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We present results on entropy and heat-capacity of the spin-S honeycomb-lattice Kitaev models
using high-temperature series expansions and thermal pure quantum (TPQ) state methods. We
study models with anisotropic couplings Jz = 1 ≥ Jx = Jy for spin values 1/2, 1, 3/2, and 2. We
show that for S > 1/2, any anisotropy leads to well developed plateaus in the entropy function at
an entropy value of 1

2
ln 2, independent of S. However, in the absence of anisotropy, there is an

incipient entropy plateau at Smax/2, where Smax is the infinite temperature entropy of the system.
We discuss possible underlying microscopic reasons for the origin and implications of these entropy
plateaus.

PACS numbers: 74.70.-b,75.10.Jm,75.40.Gb,75.30.Ds

INTRODUCTION

In frustrated magnets the existence of residual entropy
at temperatures well below the development of short-
range order and multiple peaks in the heat capacity as a
function of temperature are well known phenomena [1].
The theoretical basis for these date back to the works
of Pauling [2] on residual entropy of ice and and Wan-
nier’s exact solution of the triangular-lattice Ising anti-
ferromagnet [3]. Experimentally, entropy plateaus are
best known in the spin-ice materials [4]. Such a behav-
ior reflects the existence of a low energy manifold in the
system, whose size and nature is intimately linked to the
spin-liquid phase.

In a pioneering but relatively unheralded paper
Baskaran, Sen and Shankar (BSS) [5] considered the spin-
S generalization of the celebrated Kitaev’s spin-half Hon-
eycomb model [6]. They showed that even though the
models with spin greater than half are no longer exactly
soluble, they retain many of the features of the spin-half
model. Regardless of spin, one can define loop operators
on elementary hexagons that commute with each other
and with the Hamiltonian, thus defining an infinite num-
ber of conserved Z2-valued fluxes. In the classical limit,
there is an exponentially large number of ground states.
Of these, the so called Cartesian States represent a finite
entropy manifold which is favored by quantum fluctua-
tions. Later work by Chandra, Ramola and Dhar [7] and
by Rousochatzakis, Sizyuk and Perkins [8] has further
explored the ground-state manifold of the classical and
large-S limits of the model and even found a mapping
back to the spin-half Kitaev model through a sequence
of intricate selections in the degenerate subspaces.

In a more recent study one of the authors of this work
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FIG. 1: 1a. Honeycomb lattice with Jx, Jy and Jz bonds
denoted by different colors. 1b. An elementary plaquette
with spins labelled 1 through 6.

together with Tomishige and Nasu [9] explored numer-
ically the ground state and thermodynamic properties
of the Kitaev model with varying-S on finite systems
using thermal pure quantum [10–12] and Monte Carlo
[14, 15] methods, where evidence was presented for an
incipient entropy plateau at a value of 1

2Smax for S ≤ 2,
where Smax is the infinite temperature entropy of the sys-
tem. The purpose of this work is to follow up that study
with high temperature expansions (HTE) [16, 17] as well
as thermal pure quantum (TPQ) state [10–12] calcula-
tions. We study various S values as well as allow for an
anisotropy in the Kitaev couplings Jz = 1 ≥ Jx = Jy. We
confirm that there is an incipient entropy plateau in the
model in the absence of anisotropy at an entropy value of
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FIG. 2: Entropy of the isotropic spin-S Kitaev model for var-
ious S values. The limiting value of Smax/2 is indicated by

the fits to the function f(S) = ln (2S + 1)/2 +
√
S (T/S)2

for different S values. The spin-half Monte Carlo simulation
data is provided by Nasu et al [14, 15].

Smax/2. However, any anisotropy in the larger S systems
drives them to a well defined entropy plateau which oc-
curs at a value of 1

2 ln 2. For S = 1/2, Smax/2 and 1
2 ln 2

are the same but they become further and further apart
as the value of the spin increases.
The degeneracies of the anisotropic models are easily

understood in terms of the ground state degeneracy of
the classical model which increases as 2N/2 for an N-site
system. One would expect this result to remain valid, at
least for large-S, because of the gap to remaining states,
which scales as JS. In contrast, for the isotropic case our
results imply a low energy manifold of (2S+1)N/2 states
with varying S. We present arguments that such a low
energy manifold, in the large-S limit, may arise from the
continuous degeneracies present in the classical limit.

MODELS AND METHODS

We study the spin-S honeycomb-lattice Kitaev model
with Hamiltonian

H = Jz
∑
<i,j>

Sz
i S

z
j + Jx

∑
(i,k)

Sx
i S

x
k + Jy

∑
[i,l]

Sy
i S

y
l , (1)

where the nearest-neighbors< i, j >, (i, k) and [i, l] point
along the three different bond directions of the honey-
comb lattice respectively. The spin-operators correspond
to a spin-value of S. We set Jz = 1 and take Jx = Jy ≤ 1.
For the Kitaev models, the energy spectrum is identi-

cal under the change of sign of all Js. Consequently, the
high temperature series expansions are even functions of
β. High temperature expansion coefficients are unique
for the model and can be computed by several different
methods. Here we use the linked cluster methods to cal-
culate them [16]. Series expansions are computed for the
logarithm of the partition function from which the ex-
pansions for entropy, internal energy and heat capacity
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FIG. 3: Specific heat of the isotropic spin-S Kitaev model for
various S values. The spin-half Monte Carlo simulation data
is provided by Nasu et al [14, 15].

follow. The expansions are carried out to order β16 for
S = 1/2 and S = 1, to order β14 for S = 3/2 and S = 2
and to order β12 for S = 5/2. The entropy series are
extrapolated using Padé and differential approximants
[16]. The convergence is poorer for the heat capacity se-
ries than for the entropy, as is usually the case, with the
latter being a temperature derivative of the former.
We also use thermal pure quantum (TPQ) states

[10, 11] for calculating thermodynamic properties in the
system. A TPQ state at T → ∞ is simply given by a
random vector,

|ψ0〉 =
∑
i

ci|i〉 (2)

where |i〉(= |m1〉 ⊗ |m2〉 ⊗ · · · ⊗ |mN 〉) is represented by
a direct product of the local eigenstates |mi〉 of Sz

i with
eigenvalue m(= −S,−S + 1, · · · , S) at site i and ci is
a set of random complex numbers under the normalized
contraint. By multiplying the Hamiltonian by a certain
TPQ state, the TPQ states at lower temperatures are
constructed. The kth TPQ state is represented as

|ψk〉 =
(l −H)|ψk−1〉
|(l −H)|ψk−1〉|

, (3)

where l is a constant value, which is larger than the max-
imum eigenvalue of the Hamiltonian. The corresponding
inverse temperature is given by

βk =
2k

l − 〈ψk|H|ψk〉
. (4)

The specific heat C and entropy S are given by the fol-
lowing formula as

C =
dE

dT
, (5)

S = ln(2S + 1)−
∫

∞

T

C

T ′
dT ′, (6)

where E is the internal energy per site.
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FIG. 4: Entropy of the anisotropic spin-1 Kitaev model

This method is formaly exact in the thermodynamic
limit N → ∞. When the TPQ state method is applied to
the finite size system, thermodynamic quantities depend
on the system size and initial states. As for the higher
temperature peak in the Kitaev model, the characteris-
tic energy scale is large and thereby the relatively smaller
systems can capture thermodynamic properties correctly
[9, 13]. In addition, the sample dependence of thermody-
namic quantities obtained by several TPQ states is not
so large in the temperatures (its statistical errors are ex-
plicitly shown in the figures). These allow us to apply
the TPQ state method to the generalized Kitaev model.

NUMERICAL RESULTS FOR ENTROPY AND

HEAT CAPACITY

We present numerical results for S ≤ 2 comparing re-
sults of HTE with those obtained with the TPQ method
[10, 11]. To examine the thermodynamic quantities at
finite temperatures by the TPQ state approach, we treat
clusters with N = 18, 16, and 12 for spin 1, 3/2 and 2
respectively [see Fig. 1]. We prepare, in each case, more
than 10 random vectors for the initial states, and the
physical quantities are calculated by averaging the val-
ues generated by these initial states. The method also
allows calculation of uncertainties in the physical quan-
tities [10, 11]. We have also done HTE for S=5/2 and
do not see any qualitative change in going to this higher
spin value.
In Fig. 2, we show the results for the entropy of the

isotropic model Jz = Jx = Jy for different S. The results
for HTE and TPQ are shown. The temperature axis is
scaled by JS. We have also plotted the function f(S) =
ln (2S + 1)/2 +

√
S (T/S)2 for comparison. One can see

the flattening of the entropy curves around Smax/2 =
ln (2S + 1)/2. In this scaled temperature variable the
incipient plateau arises at comparable values for different
S. The agreement between HTE and TPQ confirms that
the results are accurate in the thermodynamic limit.
In Fig. 3, the specific heat of the isotropic model for

different S values is shown with the temperature axis

0.01 0.1 1 10

T
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S

J
y
 = 1.0 HTE

J
y
 = 0.8 HTE

J
y
 = 0.6 HTE

J
y
 = 0.4 HTE

J
y
 = 0.2 HTE

J
y
 = 1.0 TPQ

J
y
 = 0.8 TPQ

J
y
 = 0.6 TPQ

J
y
 = 0.4 TPQ

J
y
 = 0.2 TPQ

FIG. 5: Entropy of the anisotropic spin-3/2 Kitaev model

0.01 0.1 1 10

T
0

0.5

1

1.5

S

J
y
 = 1.0 HTE

J
y
 = 0.8 HTE

J
y
 = 0.6 HTE

J
y
 = 0.4 HTE

J
y
 = 0.2 HTE

J
y
 = 1.0 TPQ

J
y
 = 0.9 TPQ

J
y
 = 0.8 TPQ

J
y
 = 0.6 TPQ

J
y
 = 0.4 TPQ

J
y
 = 0.2 TPQ

FIG. 6: Entropy of the anisotropic spin-2 Kitaev model

scaled by JS. It is clear that there is excellent agreement
between HTE and TPQ data at high temperatures. The
HTE convergence starts to break down below the high
temperature peak. But, TPQ results are valid down to
lower temperatures. A multi-peaked specific heat as a
function of temperature is evident just from the fact that
a significant amount of entropy still has to be removed
from the system below the high temperature peak [18].

Fig. 4 through Fig. 6 show the entropy of the
anisotropic models for S = 1, S = 3/2 and S = 2. It is
clear that in the anisotropic models there is a well defined
entropy plateau precisely at an entropy value of 1

2 ln 2 re-
gardless of the spin value. We should note that we do
not expect strict plateaus in the entropy at finite tem-
peratures as that would make it a non-analytic function
of temperature. But, from a numerical point of view, the
behavior seems indistinguishable from a plateau. Only
for weak and zero anisotropy there is an incipient plateau
in the entropy near Smax/2. The entropy plateaus are
very well developed in the anisotropic models as seen
from the figures. As S increases the flattening near
Smax/2 occurs closer and closer to Jy = 1. The results
are consistent with the idea that in the large-S limit, any
anisotropy eliminates the incipient plateau near Smax/2
and only leaves an entropy plateau at 1

2 ln 2. It is also
clear that at zero anisotropy (Jx = Jy = Jz), there is no
plateau in the entropy at 1

2 ln 2 for any spin greater than
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FIG. 7: Specific heat of the anisotropic spin-1 Kitaev model
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FIG. 8: Specific heat of the anisotropic spin-3/2 Kitaev model

one half.
Fig. 7 through Fig. 9 show the specific heat of the

model for S = 1, 3/2 and 2. The specific heat fur-
ther accentuates the physics near the flattening of the
entropy curves around Smax/2. At large anisotropy there
is clearly no such feature and the system only has a clear
plateau at an entropy of 1

2 ln 2, where the specific heat
becomes vanishingly small. In contrast as one moves to-
wards the isotropic limit, the specific heat develops a
three-peak structure. The highest temperature one cor-
responds to the flattening of the entropy curves near
Smax/2. The middle one corresponds to the entropy
plateau at the value of 1

2 ln 2 and the lowest one, not
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FIG. 9: Specific heat of the anisotropic spin-2 Kitaev model
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FIG. 10: Specific heat of the anisotropic spin-S Kitaev model
with Jx = Jy = 0.2 and Jz = 1.

fully accessible to our numerical study, corresponds to
the lifting of the degeneracy within the low energy sub-
space. For S = 1, the higher temperature peak extends
down in Jy values to Jy = 0.6, where there is a clear
flat region in the specific heat. But, at this anisotropy,
it goes away for higher spin, where the three-peak fea-
ture only arises for Jy = 0.8 or higher. For S = 2, even
at Jy = 0.8 the higher temperature peak is becoming
more of a flat top. The data is again consistent with the
idea that in the large-S limit, only the entropy plateau at
1
2 ln 2 will remain as long as Jy is not equal to unity. So,
the isotropic limit is clearly singled out as being special.
The specific heat for different spin-values for Jy = 0.2

are shown in Fig. 10. It is clear that the entropy plateaus
in this case correspond to the specific heat vanishing at
intermediate temperatures. The temperature scale for
this goes as JS as expected from the energy gap. Van-
ishingly small specific heat is required for the plateaus to
be sharply defined.

DISCUSSION OF THE NUMERICAL RESULTS

AND CONCLUSIONS

To understand the entropy plateaus we turn to the
semiclassical limit. In the large-S limit, any anisotropy
Jy < 1 causes the ground state to become collinear. Each
spin must pair with its neighbor that couples the z com-
ponent of the spins and all spins must point along the
z axis to obtain the lowest energy. There are 2 ground
states for each paired dimer of spins and the total num-
ber of ground states is equal to 2N/2 for an N-site sys-
tem. The gap to these states scales as JS. This naturally
explains the entropy plateaus at 1

2 ln 2. The weak trans-
verse couplings must ultimately lead to a further lifting
of the degeneracy in this subspace and for large S this
must occur at very low temperature and would require
much larger system sizes to be valid in the thermody-
namic limit, which is beyond the reach of the present
study.
For the isotropic spin-half model, the work by Nasu
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et al [14, 15] has shown that entropy plateaus arise just
as nearest-neighbor spin correlations reach close to their
ground state value. Since, nearest-neighbor spin correla-
tions are proportional to the energy of the state, this is
merely the statement that all the states contributing to
the entropy plateau have nearly the same energy. This
result was also found to be true by Koga et al [9] for
higher spin. It was also found by Nasu et al [14, 15] that
the Z2 flux variables averaged close to zero in the plateau
region, implying that the flux variables were fully active
in the plateau region. Only when the system transitions
out of the plateau region and starts heading towards the
zero entropy state at lower temperatures the Z2 flux vari-
ables head to their ground state value of +1. This had
the nice interpretation that the residual entropy of ln 2/2
corresponds to the number of flux configurations which is
2 per hexagon, that is 2N/2 in total, where N is number
of sites. Koga et al [9] found that the flux variables av-
erage zero in the plateau region also for S = 1 and only
head towards their ground state value of unity when the
system heads out of the plateau towards zero entropy.
However, just the flux variables only have ln 2/2 differ-
ent values, independent of spin. So, this cannot explain
the larger value of entropy at the plateau for higher-S.

To understand the incipient entropy plateaus in the
isotropic model with S > 1/2 better we need to look for
a much larger low energy manifold in the classical limit.
Indeed as shown by Baskaran et al. [5] and Chandra et al.
[7] the degeneracy in the classical limit for the isotropic
model is significantly larger. Any dimer covering of the
lattice defines 2N/2 Cartesian ground states. Since the
number of dimer coverings of the honeycomb lattice has
[19] the asymptotic form (1.381)N/2, this implies at least
(1.662)N ground states of the system. But, these will
lead to entropy less than Smax/2 even for S = 1. Note
that Smax diverges logarithmically as S goes to infinity.

Baskaran et al.[5] also showed that the manifold of clas-
sical ground states has a continuous degeneracy. To show
this, let us decompose the lattice into disjoint parts by
constructing a set of self avoiding walks and closed loops
(self-avoiding polygons), such that every site belongs to
one and only one walk or loop. In order to be able to
dimerize each walk in two ways, there should not be any
open ends in the bulk of the lattice. To get the largest de-
generacy one wants the decomposition to have maximum
number of disjoint pieces, and that is achieved by choos-
ing loops around hexagons as shown in Fig. 11. This
represents a Plaquette Valence Bond State of the honey-
comb lattice (See Fig. 11).

Each hexagonal plaquette can be dimerized in two
ways and each dimerization defines 23 Cartesian states,
giving a total of 16 Cartesian states for each hexagon.
If we considered only the Cartesian states these would
imply a ground state degeneracy of 16N/6 and a residual
entropy of only approximately 0.462. However as shown
by Baskaran et al, there is a continuous one-parameter

FIG. 11: A set of closed loops on the honeycomb lattice shown
by the thick grey lines that is also equivalent to a Plaquette
Valence-Bond state.

family of ground states, which means the total number
of ground states is not countable. To see this indepen-
dent continuous degeneracy for each plaquette, consider
the spin configurations characterized by a parameter θ in
the plaquette shown in Fig. 1b (assuming a ferromagnetic
Kitaev model):

~S1 = sin θẑ + cos θŷ
~S2 = sin θẑ + cos θx̂

~S3 = cos θx̂+ sin θŷ
~S4 = sin θŷ + cos θẑ

~S5 = cos θẑ + sin θx̂
~S6 = sin θx̂ + cos θŷ

(7)

One can easily verify that with arbitrary θ selected in-
dependently in each hexagon leaves the infinite system
in the classical ground state. In the strictly classical
limit, there are (8 ∞)N/6 ground states and hence an un-
bounded entropy per spin. For finite S this continuous
degeneracy could give rise to a large degeneracy, possibly
scaling with S to some power, with an associated entropy
that goes as Smax/2.
To look for hints of this numerically, we have studied

the exact spectrum of a single hexagon plaquette for S
=1, 3/2, 2 and 5/2. The idea is to look for a gap in the
spectrum that persists in the large-S limit, and separates
a lower energy manifold of states from the rest. In that
case, the 1/S corrections may still leave a meaningful
low energy manifold of states that corresponds to the
incipient entropy plateau.
The Hilbert space dimension of a single hexagonal pla-

quette grows as D = (2S+1)6. In all cases, we find that
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there are many gaps in the spectrum, much larger than
the typical energy spacing. Large gaps are not unusual
near the ends of the spectrum. But, we find that the
gaps in the spectrum also exist away from the ends of
the spectrum. As shown in Table 1, the last prominent
gap (furthest away from the ends of the spectra) occurs
approximately D1/2 away from the edge. In other words
this gap defines a low energy manifold with an entropy
which goes as Smax/2. If such gaps persist all the way to
the large-S limit, they could imply a low energy manifold
for the infinite system, with an entropy equal to Smax/2.
We should note that gaps in the finite clusters need not
imply a true gap in the thermodynamic limit, but only a
pseudogap or reduced density of states in the thermodyn-
mic limit. These gaps are analogous to those in half-filled
Hubbard model at moderate U/t showing the freezing of
charge degrees of freedom at an entropy of ln 2 per site.

TABLE I: Gaps in the spectra of spin-S Kitaev Models. D is
the total Hilbert space dimension. ∆a = (Emax − Emin)/D
is the typical energy-level spacing, Dl is the dimension of
the Hilbert space below the noted gap, ∆l is the gap that
separates Dl states from the rest of the system. The ratio
Sl/Stot is the ratio of the entropy for the low energy manifold
to the total entropy.

S D ∆a Dl ∆l Sl/Stot

1 729 0.010 39 0.20 0.556
3/2 4096 0.0037 64 0.36 0.5

2 15625 0.0017 122 0.23 0.497
5/2 46656 0.00086 232 0.27 0.507

We note that this analysis says nothing about further
selection within this manifold, which could proceed in
the isotropic limit as discussed by Rousochatzakis et al
[8]. Also, there are three ways to form Plaquette Valence
Bond state on the lattice. 1/S corrections could restore
the lattice symmetry by mixing the very large number of
degenerate states.

There is another intriguing result of Baskaran et al.
[5] that may be relevant to the incipient entropy plateau.
They have shown that there is a representation of the
spins in terms of Majorana fermion operators for half-
integer spins that splits the (2S + 1)N states into a
(S + 1/2)N states in direct product with 2N states.
Baskaran et al. [5] argue that a modified hamiltonian
may lead to a soluble model with (S+1/2) copies of Ma-
jorana Fermions. Clearly a large number of copies of
the Majorana Fermions can also lead to large entropy.
It would be very interesting if the incipient plateau re-
flects the onset of emergent Majorana variables. Explor-
ing such a connection is beyond the scope of this work.
It is interesting, however, that our numerical results sug-
gest an incipient entropy plateau for both integer and
half-integer spins, where as the Majorana representation
is realized in Baskaran et al work only for half-integer
spins. They are replaced by hard-core Bosons for integer

spins. Both, in the case of fermions with point fermi-
surfaces and bosons with linear dispersion, one would
obtain a T 2 entropy. The results in Fig. 2 are consis-
tent with such a T 2 initial correction above the entropy
plateau. Study of real time dynamics at and below the
temperature for the entropy plateau may throw further
light on this emergenet subspace and the difference be-
tween possible fermionic and bosonic excitations in half-
integer and integer spins respectively.

It would be interesting to look for real materials that
have dominant Kitaev exchange with S > 1/2. Given
that there are many effective ab initio approaches to de-
signing spin-half Kitaev materials [20–26], it would not
be surprising if higher spin Kitaev materials may also be
discovered soon.
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