
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phenomenology of chiral Dzyaloshinskii-Moriya interactions
in strained materials

Daniil A. Kitchaev, Irene J. Beyerlein, and Anton Van der Ven
Phys. Rev. B 98, 214414 — Published 10 December 2018

DOI: 10.1103/PhysRevB.98.214414

http://dx.doi.org/10.1103/PhysRevB.98.214414


Phenomenology of chiral Dzyaloshinskii-Moriya interactions in strained materials

Daniil A. Kitchaev,1, 2, ∗ Irene J. Beyerlein,2, 3, † and Anton Van der Ven2, ‡

1Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
2Materials Department, University of California, Santa Barbara, California 93106, USA

3Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA

We use phenomenological symmetry arguments to demonstrate that while chiral magnetic
(Dzyaloshinskii-Moriya) interactions are conventionally restricted by symmetry to appear in a lim-
ited set of non-centrosymmetric materials, they may arise in a material with any symmetry when
coupled to a strain field. We derive point-group specific free energy functionals that capture the
relationship between an applied strain field and chiral magnetic couplings, demonstrating how strain
may offer highly selective control over magnetic textures. Finally, we discuss several examples of
common strain configurations that may lead to out-of-plane modulation in the magnetic moment of
a quasi–2D film as required for applications in magnetic devices.

I. INTRODUCTION

The Dzyaloshinskii–Moriya (DM) interaction between
magnetic atoms is of fundamental importance to the
properties of many magnetic materials, leading to
phenomena such as helimagnetism[1], weak ferromag-
netism in antiferromagnetic systems[2], and magnetic
skyrmions[3, 4]. The DM interaction can be described
by an antisymmetric coupling between spins, conven-
tionally expressed as a Dr,r′ · (S(r)× S(r′)) term in a
spin Hamiltonian describing spins located at r and r′

interacting through the DM vector D[5], or phenomeno-
logically as an antisymmetric coupling in the magnetic
order parameters [1, 2]. The DM interaction has been
studied extensively in a range of materials, such as
MnSi[6], FeGe[7, 8] and others [9–11]. However, the
antisymmetric form of this interaction restricts which
components of spin may appear in the DM terms of the
energy[2, 5]; notably the chiral Dzyaloshinskii-Moriya
(cDM) interaction cannot contribute to the macroscopic
properties of a centrosymmetric material. The require-
ment that the host crystal be non-centrosymmetric
greatly restricts the space of materials where the effects
of the DM interaction can be studied and utilized.

To expand the space of materials where the DM inter-
action may arise, it is necessary to break the symmetries
of the crystal which forbid antisymmetric magnetic
couplings. Recent work on interfacial DM effects[12–16]
has relied on symmetry breaking at a surface or in a mul-
tilayer to observe DM couplings. However, this approach
cannot be generalized outside the space of thin films
and generally relies on the precise control of material
interfaces. One way to systematically achieve symmetry
breaking in the bulk of a material is through the applica-
tion of a strain field. Furthermore, unlike materials with
an intrinsic cDM interaction, strain-coupled cDM effects
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can be in principle dynamically controlled through
mechanical deformation. In this work, we demonstrate
that strain gradients (flexomagnetism), and sometimes
even homogeneous strain (piezomagnetism), allow for
cDM couplings to arise in materials belonging to any
point group. Based on symmetry arguments, we derive
possible couplings between magnetic order parameters
and strain within the 3D crystallographic point groups
and thus reveal how strain and its gradient can lead to
specific types of cDM interactions. Our analysis does not
rely on a specific atomistic mechanism leading to a cDM
interaction, but rather focuses on whether an effective
cDM interaction can generally arise[17]. Finally, we
provide examples of two relevant strain fields which can
lead to cDM interactions in intrinsically DM-inactive
materials. Our analysis expands upon previous reports
of strain and geometry-coupled magnetic phenomena
[18–24], and provides a general roadmap for controlling
chiral magnetic interactions via strain in materials of all
symmetries.

II. FORMALISM

To determine which magnetic and strain couplings may
contribute to the free energy of a material with a partic-
ular point group, we construct a general free energy den-
sity functional in terms of symmetry–invariant polyno-
mials of the magnetic order parameters {m(α),m(β), ...},
strain e and their gradients[25–31]. The free energy den-
sity functional F can be written as

F(B) = F(B0) +
∑
bi∈B

∂F
∂bi

bi +
1

2

∑
bi,bj∈B

∂2F
∂bi∂bj

bibj + ....

where B = {m(α),∇m(α),m(β),∇m(β), ..., e,∇e} is a
joint field consisting of the individual field variables for
the magnetization order parameters, strain, and their
gradients. The derivative terms ∂F/∂bi, ∂2F/∂bi∂bj , ...
are evaluated in the reference state denoted by B0 and
thus must obey the symmetry of the point group of the
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homogeneous unstrained, non–magnetized material. To
enforce these symmetry constraints, we rewrite the free
energy functional in terms of the symmetry-invariant
polynomials of bi,

F(B) =
∑
n

∑
k

J
(n)
k V

(n)
k

where the V
(n)
k basis function is the kth symmetry-

invariant polynomial of order n consisting of the com-

ponents of B, and J
(n)
k is a scalar coefficient. The basis

functions are defined as

V
(n)
k =

∑
σ∈Ω(σ

(n)
k )

cσ
∏
i∈σ

bi

where Ω defines the orbit of σ
(n)
k , the kth symmetrically-

unique product of order parameters of order n in terms of
products of bi and coefficients cσ. By this construction,
each basis function groups symmetrically–equivalent
terms and thereby guarantees that F is invariant under
symmetry operations in the point group. The coeffi-

cients J
(n)
k can be similarly expressed in terms of the nth

derivatives of F , but as both J
(n)
k and the derivatives

of F typically appear as empirical parameters fit to
experimental data or quantum mechanical calculations,
their exact relationship to each other is not important.

To obtain the full basis set {V (n)
k } up to order n, we

follow the procedure described by Thomas and Van der
Ven [30, 32]. We first derive a symmetry-adapted set
of field variables for B, as described in Supplementary
Note 1 [33], which separates the components of B into
independent subspaces whose interactions with each
other can be efficiently evaluated. We then project
out the symmetrically–invariant component of every
nth order monomial of B using the Reynolds operator
R(P ) =

∑
p̂i∈P UB,p̂i/|P | for the desired point group P

which contains |P | symmetry operations p̂i, where the
operator UB,p̂i describes the action of p̂i on B. Finally,
we use Gram-Schmidt orthogonalization to construct an
orthonormal basis set of symmetry-invariant polynomial
basis functions. Note that since any magnetic order
parameter must obey time-reversal symmetry, the sym-
metry group must include time reversal. We restrict our
analysis to systems which may undergo a second–order
transition to a paramagnetic state[2, 34] and work with
the “grey” point groups, defined as the direct product of
the crystallographic symmetry operators and the time
reversal operator.

Within a free energy functional
F(m(α),∇m(α),m(β),∇m(β), ...), the DM interaction
appears to first order in two forms - the inhomogeneous
or chiral DM (cDM) interaction and the homogeneous
DM (hDM) interaction[1, 2, 35]. The cDM interaction
is an antisymmetric coupling between a magnetic order
parameter m(α) and its gradient, yielding terms in the

form of a Lifshitz invariant w
(α)
kn = εijkm

(α)
i ∂m

(α)
j /∂rn,

where εijk is the permutation tensor and summation
over repeated indices is implied. These terms impart
a chirality dependence to the free energy based on a
rotation of m(α) about the rk direction propagating
along the rn axis of the crystal. One may refer to wkk
terms as “helicoid” interactions and wkn, n 6= k terms
as “cycloid” interactions[35], which represent magnetic
textures similar to those found in Bloch and Neel domain
walls respectively as shown schematically in Figure 1a.
The hDM interaction is an antisymmetric coupling be-
tween two different magnetic order parameters m(α) and

m(β), yielding terms of the form h
(αβ)
k = εijkm

(α)
i m

(β)
j .

A notable example of this interaction is the emergence
of “weak ferromagnetism” due to spin canting in antifer-
romagnetic systems in the case where m(α) is the total
magnetization and m(β) = s1 − s2 is the difference in
the magnetic moment vectors of the antiferromagnetic
sublattices s1 and s2.[2]

The magnetic order parameters m(α),m(β), ... are

generally defined as m(α) =
∑
c
(α)
i si where {si} are

the local magnetic moments of the sublattices in the
material and the coefficients ci are chosen such that
the order parameters are orthogonal and span irre-
ducible subspaces of the point group of the material.
[2, 31, 36] In the special case of total magnetization
m (ci = 1), permutation of {si} leaves m invariant,
meaning that total magnetization transforms as an

axial vector, with Um,p̂
ij = (detR)Rij , where R is the

Cartesian rotation matrix associated with symmetry
operation p̂. Correspondingly, the gradient of total
magnetization ∇m transforms as a rank-2 pseudotensor

with U∇m,p̂(i′j′)(ij) = (detR)Ri′iRj′j , where (ij) represents

the mi,j = ∂mi/∂rj component of ∇m.

In this work, we consider the simplest case of a
DM interaction: the emergence of cDM couplings
wkn = εijkmi∂mj/∂rn in the total magnetization m,
where we drop the superscripts (α) for the sake of
clarity. In this case, the coefficients multiplying the wkn
terms are the components Dkn of the Dzyaloshinskii
tensor, and the various couplings between strain and
wkn yield the possible contributions of strain to this
micromagnetic term. This situation where m is a
good order parameter is relevant to materials which
are low–temperature ferromagnets or helimagnets and
for practical applications in magnetic materials and
skyrmionics.[37–41] More generally, this case provides
an informative example of how strain and strain gra-
dients can give rise to antisymmetric couplings in
high-symmetry materials. Because total magnetization
is a universal magnetic order parameter whose symmetry
behavior depends on only the point group of a material,
these couplings provide a sufficient condition for the
possibility of strain-coupled cDM based on point-group
symmetry alone.
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The free energy associated with the reversible me-
chanical deformation of a solid defined by the vector
field u are characterized by strains and strain gradi-
ents. Strain is a measure of the symmetric compo-
nent of the first derivative of u, parametrized by Eab =
1/
√
|P (ab)|

∑
ij=P (ab) ∂ui/∂rj for a ≤ b where P (ab) is

the set of unique permutations of {a, b}. We choose to
normalize the strain terms using the Frobenius norm,
equivalent to conventional Kelvin notation[30]. Strain
gradient can then be defined in terms of the Cartesian
derivatives of E, with Eab,k = ∂Eab/∂rk. While alter-
native formulations of strain gradient exist, they are for-
mally equivalent to Eab,k[27, 42] and can be related to
each other using identities given in Supplementary Note
1 [33]. The symmetry operators for strain and strain gra-
dient are similar to those of 2nd and 3rd rank tensors:

UE,p̂(a′b′)(ab) =

√
|P (ab)|
|P (a′b′)|

∑
i′j′=
P (a′b′)

Ri′aRj′b

U∇E,p̂(a′b′,k′)(ab,k) =

√
|P (ab)|
|P (a′b′)|

∑
i′j′=
P (a′b′)

Ri′aRj′bRk′k

as derived in Supplementary Note 2 [33]. Finally, while
we work with infinitesimal strain, our results rely solely
on symmetry arguments and directly generalize to any
other strain metric.

III. RESULTS AND DISCUSSION

We now proceed to evaluate the form of the cDM
interaction in m in the free energy density across all
point groups. This portion of the energy functional,
FcDM, is an addition to the traditional terms appearing
in the total magnetic free energy functional F [4] - at

minimum, direct exchange A
∑
i,j (∂mi/∂rj)

2
for some

exchange constant A, and magnetocrystalline anisotropy
Fani, which is symmetry dependent and enumerated
for all points groups in Supplementary Note 3 [33].
For the cDM interaction, while we focus on a limited
number of examples in this discussion, complete tables
of symmetry–invariant basis functions governing the
cDM and strain–coupled cDM interactions are available
in Supplementary Notes 4 and 5 respectively[33]. Note
that while the basis sets given here and in the appendices
are equivalent, those presented in the main text are
reformatted for clarity.

In most non-centrosymmetric point groups, FcDM

can be non-zero without any additional symme-
try breaking from strain. For example in the 432
and 23 point groups, the allowed cDM interaction
consists of helicoids described by a single term,

V c
1 =

√
3/3εijkwijEkk,k

V c
2 =

√
6/6εijkwij (Eii,k + Ejj,k)

V c
3 =

√
6/6εijkwij (Eki,i + Ekj,j)

V c
4 =

√
6/6εijk (wij + wji)Eii,k

V c
5 =

√
6/6εijk (wij + wji)Eki,i

V c
6 =

√
3/3εijkwiiEij,k

TABLE I. Basis functions coupling cDM interactions to strain
gradients within the m3̄m point group

V h
1 = εij3wi3Ej3,3

V h
2 = εij3w3iEj3,3

V h
3 = εij3wi3E33,j

V h
4 = εij3w3iE33,j

V h
5 =

√
3/3εij3wi3

(√
2Ejj,j + Eij,i

)
V h
6 =

√
3/3εij3w3i

(√
2Ejj,j + Eij,i

)
V h
7 =

√
3/6εij3wi3

(
Ejj,j + 3Eii,j −

√
2Eij,i

)
V h
8 =

√
3/6εij3w3i

(
Ejj,j + 3Eii,j −

√
2Eij,i

)
V h
9 = (w12 − w21)E33,3

V h
10 =

√
2/2 (w12 − w21) (E22,3 + E11,3)

V h
11 =

√
2/2 (w12 − w21) (E23,2 + E13,1)

V h
12 =

√
2/2 (w11 + w22) (E23,1 − E13.2)

V h
13 = w33 (E23,1 − E13,2)

V h
14 =

√
2/2 (w11 − w22)E12,3

+1/2 (w12 + w21) (E22,3 − E11,3)
V h
15 = 1/2 (w11 − w22) (E23,1 + E13,2)

+1/2 (w12 + w21) (E23,2 − E13,1)

TABLE II. Basis functions coupling cDM interactions to
strain gradients within the 6/mmm point group, where we
assign the 6-fold axis to be oriented along r3.

.

F432
cDM = JcDM (w11 + w22 + w33) for some scalar pa-

rameter JcDM, equivalent to the previously proposed
expression for this point group, JcDM (m · ∇ ×m) [43].
The cDM interaction is similarly limited to helicoids in
622, 32, 4̄2m, 422 and 222. In 6mm, 3m, 4mm and mm2
the allowed cDM interactions are of purely cycloid type,
and finally, in 6, 3, 4̄, 4, m and 2 both interaction types
are possible. In these materials, although the behavior
of the cDM interaction is generally determined by the
structure of the material itself, strain couplings provide
a route to introducing anisotropies in the Dzyaloshinskii
tensor which have been recently discussed as a route
towards controlling emergent phase behavior, such as
skyrmion vs. antiskyrmion formation[44]. We refer the
reader to the Supplementary Note 5 [33] for a complete
list of these couplings.

In centrosymmetric point groups such as
m3̄m = 432 ⊗ i, the presence of inversion symme-
try forbids the cDM interaction from arising in the
absence of a secondary source of symmetry breaking.
A strain field may lift this restriction, offering precise
control over the character of the cDM interaction
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FIG. 1. (a.) Helicoid and cycloid spin textures comprising the two variants of cDM interactions in total magnetization m.
(b.) A map of cDM interactions in materials across all 32 point groups. Point groups where cDM interactions are intrinsically
allowed are denoted by ovals and color-coded by whether symmetry allows for helicoidal (green) or cycloidal (purple) cDM
terms in the free energy, or both (black). Point groups where cDM interactions are enabled by a strain field are denoted by
rectangles and color-coded by whether cDM interactions couple to homogeneous strain (blue) or only strain gradients (red). The
connections between point groups indicate group-subgroup relationships and illustrate which point groups can be reached by
symmetry-breaking operations. (c.,d.) The couplings between elastic strains and strain gradients and cDM interactions which
yield a modulation in mz (the out-of-plane component of total magnetization) of a m3̄m or 6/mmm material, for out-of-plane
and in-plane gradients in strain respectively. (e.) Couplings between homogeneous strain and cDM interactions yielding a
modulation in mz for a 4̄3m material.

through strain engineering. To understand how strain
fields couple to magnetic interactions, it is informative
to examine the free energy functionals of the high-
est symmetry m3̄m and 6/mmm point groups as all
other point groups are subgroups of m3̄m or 6/mmm
and thus allow any couplings seen here. Generating
the basis set of symmetry–invariant polynomials of
{m,∇m, e,∇e}, we find that while homogeneous strain
does not break inversion symmetry, strain gradients give
rise to cDM terms in the free energy functional allowing
for FcDM to be non-zero under all symmetries. The
cDM component of the free energy density has the form
FcDM =

∑
i J

cDM
i Vi where JcDM

i are scalar parameters.
For the m3̄m and 6/mmm point groups, abbreviated as
c and h, the basis functions Vi are defined in Tables I
and II respectively. In both cases, any gradient of axial
strain and gradients of shear strain in the plane of shear
(V c1...5, V h1...11) give rise to cycloid terms. Gradients of

shear strain orthogonal to the shear plane (V c6 , V h12...15)
lead to helicoid terms. As inversion symmetry is lifted
by any strain gradient, these remaining restrictions
on the cDM interactions arise from the rotation and
rotoinversion axes left unperturbed by the strain field.

While strain gradients are necessary for cDM interac-
tions in centrosymmetric materials, homogeneous strain
can still be used to activate and control these magnetic
couplings in materials belonging to the 4̄3m, 6̄m2 and
6̄ point groups. These point groups are not centrosym-
metric, but the combination of rotation and rotoinversion
axes nonetheless forbids the cDM interaction without ex-
ternal symmetry breaking. Thus, since it is not necessary
to break inversion symmetry in these point groups, the
cDM interaction may arise due to strain alone. For exam-
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ple, F 4̄3m
cDM contains the following two pure-strain terms

V 4̄3m
1 =

∑
k εijkwijEij

V 4̄3m
2 =

∑
k εijkwiiEjj

in addition to the six V c polynomials which depend on
strain gradients. Here, shear strains break rotational
symmetry and lead to cycloid interactions in the plane
of shear, while anisotropic biaxial strains can disrupt
mirror planes and thus lead to helicoid terms propa-
gating normal to the plane of strain. In the hexagonal
6̄m2 and 6̄ point groups, anisotropic biaxial strain in
the basal plane E11 − E22 and any shear which lifts a
rotational symmetry lead to cycloids, while E13 or E23

shear which breaks the basal plane mirror symmetry
can lead to helicoids. This situation where homogeneous
strain determines the form of the cDM interaction is of
particular interest as homogeneous strain is likely to be
easier to control experimentally than a strain gradient.
Furthermore, this coupling is likely to readily yield a
large response by analogy to the significant effect of
strain on magnetic textures in chiral helimagnets[45].

The implication of these couplings is that high-
symmetry materials currently considered to be cDM-
inactive may indeed exhibit cDM interactions if strained
in a particular way. Figure 1b provides a summary of the
cDM interactions which arise intrinsically in each point
group, or whether the magnetism is piezomagnetically
of flexomagnetically controlled for point-groups where
symmetry-breaking is necessary. The group-subgroup
relationships indicated by connections between higher
and lower-symmetry point groups illustrate which
symmetries need to be lifted to allow a desired type of
chiral magnetic behavior.

As an example of these couplings, consider a quasi–
2D film with a magnetic configuration that exhibits
some modulation in the out-of-plane component of
magnetization. Defining the film to lie in the xy plane,
the magnetic configurations giving modulations in mz

are the helicoid interactions wxx and wyy and cycloid
interactions wyx and wxy. The impact of strain gradients
on these interactions can be summarized by two cases:
the strain gradient lies in the out-of-plane z direction,
or the in-plane y direction. The first case may arise
in an epitaxial thin film due to a mismatch in lattice
constant, modulus, or thermal expansion coefficient with
the substrate, where the strain decays exponentially over
a characteristic length δ (Eij,z ∝ Eij ∝ e−z/δ) [46–48].
The second case is representative of a biphasic material
with a composition fluctuation along the y direction and
an elastic strain linear with composition order parameter
ν (Eij,y ∝ ν cos (y/δ))[49]. For a centrosymmetric mate-
rial belonging to m3̄m or 6/mmm, helicoid interactions
require a gradient in shear strain orthogonal to the plane
of shear. Thus, wxx and wyy couple to Exy,z in the first
case and Exz,y in the second case. Cycloid interactions
wxy and wyx couple to in-plane gradients of axial strains

and shear gradients lying in the plane of shear: Exx,z,
Eyy,z, and Ezz,z in the first case and Eyz,y in the second.
For a non-centrosymmetric material belonging to the
4̄3m point group, helicoid interactions may additionally
form due to a biaxial strain, essentially scaling with
Poisson’s ratio, while cycloid interactions may arise due
to in-plane shear. These couplings are summarized in
Figure 1c and d for m3̄m and 6/mmm, and Figure 1e
for 4̄3m.

While the above examples demonstrate that strain and
strain gradients may in principle give rise to cDM in-
teractions, an outstanding question is the strength of
this coupling. In the case of a coupling to homoge-
neous strain, there is direct experimental evidence that
the magnitude of the induced interaction can be signif-
icant. It has been reported that small applied strains
(≈ 0.3%) can distort skyrmion lattices by up to 20% in
FeGe, a well-known chiral helimagnet[45]. The period of
these magnetic modulations is roughly proportional to
A/D, the ratio of micromagnetic exchange strength to
cDM, implying that the effect of strain can be signifi-
cant even on the scale of intrinsic cDM. Much less data
is available regarding the strength of potential couplings
between cDM and strain-gradients. Beck and Fähnle re-
port that in epitaxial Fe on W, the gradient in misfit
strain yields a cDM interaction approximately 1-2 or-
ders of magnitude weaker than the cDM induced by the
Fe/W interface[50]. However, the Fe/W interface yields
a very strong cDM interaction (A/Dinterface ≈ 8 nm)[51],
meaning that A/Dstrain-gradient ≈ 400 nm, which is within
an order of magnitude of the strength of intrinsic cDM
in bulk chiral helimagnets such as FeGe[52]. Thus, we
anticipate that in certain materials, strain-gradient in-
duced cDM may yield significant changes in magnetic
structure, especially if no other antisymmetric magnetic
interactions are present.

IV. CONCLUSION

In this work, we have used phenomenological argu-
ments to demonstrate that the chiral Dzyaloshinskii-
Moriya interaction in the total magnetization may arise
in materials belonging to any point group as a result of
even a relatively simple strain field. We have argued
that (1) gradients in strain lift inversion symmetry and
allow antisymmetric couplings to form in otherwise
centrosymmetric materials, and (2) identified three
non–centrosymmetric point groups where homogeneous
strain alone can control chiral magnetic interactions.
Our results also give a complete representation of the
strain-dependence of the Dzyaloshinskii tensor for all
point groups, which illustrates how strain may be used
to induce anisotropic cDM interactions. To illustrate
how these couplings may arise in real materials, we
presented two practically–relevant examples of strained
materials where, despite the high symmetry of the un-
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derlying crystal, the strain field can give rise to relevant
cDM interactions. Our discussion highlights how chiral
magnetism may be controlled through mechanical forces,
especially in situations when large strains and strain
gradients can be expected, such as in piezoelectrics,
polycrystals, polyphasic materials, nanomaterials, and
electrochemical systems[53–59]. and we hope will
inspire targeted characterization work via phase-field
simulations and mechanomagnetic experiments.
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037203 (2001).

[14] A. Thiaville, S. Rohart, E. Jue, V. Cros, and A. Fert,
EPL (Europhysics Letters) 100, 57002 (2012).

[15] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel,
B. Wolter, K. von Bergmann, A. Kubetzka, and
R. Wiesendanger, Science 341, 636 (2013).

[16] B. Dupe, G. Bihlmayer, M. Bottcher, S. Blugel, and
S. Heinze, Nature communications 7, 11779 (2016).

[17] A. Manchon, H. C. Koo, J. Nitta, S. Frolov, and
R. Duine, Nature materials 14, 871 (2015).

[18] P. Lukashev, R. F. Sabirianov, and K. Belashchenko,
Phys. Rev. B 78, 184414 (2008).

[19] E. A. Eliseev, A. N. Morozovska, M. D. Glinchuk, and
R. Blinc, Phys. Rev. B 79, 165433 (2009).

[20] P. Lukashev and R. F. Sabirianov, Phys. Rev. B 82,
094417 (2010).

[21] R. Hertel, Spin 03, 1340009 (2013).
[22] N. Pattanayak, A. Bhattacharyya, A. K. Nigam, S.-W.

Cheong, and A. Bajpai, Phys. Rev. B 96, 104422 (2017).

[23] J. H. Lee, K.-E. Kim, B.-K. Jang, A. A. Ünal, S. Valencia,
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R. A. Duine, et al., Science 330, 1648 (2010).

[38] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature nan-
otechnology 8, 742 (2013).

[39] S.-Z. Lin, C. Reichhardt, and A. Saxena, Applied Physics
Letters 102, 222405 (2013).

[40] K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta,
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