〈ψ+| is always bounded by the entropy of its orig-
inal state; with S[ρ̂] the von Neumann entropy of the
state ρ̂, the iSWAP QMD provides an entropy reduction
∆S = S[ρ̂(τiSWAP)]− S[ρ̂th] ≤ 0 with the equal sign real-
ized for the chaotic state with p0 = p1 = 1/2. Note that,
during the operation of the iSWAP gate, the average en-
ergy p1~ω1,0 of the target qubit remains constant.

As announced above, dephasing and relaxation af-
fect the iSWAP- and SWAP-QMDs quite differently,
with the iSWAP-QMD performing better at short de-
phasing/relaxation times, while the SWAP-QMD ulti-
mately outperforms the iSWAP-QMD at long dephas-
ing/relaxation times due to its higher purification power.
Including dephasing and relaxation in the demon’s evo-
lution, we have to replace the unitary Û(τ) in (10) by a
channel Φ(τ) that accounts for the environment, see Ap-
pendix C. We assume our qubits to interact with their
local environments, each in thermal equilibrium at some
temperature Θ, and adopt the above initial states ρ̂th
and ρ̂p for the target and demon qubits with p1/p0 =
exp(−~ω1,0/kBΘ). Solving the corresponding Lindblad
master equations39 numerically, we determine the time
evolution of the entropies for both demons and for the
two cases of pure dephasing and relaxation. In Fig. 4, we
show the target qubit’s final entropy for different ratios

Tφ/τiSWAP (pure dephasing, in (a)) and T1/τiSWAP (relax-
ation, in (b)) and for different temperatures.

As expected, short dephasing and relaxation times de-
stroy the purification power of both demons. Increasing
the dephasing and relaxation times in Fig. 4, we find that
the iSWAP-QMD performs better at small T1 and Tφ,
while good qubits with large T1 and Tφ profit from the
better purification power of the SWAP operation. An
additional surprise is that the SWAP-QMD fails com-
pletely at small T1 and Tφ where the final entropy turns
out higher (and even maximal for Tφ/τiSWAP → 0 in Fig.
4(a)) than the initial one. We attribute this entropy in-
crease to the action of the intermediate single qubit rota-
tions in the SWAP operation and its extreme sensitivity
to decoherence.

Indeed, consider the extreme case of strong dephasing
with Tφ much shorter than the duration of the iSWAP
gate, Tφ � τiSWAP, but longer or compatible with the
duration of one-qubit operations. Given such a strong
dephasing leads to a rapid collapse of the qubits to a

product of thermal states, ρ̂th ⊗ ρ̂p

√
iSWAP→ ρ̂th ⊗ ρ̂th,

implying that the entropy of the target qubit is not
changed, see Fig. 4. Going on with the SWAP-demon,
the subsequent π/2-rotations Ûx take the (now thermal)
qubits out of the decoherence-free subspace, ρ̂th → ρ̂rot =
Ûxρ̂thÛ

†
x ≡ (1/2)1 + σ̂y(p0 − p1)/2, and the subsequent

evolution brings both qubits into the maximally mixed

state, ρ̂rot ⊗ ρ̂rot
√
iSWAP→ (1/2)1⊗ (1/2)1.

The same argument is valid for strong relaxation T1 →
0: the evolution rapidly takes the pair of qubits into a
product of thermal states, while subsequent Ûx rotations
take them out of the equilibrium with their local envi-
ronment, ρ̂th → ρ̂rot. During the next

√
iSWAP gate,

both qubits relax back to the thermal equilibrium state,
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ρ̂rot⊗ρ̂rot
√
iSWAP→ ρ̂th⊗ρ̂th, keeping the target qubit in the

original entropy state. However, for a moderately strong
relaxation strength, the state ρ̂rot may not have enough
time to relax back into the thermal state ρ̂th during the
square-root iSWAP time τiSWAP/2 and thus ends up in a
higher entropy state. This explains the non-monotonic
behavior of the entropy of the target qubit at short re-
laxation times in Fig. 4(b). The above discussion lets us
conclude that the iSWAP-QMD is less sensitive to de-
phasing and relaxation than its SWAP analog; only for
long dephasing and relaxation times Tφ, T1 � τiSWAP does
the better purification power of the SWAP gate beat the
preformance of the iSWAP-demon.

IV. OPERATIONAL REQUIREMENTS FOR
THE DEMON

The functionality of the iSWAP demon depends criti-
cally on its environment, of which the transmission line
is an integral part. A large separation between the tar-
get and demon qubits reduces the coupling J and thus
enhances the operation time τiSWAP, what is in conflict
with the finite decoherence time T2; as a result, we ob-
tain a limit ` of the demon’s extension, see Sec. IV A.
Second, the presence of the transmission line will itself
increase both the dephasing and the relaxation rate of
the qubits. While dephasing due to the thermally excited
bosonic modes will limit the operational temperature of
the transmission line, see Sec. IV B 1, we find that the en-
hanced qubit relaxation due to a lossy transmission line
(Purcell effect, see Sec. IV B 2) is not (yet) relevant in
our setup.

A. Demon extension

Given a decoherence time T2 = (1/2T1 + 1/Tφ)−1, we
estimate the possible extension ` of the demon. In order
to successfully realize an iSWAP operation, the condition
τiSWAP ∼ T2 has to be satisfied. Choosing the specific ar-
rangement ω1,0 = 2ω0 for the resonator and qubit tran-
sition frequencies and similar target and demon qubits
with κL = κR = κ, one finds that

T2 ∼
`

v

1

8κ2
ω0

∆ω
. (14)

Assuming typical values v ∼ 2c/3, ω0 ∼ 2π×5 GHz, and
∆ω ∼ 2π×500 MHz, we find that typical coherence times
T2 ∼ 50−250 µs allow for an extension of the demon over
macroscopic lengths ` ∼ 1.0− 5.0 meters.

B. Dephasing and relaxation due to transmission
line

1. Dephasing and transmission line temperature

So far, we have assumed that the transmission line
is kept at low temperature such that electromagnetic
modes within its bandwidth [ω0 − ∆ω/2, ω0 + ∆ω/2]
are not thermally excited. Given the possibility for a
macroscopic separation `, a question of much techno-
logical interest then is, whether the QMD can be oper-
ated through a hot and thus less-quantum environment.
Indeed, at finite temperatures a thermal voltage noise
appears in the transmission line that causes dephasing
of the qubits. The dephasing due to the presence of
a (hot) transmission line is described via the dispersive
shift of the qubit energy levels induced by the fluctuat-
ing voltages at the ends of the transmission line. The
corresponding qubit-dephasing Hamiltonian is given by
Ĥsh =

∑
α=L,R

[
|0〉α α〈0| − |1〉α α〈1|

]
⊗ B̂α(xα), where the

operators B̂α(xα) =
∑
n,m bnm(xα)â†nâm describe the

coupling to the transmission line modes of the electro-
magnetic environment, see Appendix B (here, ân denote
bosonic operators of the transmission line). The presence
of thermal modes in the transmission line then modifies
the level separation of the qubit and induces dephasing
at a rate (see Appendix D 1)

γαα
′

φ = 32π (κακα
′
)2Nω0

(1+Nω0
) ∆ω (15)

×
[

ωαanω0

(ωα1,0 − ω0)(ωα2,1 − ω0)

][
ωα

′

anω0

(ωα
′

1,0 − ω0)(ωα
′

2,1 − ω0)

]
,

where Nω is the Bose-Einstein distribution function and
ωαan = ωα1,0 − ωα2,1 are the anharmonicities of the trans-
mon spectra. Remarkably, the dephasing rate scales as
γφ ∝ κ4, while the coupling constant J ∝ κ2, see Eq. (8);
both of them are linear in the frequency bandwidth ∆ω.
Therefore, installing a small coupling κ one can keep the
qubit dephasing rates small while leaving a sufficiently
strong coupling between the qubits. The iSWAP-QMD
device is functional when γφτiSWAP ≤ 1, that translates
into a requirement on the photon occupation number

Nω0
(1 +Nω0

) ≤
[
8πκ2

ω0`

v

ω0

ω1,0

( ωan

ω2,1 − ω0

)2]−1
. (16)

For ω0 ∼ 2π×5 GHz, v ∼ 2c/3, and ωan ∼ 2π×300 MHz,
we find that Nω0

(1 + Nω0
) ≤ 1000 m/`, that translates

to a corresponding temperature range 7.5 K ≥ Θline ≥
3.5 K for 1 m ≤ ` ≤ 5.0 m. Hence, the transmission line
can reside at a temperature that is about two orders of
magnitude higher than the typical operation temperature
Θqubit ∼ 20 mK of the superconducting qubits.

2. Relaxation through Purcell effect

Finally, we study the consequences of losses in the
transmission line. Indeed, a finite loss rate γline in the
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transmission line induces an enhanced decay of the qubit
excited state via the Purcell effect (see Appendix D 2),

γαPur = 2 γline (κα)2
∆ω ω0

(ωα1,0−ω0)2
. (17)

For commercially available coaxial cables with an atten-
uation constant ∼ 0.1 dB/m one has γline ∼ 4.6 MHz
and choosing parameters as above results in a lifetime
γ−1Pur ∼ 9 ms that is long compared to the relaxation time
T1 assumed above. Hence, we conclude that the presence
of the transmission line does not significantly reduce the
performance of the qubit’s characteristics that we have
assumed above.

V. CONCLUSION

In conclusion, we have proposed a realistic design for a
spatially distributed quantum Maxwell demon based on
a cQED platform. The transmon-type target and demon
qubits are capacitively coupled via the electromagnetic
modes of a transmission line; its non-resonant coupling
allows to keep the line at high temperatures, of order
Kelvin, while the resonant coupling of other designs16 re-
quires a cold line. The device serves to reduce the entropy
of the target qubit via exchange of its state with a higher-
purity demon state. Previous demons, both local18 and
extended10, were based on SWAP or partial-SWAP op-
erations involving multiple CNOT gates; here, we have
proposed to reduce the demon’s complexity via operating
on the ‘machine code’ level by directly exploiting the XY-
type coupling between the qubits. The resulting iSWAP
gate then provides limited purification power to the de-
mon but behaves more benevolent with respect to deco-
herence. Our estimates show, that the target qubit can
be purified ‘from a distance’, with the demon qubit lo-
cated a macroscopic distance of order meters away. The
proposed setup can be implemented with present day
technology.
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Appendix A: Transmission line

An ideal lossless transmission line can be modelled
as a pair of uniform conductors separated by a dielec-
tric medium; it is characterized by a series of induc-
tances L (in Henry/meter) and shunt capacitances C
(Farad/meter)32. The voltage V (x, t) and current I(x, t)
along the transmission line is described by the transmis-
sion line equations

∂xV = −L ∂tI, ∂xI = −C ∂tV. (A1)

Introducing the potential ϕ(x, t) and expressing the volt-

age and current via V (x, t) =
√
L ∂tϕ(x, t) and I(x, t) =

−∂xϕ(x, t)/
√
L, the transmission line equations reduce to

a standard wave equation (with ϕ̇ = ∂tϕ and ϕ′ = ∂xϕ),

ϕ̈− c2ϕ′′ = 0, (A2)

where c = 1/
√
LC is the wave velocity.

The quantization of the transmission line fields33 is
done via standard canonical quantization. The classi-
cal equation of motion (A2) derives from minimizing the
classical action S =

∫
dt dxL(ϕ̇, ϕ) with the Lagrangian

density

L(ϕ̇, ϕ) =
1

2

[(
ϕ̇/c

)2 − (ϕ′)2]. (A3)

Introducing the conjugated field π(x) = ∂L/∂ϕ̇ =
ϕ̇/c2, provides us with the Hamiltonian H(π, ϕ) =∫
dxπ(x)ϕ̇(x)− L(π, ϕ),

H(π, ϕ) =
1

2

∫
dx
[
c2π2(x) + ϕ′

2
(x)
]
. (A4)

Going back to the original fields V (x) = c2
√
Lπ(x)

and I(x) = −ϕ′(x)/
√
L, we obtain the transmission line

Hamiltonian

H =
1

2

∫
dx
[
CV 2(x) + LI2(x)

]
. (A5)

The canonical quantization maps the classical fields to
operators, ϕ(x) → ϕ̂(x) and π(x) → π̂(x) with com-
mutation relations [ϕ̂(x), ϕ̂(y)] = [π̂(x), π̂(y)] = 0 and
[ϕ̂(x), π̂(y)] = i~δ(x − y). Introducing the transmission
line modes

ϕ̂(x) = c
∑
k

( ~
2ωk`

)1/2(
âke

ikx + â†ke
−ikx), (A6)

π̂(x) = − i
c

∑
k

(~ωk
2`

)1/2(
âke

ikx − â†ke
−ikx), (A7)

we go over to bosonic annihilation and creation operators

âk and â†k with commutators [âk, â
†
k′ ] = δkk′ , dispersion

ωk = c|k|, and ` → ∞ is the length of the transmission
line. The Hamiltonian (A4) then transforms into the
standard form

H(π, ϕ)→ Ĥline =
1

2

∑
k

~ωk
(
â†kâk + âkâ

†
k

)
. (A8)
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The voltage and current operators derive from the mode

operators âk and â†k via

V̂ (x) = −i
∑
k

(~ωk
2Cr

)1/2(
âke

ikx − â†ke
−ikx)

≡
∑
k

V̂ke
ikx + h.c., (A9)

Î(x) = −i
∑
k

sgn(k)
(~ωk

2Lr

)1/2(
âke

ikx − â†ke
−ikx)

≡
∑
k

Îke
ikx + h.c., (A10)

where Cr = C` and Lr = L` are the total capacitance and
inductance of the transmission line. The k-components
of the voltage- and current-operators are linearly related
through a transmission line impedance Z0 =

√
L/C,

V̂k = Z0 sgn(k)Îk. (A11)

For an open transmission line, we have to impose the
boundary conditions Î(x = ±`/2) = 0, resulting in a
discrete level spectrum with wave numbers kn = πn/`,
n ≥ 0, describing even and odd modes

V̂ (x) = −i
∑
n

(~ωn
Cr

)1/2
ϕn(x)ân + h.c., (A12)

where

ϕn(x) =

{
cos(πnx/`), n even,
i sin(πnx/`), n odd.

(A13)

Appendix B: Interaction Hamiltonian for transmon
qubits

We wish to eliminate the transmission line modes in
the Hamiltonian (1) to lowest order in the bosonic op-
erators an; this will provide us with the effective qubit–
qubit coupling and higher-order terms including a disper-
sive shift describing transmission-line induced dephasing.
We use a perturbative scheme that is valid in the off-
resonant regime |ωα1,0 − ω0| ∼ ω0. We perform a unitary

transformation, Ĥ → Ĥ = ÛĤÛ† with Û = exp
[
Ŝ− Ŝ†

]
,

and seek an operator Ŝ =
∑
α,i q

α
i+1,i|i+ 1〉α α〈i| Q̂αi that

eliminates the terms linear in an within the expansion
Ĥ ≈ Ĥ + [Ŝ, Ĥ] + [Ŝ, Ĥ]† + . . . . This is achieved by the
choice

Q̂αi = −i
∑
n

( ωn
~Cr

)1/2 ϕn(xα)

ωαi+1,i − ωn
ân. (B1)

The transformed Hamiltonian then takes the form

Ĥ ≈ Ĥtransmon + Ĥbath + Ĥsh + Ĥ2ph + Ĥint, (B2)

where Ĥbath =
∑
n ~ωnâ†nân is the transmission line

Hamiltonian and Ĥsh describes the dispersive shift of the

transmon’s energy levels due to the off-resonant interac-
tion with the transmission line modes,

Ĥsh = |qαi+1,i|2
∑
i,α

|i+1〉α α〈i+1|
(
Q̂αi [V̂ α]† + V̂ α[Q̂αi ]†

)
−|qαi+1,i|2

∑
i,α

|i〉α α〈i|
(
[V̂ α]†Q̂αi + [Q̂αi ]†V̂ α

)
. (B3)

The contribution Ĥ2ph describes the next-order two-
photon interaction process,

Ĥ2ph =
∑
α,i

|i+2〉α α〈i| ⊗ η̂αi + h.c., (B4)

where η̂αi = qαi+i,i q
α
i+2,i+1

(
Q̂αi+1 − Q̂αi

)
V̂ α. Finally, the

term Ĥint describes the directly induced interaction be-
tween the transmon qubits,

Ĥint =
∑
α 6=β

∑
i,j

|i+1〉α α〈i| ⊗ |j〉β β〈j+1| (B5)

×qαi+1,iq
β
j,j+1

[
Q̂αi , [V̂

β ]†
]

+ h.c.

The effective coupling constant involves the commuta-
tor of the electromagnetic field operators at the opposite
ends of the transmission line. Making use of the explicit
form of the operators V̂ α and Q̂αi , see Eqs. (A12) and
(B1), one finds,[

Q̂αi , [V̂
β ]†
]

=
∑
n even

ωn
Cr

cos(πnxα/`) cos(πnxβ/`)

ωαi+1,i − ωn

+
∑
n odd

ωn
Cr

sin(πnxα/`) sin(πnxβ/`)

ωαi+1,i − ωn
. (B6)

In particular, for transmon qubits located at the opposite
ends xα = −xβ = `/2 of the transmission line, one has[
Q̂αi , [V̂

β ]†
]

=
1

Cr

∞∑
k=1

(ω2k − ω2k−1)ωαi+1,i

(ωαi+1,i − ω2k)(ωαi+1,i − ω2k−1)
.

(B7)
Going to the continuous limit

∑
k →

∫
`dω
2πc one finds,[

Q̂αi , [V̂
β ]†
]

=
1

2Cr

∫
dω

ωαi+1,i

(ωαi+1,i − ω)2
. (B8)

Substituting this expression into Eq. (B5), one finally
arrives at the qubit–qubit coupling constants Jij given
in Eq. (5) of the main text.

Appendix C: Phenomenological Lindblad Analysis

1. Qubit relaxation

We assume that each qubit interacts with its local en-
vironment and describe the evolution of the two-qubit
density matrix ρ̂(t) by the Lindblad equation,

dρ̂(t)

dt
= −i

[
Ĥ(t), ρ̂(t)

]
+
∑
α=L,R

Dαrel[ρ̂(t)], (C1)
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where Ĥ(t) is the time-dependent Hamiltonian which de-
scribes the sequence of a one- and two-qubit operations
applied during the execution of the SWAP and iSWAP
Maxwell demon and Dαrel[ρ̂] is the dissipator that de-
scribes the excitation/relaxation processes for the qubits
α = L,R,

Dαrel[ρ̂] =
∑
µ=±

γαµ

(
σ̂αµ ρ̂ [σ̂αµ ]† − 1

2

{
[σ̂αµ ]†σ̂αµ , ρ̂

})
. (C2)

Here, σ̂α− = |0〉α α〈1| and σ̂α+ = |1〉α α〈0| describe the
relaxation and excitation processes with rates γα± > 0
and {·, ·} is the anti-commutator. If both local environ-
ments are in thermal equilibrium at a temperature Θ,
then γα+ = γα− exp(−β~ω1,0) with β = 1/kBΘ.

We assume that the target qubit on the left ini-
tially is in thermal equilibrium with its environment,
ρ̂t(0) = ρ̂th = p0|0〉L L〈0| + p1|1〉L L〈1|, where p0 =
[1 + exp(−β~ω1,0)]−1 and p1 = [1 + exp(β~ω1,0)]−1 are
equilibrium occupation probabilities. In contrast, the de-
mon qubit on the right is prepared in the equal-energy
pure state, ρ̂d(0) = ρ̂p = |χ0〉〈χ0| with |χ0〉 =

√
p0 |0〉R +√

p1 |1〉R.
The execution of the iSWAP operation in the presence

of the relaxation processes is described by Eq. (C1) with
the constant Hamiltonian,

Ĥ(t) = J

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (C3)

acting during the time interval 0 < t ≤ τiSWAP = h/4J .
The Lindblad equation (C1) with the Hamiltonian (C3)
describes the linear evolution of the 16 components of the
density matrix ρ̂(t) and its formal result can be written
in the form of a quantum channel,

ρ̂(t = τiSWAP) = ΦiSWAP

[
ρ̂t(0)⊗ ρ̂d(0)

]
. (C4)

For its numerical solution, we assume that γ±,L = γ±,R =
γ±, such that the result merely depends on the two di-
mensionless parameters γ−/J and β~ω1,0.

On the other hand, the SWAP demon involves the con-
secutive transformations of the density matrix ρ̂ accord-
ing to the quantum circuit shown in Fig. 2 of the main
text,

ρ̂(0) → ρ̂′1 = Φ√iSWAP|
[
ρ̂(0)

]
(C5)

→ ρ̂1 =
[
Ûx ⊗ Ûx

]
· ρ̂′1 ·

[
Û†x ⊗ Û†x

]
→ ρ̂′2 = Φ√iSWAP

[
ρ̂1
]

→ ρ̂2 =
[
ÛyÛ

†
x ⊗ ÛyÛ†x

]
· ρ̂′2 ·

[
ÛxÛ

†
y ⊗ ÛxÛ†y

]
→ ρ̂′3 = Φ√iSWAP

[
ρ̂2
]

→ ρ̂3 =
[
Û†y ⊗ Û†y

]
· ρ̂′3 ·

[
Ûy ⊗ Ûy

]
,

where Ûx = exp[−iπ σ̂x/4] is a spin-1/2 rotation by π/2
around x-axis, Φ√iSWAP is a quantum channel, corre-

sponding to
√

iSWAP execution in the presence of deco-
herence. In the above transformation, we have assumed

that the one-qubit rotations take a negligible time in com-
parison with the

√
iSWAP operation and therefore the

relaxation processes can be neglected during their execu-
tion. In Fig. 4(b), we show the von Neumann entropy
S[ρ̂] evaluated for the SWAP and iSWAP channels for a
qubit evolution including relaxation processes character-
ized by γ− = 1/T1.

2. Qubit dephasing

Dephasing is phenomenologically accounted for by the
dissipator

Ddph[ρ̂] =
∑
α,α′

γαα
′

φ

(
σ̂αz ρ̂ σ̂

α′

z −
{
σ̂α

′

z σ̂
α
z , ρ̂
}
/2
)
, (C6)

where σ̂αz = |0〉α α〈0| − |1〉α α〈1| and γαα
′

φ are pure de-
phasing rates. In our numerical evaluation of the chan-
nel Φ(t), we use the phenomenological parameter γαα

′

φ =

1/Tφ. In Fig. 4(a), we show the von Neumann entropy
S[ρ̂] evaluated for the SWAP and iSWAP channels for a
qubit evolution with pure dephasing processes.

Appendix D: Transmission-line induced decoherence

The transmission line induces qubit dephasing due to
the presence of thermal photons and we present a mi-
croscopic analysis of this effect in Appendix D 1. Fur-
thermore, a lossy transmission line enhances the qubit’s
relaxation rate via the Purcell effect which is studied in
Appendix D 2.

1. Qubit dephasing

We determine the transmission-line induced dephasing
rate of the qubit. The latter can be derived microscopi-
cally by accounting for the sensitivity of the qubit’s en-
ergy levels to the presence of photons in the transmission
line, as described by the dispersive shift Ĥsh in Eq. (B3).
In the qubit subspace, this Hamiltonian can be written
as

Ĥsh =
∑
α

σ̂αz ⊗ B̂α(xα), (D1)

with the bosonic fields B̂α(xα) given by

B̂α(xα)=
1

2

∑
n,m

(ωnωm
C2
r

)1/2{ |qα2,1|2

ωα2,1 − ωn
−

2|qα1,0|2

ωα1,0 − ωn

+
|qα2,1|2

ωα2,1− ωm
−

2|qα1,0|2

ωα1,0− ωm

}
ϕ∗n(xα)ϕm(xα) â†nâm. (D2)

The second qubit level i = 2 appears through the terms
i = 1 in the second line of Eq. (B3). Using the relation
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|qα2,1|2 = 2|qα1,0|2, this expression simplifies to

B̂α(xα)=(κα)2
hv

`

∑
n,m

{
ωαan
√
ωnωm

(ωα1,0− ωn)(ωα2,1− ωn)
(D3)

+
ωαan
√
ωnωm

(ωα1,0 − ωm)(ωα2,1 − ωm)

}
ϕ∗n(xα)ϕm(xα) â†nâm,

where ωαan = ωα1,0−ωα2,1 is the anharmonicity of the trans-
mon spectrum. The dispersive shift Eq. (D1) introduces
fluctuating phases in the qubits and their thermal averag-
ing provides us with the dephasing rates; these are given
by the irreducible correlators of the bosonic fields39,

γαα
′

φ =
1

~2

∫
dτ 〈〈B̂α(xα, τ)B̂α

′
(xα

′
, 0)〉〉. (D4)

Performing the quantum average and going to continuous
frequencies one obtains

γαα
′

φ = 32π(κακα
′
)2
∫
dωNω(1 +Nω) (D5)

×
[ ωαan ω

(ωα1,0 − ω)(ωα2,1 − ω)

][ ωα
′

an ω

(ωα
′

1,0 − ω)(ωα
′

2,1 − ω)

]
,

where N(ω) is the bosonic distribution function. Finally,
for similar qubits and a narrow bandwidth ∆ω of the
transmission line modes, one arrives at the pure dephas-
ing rate

γφ = 32πκ4
[

ωan ω0

(ω1,0 − ω0)(ω2,1 − ω0)

]2
∆ωNω0(1 +Nω0).

(D6)

2. Qubit relaxation

A lossy transmission line enhances the relaxation time
of the qubits through the Purcell effect. The transmission
line losses can be accounted for by the dissipator

Dline[R̂] = γline

[∑
n

ânR̂ â
†
n −

1

2

{
â†nân, R̂

}]
(D7)

in the Lindblad equation for the joint evolution of the
density matrix R̂ of the full system, qubits and transmis-
sion line,

dR̂

dt
= −i

[
Ĥ, R̂

]
+
∑
α=L,R

Dαrel
[
R̂
]

+Dline

[
R̂
]
, (D8)

with the original Hamiltonian Ĥ given by Eq. (1) and

Dαrel
[
R̂
]

is a phenomenological dissipator for the qubit α.

We perform the unitary transformation R̂→ R̂ = Û R̂Û†,
with Û given in Appendix B above, that integrates out
the transmission line modes in Ĥ to lowest order. Un-
der this action, the bosonic operators in Dline are shifted
according to

ân → Ân = Û ânÛ
† ≈ ân −

[
Ŝ†, ân

]
(D9)

= ân + i
∑
α,i

qαi,i+1|i〉α α〈i+ 1|
( ωn
~Cr

)1/2 ϕ∗n(xα)

ωαi+1,i − ωn
,

where ϕn(x) = cos(πnx/`) and ϕn(x) = i sin(πnx/`)
for even and odd integers n, respectively. The shift
includes transitions between qubit levels and therefore
the Lindblad equation for the reduced density matrix
ρ̂(t) = Trline[R̂(t)] assumes an additional contribution
to the qubit’s relaxation due to the decay into the trans-
mission line. Combining Eqs. (D7) and (D9), the decay
rate of the qubit is enhanced by the term

γαPur = γline
∑
n

ωn
~Cr

2|qα1,0|2

(ωα1,0 − ωn)2
≡
∑
n

γαn,Pur, (D10)

where each partial decay rate γαn,Pur describes the Purcell
decay into a transmission line mode with an index n.
Going to the continuum limit

∑
n →

∫
`dω
2πv , one arrives

at

γαPur = 2 γline (κα)2
∫
dω

ω

(ωα1,0 − ω)2
. (D11)
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