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Abstract

By the Monte-Carlo method, magnetic properties have been investigated for Eu-doped GaN in-

volving internal nanostructures induced by nanoscale spinodal decomposition, where these nanos-

tructures are spontaneously or artificially formed. In the present simulations, hysteretic and non-

hysteretic magnetization curves are observed in the systems with the large-sized and small-sized

nanostructures, respectively. These nanostructures affect the blocking temperatures as well. Fur-

thermore, they influence temperature-dependent energy barriers of spin flipping; therefore, the

simulations suggest that the magnetization is thermally stable. However, we observe that the

blocking temperatures are smaller than the experimental values, which may be due to atomic

vacancies.

PACS numbers:

2



I. INTRODUCTION

Eu-doped GaN is renowned for red light emitting diodes (LEDs);1–5 whereas, it is in-

teresting as a magnetic material.6–10 Hashimoto et al. reported the magnetization effects

in Eu-doped GaN showing a ferromagnetic hysteresis having constant magnetization with

increasing temperature,8 depending on the external field; it was concluded that such a

condition was induced either by ferromagnetism or superparamagnetism via the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction.8,11–13 Nunokawa et al. reported non-hysteretic

sigmoidal curves for Eu-doped GaN and its derivatives.9

From a theoretical viewpoint, Said et al., Svane et al., Cruz et al., and our group reported

the investigation of electronic structures by ab-initio calculations.14–17 Both the research

groups of Said and Svane have suggested that Eu-doped zincblende GaN involves the lo-

calized Eu 4f-states in the band gap; however, Said et al. reported that it is ferromagnetic,

whereas Svane et al. reported that it is antiferromagnetic.14,15 Both our and Cruz’s groups

investigated the Eu-doped wurtzite GaN including codopants using the Vienna Ab-initio

Simulation Package (VASP) code,4,16 and have suggested that the localized 4f-states of Eu

are localized at the band edges and that the ferromagnetic states are stable.

Meanwhile, Lu et al. reported that ErGaSb, which is a similar compound to Eu-

doped GaN, exhibits nanometer-scaled density modulations that are induced by spinodal

decomposition.18,19 Herein, we refer to these structures as internal nanostructures. InGaN

and some rare-earth doped materials also exhibits spinodal decomposition and form various

crystalline internal nanostructures,20–23 among which most are strongly dependent on the

annealing temperature and impurity concentration.

In our previous study, we depicted that the calculated mixing energy versus composition

profile in Eu-doped GaN formed a convex upward arc; therefore, it is expected that Eu-doped

GaN can also form nanostructures induced by spinodal decomposition. The chemical pair

interaction, which was calculated using the generalized perturbation method,24 also indicated

an attractive trend between Eu ions in the zincblende GaN matrix.25–28 Using this chemical

pair interaction, we obtained internal nanostructures or internal clusters of EuN depending

on the annealing temperature, number of annealing steps, and Eu ion concentration.25 We

proposed two phases that are called Dairiseki and Konbu phases. The former phase occurs

spontaneously and involves nano-dots, whereas the latter phase is artificially generated as
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to have nano-rods.27,28

Figures 1, 2, and 3 exhibit typical phases proposed in our previous papers. Figure 1

depicts a homogeneous distribution of Eu ions that is generated randomly in the calculation

cell (a 20×20×20 supercell), where particles indicate Eu ions located at Ga-sites on the

FCC lattice points, and Ga and N ions are omitted. Figure 2 depicts the Dairiseki and the

Konbu phases that are generated by Monte-Carlo simulations with 10,000 annealing steps,

where the scaled temperature of kBT/|V01| was set to 0.5, which corresponds to 428 K, and

V01 indicates the chemical pair interaction between the nearest neighbor pair of Eu ions.25

Figure 3 depicts these phases that are generated with 1,000,000 annealing steps under the

temperature of 0.5. The Dairiseki phase can be generated using a crystal growth method:

the three dimensional diffusion of impurities or dopants is allowed. The Konbu phase can

be generated by a method: the two dimensional diffusion is allowed on each surface of the

layer-by-layer crystal growth.

Although conventional top-down processing methods, such as photolithography, are typ-

ically used for microfabrication of such internal nanostructures, bottom-up processing can

be achieved via spinodal decomposition. The Dairiseki and Konbu phases could be used for

the microfabrication of nanostructures for circularly polarized luminescence, solid semicon-

ducting laser, and qubits of quantum computing applications. In this study, we simulated

magnetization as a function of external magnetic field for the internal nanostructures that

are introduced in our previous study.25 These values of magnetization are discussed with

respect to the blocking temperatures.

II. METHODS

The ab-initio calculations use the Korringa-Kohn-Rostoker (KKR) method with a co-

herent potential approximation (CPA) in the Akai-KKR package.29–32 CPA, in which the

multiple scattering effect is replaced by an effective-medium potential,33,34 treats the ran-

domness of the doped impurities in the host semiconductors. Therefore, supercells are not

usually used in CPA. The KKR method has been validated by Svane et al. for GaAs and GaN

in the presence of rare-earth impurities.15 All the spin-polarization and the semi-relativistic

calculations that were performed in this study included the spin-orbit interaction, where the

Eu 4f-states were considered to be the valence states. The exchange energy is parameterized
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via the Moruzzi-Janak-Williams (MJW) formula and the self-interaction correction in the

local density approximation (SIC-LDA).35 The number of k-sampling points was 1,000.

We calculated the interaction Jij between Eu impurities in GaN for quantitatively eval-

uating the magnetic properties within Liechtenstein’s formula.36 This approach considers a

perturbation due to an infinitesimal rotation of the magnetic moments of two Eu atoms in

the CPA medium. The energy change due to the perturbation is calculated in accordance

with the magnetic force theorem and it is mapped onto the classical Heisenberg model.37,38

Jij is provided by

Jij =
1

4π
Im

∫ EF

EB

dE TrL
{

∆iT
ij
↑ ∆jT

ji
↓

}

, (1)

where ∆i = t−1
i↑ −t−1

i↓ is the difference in the atomic t-matrix between the spin-up and spin-

down states. T ij

↑(↓) is the off-diagonal scattering path operator between sites i and j for the

spin-up (down) state. TrL is the trace over the orbital variables, ℓ and m. The energy

integration is performed from the bottom of the valence band, EB, to the Fermi energy, EF.

A general form of the Hamiltonian of the Heisenberg model is provided by

H = −
∑

i

∑

j

SSSi · JijSSSj , (2)

where the sums run over all atoms in the crystal, SSSi is a classical vector of dimension 3,

which represents a spin at lattice site i, and Jij is a 3 × 3 matrix. Udvardi et al. reported

that J has to be decomposed as an isotropic, anti-symmetric, and a traceless symmetric

part:

Jij = JijI + J A
ij + J S

ij , (3)

where I is the identity tensor, and the anti-symmetric part is related to the Dzyaloshinskii-

Moriya vector.39 In our simulations, the calculated Jij includes small fluctuations (1.02 -

1.33 mRy) at the first nearest neighbor pair of Eu ions. We regarded it as numerical errors,

and averaged these values every ij.

In our simulations of the magnetization as functions of temperature and external magnetic

field, a scalar Heisenberg model is provided by

H = −
∑

i 6=j

Jijeeei · eeej −
∑

i

K(ezi )
2 − µBz

∑

i

ezi , (4)

where the sums run over all atomic pairs in the crystal, Jij is given by Eq. (1), eeei is the unit

vector parallel to the magnetization at site i, Bz is the external field along the z-axis, and
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µ is the absolute value of the magnetic moment. K(ezi ) is the magnetic anisotropy term,

which was very small value (0.001) in order to assist computational stability of the Monte-

Carlo simulations, especially in the homogeneous phase. We think it is acceptable in this

study, because Eu ions, which become divalent and trivalent ions in GaN, have half-filling

and total moment J = 0, respectively. Therefore, it is guessed that the magnetic anisotropy

about Eu in GaN depends on more strongly on the impurity clusters and atomic vacancies

than the single-ion magnetic anisotropy. In order to describe meta-stable states that are

responsible for the magnetic hysteresis, the local algorithm method introduced by Dimitrov

was used.40,41 In the local algorithm, a trial state is chosen of states near the current position

in the phase space; whereas, the trial state is randomly selected in the Metropolis algorithm

in the Monte Carlo method. The temperature and the external field were scaled by kBT/|J01|

and |J01|, respectively, and the magnetization was normalized so as to become 1 when all

spins were parallel to the external field. The calculation cell was a 20× 20× 20 zincblende

sublattice. The number of the Monte-Carlo steps was 36,000 every external field value.

For simulating of the Curie temperature, we used the cumulant intersection method

proposed by Binder to determine the critical point,42 i.e. the Curie temperature is estimated

from the intersection of the fourth order cumulants,40,41

UL(T ) = 1−
〈M4〉

3〈M2〉2
(5)

with different lattice size, L, where M is the magnetization. Here, three different lattice

sizes, (L×L×L) = (14×14×14), (18×18×18), and (22×22×22) were used. In the cumulant

calculations, the Eu configuration was not annealed, i.e., the homogenous Eu distribution

was considered here. For taking average of the Eu configuration, we prepared 16 different

random configurations of the Eu sites, Then, 62,000 Monte Carlo steps were performed for

each temperature. We discarded first 2,000 Monte Carlo steps to obtain thermal equilibrium

states. The system magnetization was averaged over 3,000 spin configurations every 20

Monte Carlo steps.

The blocking temperature, TB, was estimated by Sato’s formula.41 A spin configuration

in which all spins are aligned anti-parallel to the external field keeps meta-stable for low

temperatures due to the energy barrier originated from the weak external field (and the mag-

netic anisotropy), but the magnetization of the anti-parallel configuration suddenly reverses

once thermal fluctuation becomes larger enough to overcome the energy barrier. When
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the magnetization reaches the maximum after reverse, we defined the temperature as the

blocking temperature.

III. RESULTS

Figure 4 depicts the magnetic pair interaction between Eu ions in the zincblende GaN

matrix as a function of the inter-ionic distance. The interaction was normalized by the

nearest neighboring pair, and positive and negative values indicated the ferromagnetic and

antiferromagnetic interactions, respectively. The magnetic pair interaction values for Eu

concentrations of 6%, 7%, 8%, 9%, 10%, 11%, and 12% are depicted in Fig. 4, and the

magnetization for each samples exhibits short-range ferromagnetism, similar to that observed

in the double exchange interaction (rather than the RKKY interaction).

Figure 5 depicts the cumulants as a function of temperature, T . They are plotted for

the three supercell sizes, (14×14×14), (18×18×18), and (22×22×22). It is only of the

homogeneous distribution of Eu ions (10%) due to calculation costs. It indicates that the

Curie temperature is approximately between 0.12 and 0.14.

We estimated the blocking temperatures of homogeneous (Fig. 1), Dairiseki (Fig. 3(a)),

and Konbu phases (Fig. 3(b)), where the two phases have virtually maximum sizes of the

internal nanostructures. Figure 6 depicts the simulated magnetization of the three phases

under a small external magnetic field with increasing temperature. The blocking tempera-

ture of the homogeneous phase is approximately 50 × 10−3, whereas it is slightly higher in

the Dairiseki phase. The magnetization in the Konbu phase exhibits multiple steps and a

higher blocking temperature of approximately 150 × 10−3. This is because the clusters in

the Konbu phase is larger than those in the Dairiseki phase. In the Konbu phase, the num-

ber of magnetic impurities magnetically connecting to other magnetic impurities are larger

than the other phases, and the clusters form a variety of shapes: non-uniform diameter,

termination in the middle, and branches. Contrary, in the Dairiseki phase, the number of

magnetic impurities are small, and the clusters form quantum dots with similar shapes and

sizes. Therefore, the Konbu phase has a higher energy barrier and more persistent initial

states as compared to those observed in other phases. Moreover, the energy barrier affects

the thermal decay of magnetization. The magnetizations of the Dairiseki and Konbu phase

decay slowly, whereas that of the homogeneous phase decays quickly. We guess that such
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internal nanostructures cause the thermally stable magnetization that is observed in the

study conducted by Hashimoto.8

Figure 7 denotes the magnetization versus external field at a temperature of 1.0, which

is significantly higher than the blocking temperature. The homogeneous phase exhibits a

nonmagnetic behavior. At this temperature, the thermal fluctuations are large, and the lo-

cal magnetic moments freely flip between the two alignments regardless of the barrier. The

Dairiseki phase exhibits a paramagnetic behavior, because magnetic moments can move to

the stable state over the barrier due to thermal fluctuation, but they hardly go back to the

meta-stable state. According to statistical thermodynamics, some meta-stable spin states

can persist, and the population difference between the two states contributes to magnetiza-

tion. The Konbu phase exhibits paramagnetism, similar to that observed in the Dairiseki

phase; however, the larger number of interconnected spins result in a larger energy bar-

rier and magnetic susceptibility and saturation magnetization values in the Konbu phase as

compared with those observed in the Dairiseki phase.

Figure 8 denotes the magnetization versus external magnetic field at a temperature of

0.01, which is lower than the blocking temperature. Every phase exhibits a hysteresis curve

that is indicative of superparamagnetism. Because thermal fluctuation is small at this tem-

perature, a given spin requires a large external field change state due to the local magnetic

pair interactions. Since the number of magnetic impurities per nanostructure is proportional

to the energy barrier height, the Konbu phase exhibits the largest hysteresis of the three

phases.

As described above, in systems with large clusters at high and low temperatures compared

with the blocking temperatures, the properties are clear. Next, we consider the properties in

indecisive systems, which have small clusters and a temperature comparable to the blocking

temperatures. Figure 9 depicts the simulated magnetization of the three phases (Figs. 1-2)

with increasing temperature, where the line of the homogeneous phase is the same as one

in Fig. 6. Herein, the Dairiseki and Konbu phases were generated by the annealing steps

of 10,000 under the same temperature (0.5) and same cell sizes as above. The blocking

temperatures of the Dairiseki and Konbu phases become lower than those by the annealing

steps of 1M. This is because the cluster sizes of the two phases are smaller. However, it

seems to be strange that the blocking temperature of the Dairiseki phase becomes lower

than that of the homogeneous phase.
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Figure 10 exhibits a plot of magnetization versus external field at a temperature of 0.1,

which is comparable to the blocking temperature. The Magnetization curve of the Dairiseki

phase is non-hysteretic, whereas those of the homogeneous and the Konbu exhibit show

small and large hysteresis, respectively. If only the internal nanostructures were a cause of

the hysteresis, the magnetization curves of the Dairiseki and homogeneous phases should

exhibit hysteretic and non-hysteretic, respectively.

This is because the relation between the interstitial length among the magnetic clusters

and the effective length of the magnetic pair interaction. The magnetic pair interaction

comprises the short-, middle-, and long-range components as shown in Fig. 4. The short-

range component is intense, and the long-range component is essentially zero (accurately,

the interactions, Jij, over the 12th nearest neighbor were considered to be zero in the simula-

tions). The middle-range component is small but non-zero as depicted in Fig. 4. Therefore,

the middle-range component weakly couples spins in the homogeneous phase. However, the

middle-range component does not couple spins between different clusters in the Dairiseki

and Konbu phases, because no spin areas lie among the clusters. In the two phases, only

the short-range component, which works within each cluster, distributes the magnetization.

In particular, in the Dairiseki phase, the number of spins in each cluster is so small in this

condition that the hysteresis does not appear.

The above discussion suggests the a trend that the magnetization turns from decrease

to increase with nanostructure growing. This is because annealing grows not only EuN

clusters but also GaN clusters, which are non-spin areas; therefore, the Eu ions that coupled

each other before annealing by the middle-ranged magnetic pair interaction are separated

between the EuN clusters. As a result, the magnetization decreases once. As the annealing

proceeds more, the number of spins in a single EuN cluster increases. The magnetization

turns to increase finally.

As depicted in Fig. 6, the blocking temperatures of the homogeneous, Dairiseki, and

Konbu phases are 0.06, 0.08, and 0.15, respectively. Using kBTB/|J01|, these values are

converted to 23.2 K, 30.9 K, and 57.9 K, where J01 = 0.00122. Herein, we note that the

difference of summation methods between the general and scalar Heisenberg Hamiltonians,

Eq.(2) and Eq.(4). The former sums run over all atoms and the latter does over all pairs;

therefore, Jij in Eq. (4) has a factor of 2 smaller than it in Eq. (1) and Fig. 4. Hashimoto et

al. reported a finite magnetic moment at room temperature, as well as a significant decrease

9



in magnetization from 5 K to 70 K and a slow decrease in magnetization from 100 K to 300

K.8 Our simulated blocking temperature is smaller than their experimental value, though

the crystal structures are different from each other. In Gd-doped GaN, colossal magnetic

moments and the ferromagnetism at a temperature above the room temperature have been

reported.43,44 Gohda and Oshiyama proposed that Ga vacancies induce the colossal magnetic

moments per Gd atom.45 Furthermore, Thiess et al. proposed that the Ga vacancies provide

significantly strong and robust ferromagnetic interactions between spins that are localized

on the nitrogen near the vacancies.46,47 Eu-doped GaN may also be affected by such native

defects like Ga vacancies. We will focus on such effect in future studies. If deep-impurity-

bands are populated in such materials, robust ferromagnetic interactions may be realized via

Zener’s double exchange interactions, which are generated by partial occupation of highly

correlated deep-impurity bands48–50

IV. SUMMARY

Monte-Carlo simulations of magnetization under external magnetic fields were performed

on Eu-doped GaN zincblende crystalline nanostructures formed by spinodal decomposition.

The magnetization curves depict hysteresis at temperatures lower than the simulated block-

ing temperature and non-hysteresis at a temperature higher than the blocking temperature.

The difference is induced by competition among the thermal fluctuation, the energy bar-

riers of spin flipping, and the internal cluster sizes. The small thermal dependence of the

blocking temperature, which is observed in experiments, is reproduced by the simulations

in this study. This is based on the larger energy barriers with larger internal EuN clusters.

However, the simulated blocking temperature is smaller than the experimental one. It may

be due to atomic vacancies in GaN.
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FIG. 1: (Color online) Atomic configuration of the homogeneous phase. The cube indicates a

calculation cell, which is a 20×20×20 FCC supercell with a single side of 93.4 Å. A periodic

boundary condition was applied along the lateral axes. The supercell contains 32,000 particles

(Eu, Ga, and N ions) on a zincblende type matrix of which 10% are Eu ions, occupying the Ga-

sites. Every particle is a single Eu ion; Ga and N ions are omitted. Figures of atomic configurations

were prepared using VESTA, visualization for electronic and structural analysis.51

(a) (b)

FIG. 2: (Color online) Atomic configuration of the Dairiseki (a) and Konbu phases (b) after 10,000

Monte-Carlo annealing steps. In the Konbu phase simulation, the crystal grows from the bottom

upwards along the vertical direction. A concentration of 10% Eu ions is used for both phases. In

the Dairiseki phase, the supercell contains 12 clusters of 100 or more Eu ions among which the

maximum cluster contains 254 Eu ions. In the Konbu phase, the supercell contains 3 clusters of

100 or more Eu ions among which the maximum cluster contains 1,045 Eu ions.
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(a) (b)

FIG. 3: (Color online) Atomic configuration of the Dairiseki (a) and Konbu phases (b) after

1,000,000 Monte-Carlo annealing steps. A concentration of 10% Eu ions is used. In the Dairiseki

phase, the supercell contains 8 clusters of 100 or more Eu ions among which the maximum cluster

contains 654 Eu ions. In the Konbu phase, the supercell contains 4 clusters of 100 or more Eu

ions among which the maximum cluster contains 1,862 Eu ions. A periodic boundary condition

was applied along the lateral axes; therefore, single nanorods across the cell boundary appear as

separated rods in the Konbu phase.
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FIG. 4: (Color online) The magnetic pair interaction Jij between the Eu ions in the zincblende

GaN matrix. Numerical values (%) denote the concentration of the Eu ion. The concentration of

Eu ranges from 6% to 12% in steps of 1%. Jij was used at a concentration of 10% (red boxes)

to perform the magnetization simulations. (inset) Jij with a concentration of 10% on a logarithm

scale.
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FIG. 5: (Color online) The cumulant UL(T ) intersection plots in the homogeneous phase. TC was

calculated from the intersection of the 4th order cumulant for three supercell sizes (14×14×14),

(18×18×18), and (22×22×22), which are indicated by red boxes, green circles, and blue triangles.
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FIG. 6: (Color online) Magnetization as a function of temperature for homogeneous, Dairiseki

(concentration=10%, annealing step=1,000,000), and Konbu (concentration=10%, annealing

step=1,000,000) phases, demonstrating the blocking temperature. The magnetization is normal-

ized so as to become 1 when all spins are parallel. The anisotropic constant K is 0.001, and the

external field is 0.001.
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FIG. 7: (Color online) Magnetization versus external field at a high temperature. The magnetiza-

tion is normalized so as to become 1 when all spins are parallel. The anisotropy constant K is 0.001,

and temperature is 1.0. Red boxes, green circles, and blue triangles indicate the magnetization of

the homogeneous, Dairiseki, and Konbu phases, respectively.
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FIG. 8: (Color online) Magnetization versus external field at a low temperature. The anisotropy

constant K is 0.001, and temperature is 0.01. Red boxes, green circles, and blue triangles indicate

the magnetization of the homogeneous, Dairiseki, and Konbu phases, respectively.
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FIG. 9: (Color online) Magnetization as a function of temperature for homogeneous,

Dairiseki (concentration=10%, annealing step=1,0,000), and Konbu (concentration=10%, anneal-

ing step=1,0,000) phases, demonstrating the blocking temperature. The magnetization is normal-

ized so as to become 1 when all spins are parallel. The anisotropic constant K is 0.001, and the

external field is 0.001.
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FIG. 10: (Color online) Magnetization versus external field near the blocking temperature. The

anisotropy constant K is 0.001, and temperature is 0.1. Red boxes, green circles, and blue triangles

indicate the magnetization of the homogeneous, Dairiseki, and Konbu phases, respectively. The

nanostructures were generated with 1,000 annealing steps.
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