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The effects of temperature and pressure on the phonons of GaN were calculated for both the
wurtzite and zincblende structures. The quasiharmonic approximation (QHA) gave reasonable re-
sults for the temperature dependence of the phonon DOS at zero pressure, but unreliably predicted
the combined effects of temperature and pressure. Pressure was found to change the explicit an-
harmonicity, altering the thermal shifts of phonons, and more notably qualitatively changing the
evolution of phonon lifetimes with increasing temperature. These effects were largest for the opti-
cal modes, and phonon frequencies below approximately 5 THz were adequately predicted with the
QHA.

The elastic anisotropies of GaN in both wurtzite and zincblende structures were calculated from
the elastic constants as a function of pressure at 0 K. The elastic anisotropy increased with pressure
until reaching elastic instabilities at 40 GPa (zincblende) and 65 GPa (wurtzite). The calculated
instabilities are consistent with proposed transformation pathways to rocksalt GaN, and place upper
bounds on the pressures at which wurtzite and zincblende GaN can be metastable.

I. INTRODUCTION

GaN is a wide-band-gap semiconductor used in opto-
electronic devices such as light-emitting diodes (LEDs).
Under ambient conditions GaN adopts the wurtzite
structure, composed of two interpenetrating hexagonal
close-packed lattices of Ga and N atoms. Like other
III-V materials, GaN is polytypic, and zincblende GaN
is metastable at ambient conditions (see Fig. 1). The
zincblende structure consists of interpenetrating face-
centered cubic lattices, differing from the wurtzite struc-
ture only in the relative positioning of ionic planes;
wurtzite has ABABAB... stacking; zincblende has AB-
CABC... stacking.1 Zincblende GaN is technologically
relevant because its metastability allows it to be grown
under ambient conditions,2 and it is more easily doped
than wurtzite GaN.3

At elevated pressures, III-V materials tend to trans-
form to either the β-Sn structure for more covalent
compounds or the rocksalt structure for more ionic
compounds.4 With pressure GaN transforms to the rock-
salt structure, changing from tetrahedral to octahedral
coordination. Calculations and measurements show that

FIG. 1: Unit cells of the wurtzite (left) and zincblende (right)
structures, with underlying hexagonal and cubic lattices.

the transformation pressure in GaN is between 30 and
50 GPa.4,5 There has been much discussion in the liter-
ature of the transformation pathway from the wurtzite
to rocksalt structure, resulting in a consensus that GaN
adopts an intermediate tetragonal structure.1,6–8

Calculations of thermodynamic functions at elevated
temperatures are a greater challenge than calculations
at elevated pressures. The quasiharmonic approxima-
tion (QHA) is a common approach, where the effects
of temperature on the phonon frequency ωi are in-
cluded through the thermal expansion β, and the mode
Grüneisen parameter γi (Eq. 3). In a QHA the harmonic
nature of the phonons is preserved. Since harmonic
phonons do not interact, they have infinite lifetimes and
the thermal conductivity is infinite. The potential energy
surface of a crystal does not vary with temperature in a
QHA. The QHA assumes that all effects of temperature
originate from changes in volume, with phonons having
the same response as from pressure. A QHA therefore
ignores explicit anharmonicity from phonon-phonon in-
teractions caused by cubic or quartic perturbations to
the potential energy. These explicit anharmonic effects
can be important even at low temperatures, however, and
typically grow with temperature. Explicit anharmonicity
can alter thermal expansion,9 elastic anisotropy,10 phase
stability,11 and, of course, transport properties.11 It is
not yet well understood when the QHA is adequate, or if
it can be extended to better include anharmonic effects.
One useful test is if the accuracy of the QHA varies with
pressure.

The present study reports an investigation of phonon
frequencies and lifetimes in wurtzite and zincblende GaN
as functions of temperature and pressure, and elastic
anisotropy as a function of pressure. The methods and
results are described in Sections II and III. After first dis-
cussing effects of pressure at 0 K and of temperature at
0 GPa, it is shown that the effects of T and P on phonons
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are not additive, and for phonon linewidths there is a
marked interdependence of effects from T and P . We also
report that the elastic anisotropy increases with pressure
in both wurtzite and zincblende GaN, until each struc-
ture reaches an elastic instability at 40 and 65 GPa, re-
spectively. Section IV discusses the explicit anharmonic-
ity and the reliability of a QHA for phonon properties,
and how the elastic anisotropy gives upper bounds on
the pressures at which wurtzite and zincblende GaN can
persist as thermodynamically metastable phases (when
rocksalt GaN is the equilibrium structure).

II. COMPUTATIONAL

Ab initio calculations were performed on GaN using
density functional theory12 (DFT) as implemented in the
Vienna Ab-initio Simulation Package13,14 (VASP), using
a projector augmented wave method15, the local den-
sity approximation (LDA), and a plane wave cutoff of
600 eV. Total energies and elastic constants were calcu-
lated for static lattices using a two-atom zincblende prim-
itive unit cell and a four-atom wurtzite primitive unit
cell with 22×22×22 and 20×20×12 k-point meshes, re-
spectively. For phonon calculations, 4×4×4 and 5×5×4
k-point meshes were used for zincblende and wurtzite su-
percells with 216 and 192 atoms, respectively. All k-point
meshes were generated with a Monkhorst-Pack scheme16.

Helmholtz free energies, F (V, T ), were calculated as

F (V, T ) = E0(V ) + Fph(V, T ) , (1)

where E0(V ) is the ground state total energy from VASP
as a function of volume and Fph(V, T ) is the phonon
free energy at a particular volume and temperature. Fi-
nite temperature phonon properties were calculated us-
ing a version of the temperature dependent effective po-
tential method TDEP.17–19. This version, s-TDEP, was
stochastically-initialized,20 and accounted for zero point
motion. In brief, ensembles of supercells were populated
with atoms that were given thermal displacements with
phonon populations and polarizations from a quasihar-
monic model, and the ensemble average of the energies
was used to obtain the best “effective potential” of the
form
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Optimized Φαβij and Φαβγijk were obtained by minimizing
the differences between the forces on the atoms in the
ensemble and the forces obtained from the effective po-
tential of Eq. 2. (The concept of an effective potential
for phonons dates back many years and is reviewed in a
delightful paper by Klein and Horton,21 (also Hooton22),

who explained in detail how the quartic term in the po-
tential renormalizes the quadratic term in Eq. 2.) Force
constant determinations account for long range interac-
tions in polar materials that generate LO-TO splitting
using Gonze and Lee’s correction scheme23,24 and VASP
Born effective charge tensors.

Phonon properties were calculated for wurtzite and
zincblende GaN at 0 and 1120 K at each of three pres-
sures: 0, 30, and 60 GPa in wurtzite GaN and 0, 15,
and 30 GPa in zincblende GaN (pressures confirmed to
be within their ranges of elastic stability). To determine
equilibrium material structures at these pressures and
temperatures, Helmholtz free energies, F (V, T ), were cal-
culated for each material and temperature as a function
of volume. Free energies were evaluated only at volumes
within the regime of elastic stability in each material;
the free energy was evaluated at 14 volumes correspond-
ing to pressures below 64 GPa in wurtzite GaN and at
10 volumes corresponding to pressures below 36 GPa in
zincblende GaN. These energy-volume relationships were
fitted with a Birch-Murnaghan equation of state to de-
termine pressure as a function of volume at fixed tem-
perature. Pressures and temperatures of interest were
then evaluated by computing phonon properties on su-
percells of wurtzite and zincblende GaN held at the cor-
responding volumes. In wurtzite GaN, aspect ratios were
determined quasiharmonically by relaxing a unit cell of
wurtzite GaN at volumes of interest with ground state
DFT.

III. RESULTS

A. Phonon property calculations

1. Temperature effects

Figure 2 shows phonon densities of states (DOS) for
the zincblende and wurtzite structures at 0 GPa. The
phonons at 1120 K were calculated in two ways. The
dotted curves labeled “QHA 1120K” were calculated for
harmonic force constants with the equilibrium volumes
for 1120 K, and a 0 K effective potential. The red curves
“1120K” were calculated with force constants from the s-
TDEP method, and include effects of both volume expan-
sion and explicit anharmonicity. Comparing the phonon
DOS “1120K” with “QHA 1120K” shows the effect of
explicit anharmonicity. Evidently, the QHA gives a rea-
sonable temperature dependence of the phonon DOS at
0 GPa. Figure 3 gives a more detailed look at how in-
dividual phonon dispersions shift with temperature. We
see that while phonon frequency shifts occur for higher
frequency phonon modes (as evidenced by offsets be-
tween blue and red curves), phonon frequencies of acous-
tic modes near the Γ point do not appear to change be-
tween 0 and 1120 K in either material, consistent with the
phonon DOS of Fig. 2. Figure 4 shows again the phonon
dispersions at 0 GPa for wurtzite and zincblende GaN at
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FIG. 2: Phonon DOS at 0 GPa for wurtzite (top) and
zincblende (bottom) GaN at 0 K (blue), at 1120 K by the
QHA (green dots), and at 1120 K by s-TDEP (red).

0 and 1120 K, now overlaid with phonon linewidth infor-
mation. There is a substantial broadening of the optical
modes at 1120 K, which comes from reduced phonon life-
times in s-TDEP.

2. Pressure effects

Figure 5 shows the effects of pressure on the phonon
DOS of the zincblende and wurtzite structures at 0 K.
(The Supplemental Information shows that the pressure-
driven changes of the phonon DOS are qualitatively sim-
ilar at 1120 K.) Above approximately 6 THz, phonon
modes stiffen with increasing pressure, but below this
frequency the phonons soften.

Mode Grüneisen parameters γi are defined as

γi = − V
ωi

∂ωi
∂V

, (3)

The γi are commonly positive, so phonon stiffening
is expected with increasing pressure. (In contrast, sys-
tems that exhibit negative thermal expansion have one
or more mode Grüneisen parameters that are negative.)
The mixture of phonon softening and stiffening with in-
creasing pressure seen in Fig. 5, is reflected in Fig. 6 for
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FIG. 3: Phonon dispersions at 0 GPa for wurtzite (top) and
zincblende (bottom) GaN at 0 K(blue) and 1120 K (red). TA
denotes the transverse acoustic branches.
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FIG. 4: Phonon dispersions at 0 GPa for wurtzite (left) and
zincblende (right) GaN at 0 K (top) and 1120 K (bottom) vs.
k along different directions in the Brillouin zone. Line thick-
nesses indicate the phonon linewidths, showing broadening of
phonon modes at 1120 K.
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FIG. 5: Phonon DOS at 0 K for wurtzite GaN at 0, 30, and
60 GPa (top), and for zincblende GaN at 0, 15, and 30 GPa
(bottom). Acoustic modes below 6 THz exhibit softening
with increased pressure, whereas higher energy modes stiffen.
Dashed vertical black lines delineate a feature in the DOS
that softens with increasing pressure.

mode Grüneisen parameters at 0 K for three pressures.
The Grüneisen mode parameters of the transverse acous-
tic branches are negative for both structures of GaN,
consistent with negative Grüneisen parameters for trans-
verse acoustic modes reported in both the zincblende25–27

and wurtzite structures.7,8 The Grüneisen parameters for
most other modes, including optical modes, are not large.

Figure 6 shows that the negative mode Grüneisen pa-
rameters become more negative with increasing pressure.
A consequence is seen between the vertical black dashed
lines in Fig. 5 – the leftward phonon frequency shift from
the green to pink curves is greater than that from the
black to green curves. In zincblende GaN, the increase of
15 GPa from 15 to 30 GPa causes the phonon frequencies
to decrease more than does the increase of 15 GPa from
0 to 15 GPa. In wurtzite GaN, the increase of 30 GPa
from 30 to 60 GPa shifts the phonon frequencies obvi-
ously more than the same pressure increase between 0
and 30 GPa.
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FIG. 6: Mode Grüneisen parameters at 0 K for all phonon
branches at three pressures in wurtzite (top) and zincblende
(bottom). In both panels, pressure increases from the black
to green to pink. Pressure causes large changes in the neg-
ative Grüneisen parameters, which correspond to transverse
acoustic modes.

3. Coupled temperature-pressure effects

Figure 8 shows an overlay of the 1120 K phonon DOS
curves at 0 GPa with rescaled DOS curves from 30 GPa.
Specifically, the 30 GPa DOS was rescaled linearly in fre-
quency so its first moment is the same as the DOS at
0 GPa. This rescaling reveals changes in the shape of
the DOS with pressure. These changes alter the intrinsic
anharmonicity, as discussed later.

Figure 9 shows thermal broadenings of phonon
linewidths for three pressures. The largest phonon broad-
enings occur near the Γ point for both structures of GaN,
but these thermal broadenings change considerably with
pressure.

The effects of pressure on the thermal broadening are
markedly different for the different phonons – the shapes
of the curves at 0 GPa are not simply rescaled with pres-
sure. Furthermore, for individual phonons the effects of
pressure are highly nonlinear. For example, the ther-
mal broadenings of phonons near the Γ point of both
structures are reduced by the first increase in pressure
(from 0 to 30 GPa in wurtzite and from 0 to 15 GPa in
zincblende GaN ), but for most phonons the reduction of
thermal broadening is much greater as the pressure in-
creases again, from 30 to 60 GPa in wurtzite GaN and
from 15 to 30 GPa in zincblende GaN. Curiously, the
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FIG. 7: Similar to Fig. 2, phonon DOS at 30 GPa for wurtzite
(top) and zincblende (bottom) GaN at 0 K (blue), at 1120 K
with the quasiharmonic approximation (green dots), and at
1120 K by s-TDEP (red).
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FIG. 8: Phonon DOS at 1120 K for wurtzite (top) and
zincblende (bottom) GaN for 0 GPa (black) and 30 GPa with
the mean frequency scaled to match that of the 0 GPa spec-
trum (magenta).
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FIG. 9: Change in phonon linewidths between 0 K and 1120 K
at three pressures for wurtzite (top) and zincblende (bottom)
GaN. In each panel, pressure increases from the black to the
green to the red curves.

thermal broadening in the wurtzite structure from Γ to A
to L is largest at 0 GPa, smallest at 30 GPa, and returns
to an intermediate values at 60 GPa. The phonon ther-
mal broadening changes qualitatively with pressure, with
all phonons undergoing a different nonlinear response.

B. Elastic constants and elastic instability

The universal elastic anisotropy index28, AU , was used
to quantify the elastic anisotropy

AU =
GV
GR

+
KV

KR
− 6 , (4)

where the subscripts R and V denote Reuss and Voigt
averages, which provide lower and upper bounds, respec-
tively, on the shear (G) and bulk (K) moduli. Using
formulations summarized by Hill29, Reuss and Voigt av-
erages of the shear and bulk moduli were calculated us-
ing VASP elastic constants obtained from static lattices.
(VASP determines the elastic tensor by applying finite
distortions to a unit cell to determine stress-strain re-
lationships.) Larger values of AU indicate increasing
elastic anisotropy, whereas AU = 1 for an elastically-
isotropic medium. Figure 10 shows that for both wurtzite
and zincblende GaN, the elastic anisotropy first increases
approximately linearly with pressure at low and mod-
erate pressures. At high pressures, however, the elas-
tic anisotropy increases rapidly, indicative of a pressure-
induced lattice instability, i.e., elastic collapse; this is
shown in the Supplemental Information.
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FIG. 10: The universal elastic anisotropy index AU of
wurtzite and zincblende GaN vs. pressure in the regime of
elastic stability.

The pressures corresponding to the onset of elastic
instabilities, PEI, of zincblende and wurtzite GaN are
identified by criteria similar to the “Born stability cri-
teria”, but which account for finite pressures, as done
previously.30–33 For cubic crystals such as zincblende,
these elastic stability criteria are

B11 −B12 > 0, B44 > 0, B11 + 2B12 > 0 . (5)

For hexagonal crystals, such as wurtzite, they are

B11 > |B12|, B44 > 0, B33(B11 +B12) > 2B2
13 . (6)

In terms of the elastic constants Cij and pressure P ,
the elastic stiffnesses, Bij , are

Bii = Cii − P for i = 1, 2, . . . 6 , (7)

B1j = C1j + P for j = 2, 3 . (8)

With increasing pressure, the first stability condition to
fail is taken as the reason for an elastic instability. These
conditions are explained further in the Supplemental In-
formation. Using Eqs. 5 and 6, PEI for the wurtzite and
zincblende structures are found to be 65 and 40 GPa, re-
spectively. Zincblende GaN becomes unstable when B12

exceeds B11, i.e., when the tetragonal shear modulus,
C11 − C12, becomes less than twice the pressure, 2P .
This is a “tetragonal shear instability.”32 Wurtzite GaN
exhibits this same failure mechanism at 72 GPa, but first
becomes elastically unstable when B44 becomes nonposi-
tive, i.e., when the pressure, P , exceeds C44. The failures
of these stability conditions are shown in Fig. 11.

These calculated values of PEI fall within the range of
approximately linear pressure dependence of the univer-
sal elastic anisotropy index (Fig. 10).
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FIG. 11: Here we see elastic stiffnesses plotted against pres-
sure. In both panels, B11 and B12 cross over where dashed
blue and magenta lines intersect, and B44 is no longer greater
than 0 GPa where solid blue and magenta lines intersect.
Wurtzite GaN (top) becomes elastically unstable when B44

crosses the 0 GPa line at approximately 65 GPa; zincblende
GaN (bottom) becomes elastically unstable when B11 and
B12 cross over at 40 GPa. Vertical black lines identify PEI.

IV. DISCUSSION

A. Pressure-temperature coupling and the
quasiharmonic approximation

Mode Grüneisen parameters (Eq. 3) are found by eval-
uating the volume dependence of phonon frequencies,
and Grüneisen parameters as in Fig. 6 are the basis for
the quasiharmonic approximation (QHA). The quasihar-
monic model assigns a temperature dependence of the
phonon frequency to the thermal expansion β as

ωi,QHA(V, T0 + ∆T ) = ωi,0(1− βγi∆T ) , (9)

where ωi,0 is the phonon frequency at the initial tem-
perature T0, and γi is the mode Grüneisen parameter of
Eq. 3. The phonon densities of states in both wurtzite
and zincblende shift to lower frequencies (soften) with in-
creasing temperature between 0 and 1120 K at fixed pres-
sure. Figure 2 suggests that the quasiharmonic model
may be adequate for understanding the temperature de-
pendence of phonon thermodynamics at 0 GPa, although
there are some differences compared to a more proper ac-
counting of anharmonicity. The results of Fig. 7 suggest
that the QHA for thermal shifts of phonons may be less
reliable at higher pressures, however.

The s-TDEP method starts with quasiharmonic
phonons for calculating the effective potential at elevated
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temperature. Using a supercell with atoms displaced
by these phonons, it obtains the best force constants
for an ensemble of supercells. The s-TDEP method
obtains anharmonic phonon frequency shifts (often at-
tributed to the cubic and quartic terms in the phonon
self-energy34,35) by renormalizing21,22 the interatomic
forces of Eq. 2 for the T and V of interest.

In general, phonon frequencies depend on the aver-
age positions of nuclei and temperature (which moves
them about their average positions), so ω = ω(V, T ).
The Grüneisen parameter is proportional to the volume
derivative, γ ∼ (∂ω/∂V )T , and the anharmonicity is pro-
portional to the temperature derivative, A ∼ (∂ω/∂T )V .
By taking derivatives of these quantities with respect
to the other variable, and equating mixed derivatives
as (∂2ω/∂T∂V )V T = (∂2ω/∂V ∂T )TV , it can be shown
that the temperature derivative of the Grüneisen param-
eter (∂γ/∂T )V equals the volume derivative of the anhar-
monicity (∂A/∂V )T . The physical origins of these two
effects must be the same.

Figure 8 helps explain why the intrinsic anharmonicity
changes with pressure. If the shape of the DOS did not
change with pressure, the number of channels for three-
and four-phonon processes would change only slightly,
and in proportion to the mean phonon shift. Figure 8
shows that this is not the case because pressure causes
a significant change in the shape of the DOS. Nega-
tive Grüneisen parameters cause the transverse acous-
tic modes to shift lower with respect to the mean, and
the optical modes move higher. As these modes move
apart with pressure, there are fewer three-phonon pro-
cesses that can bridge them.

The resulting effects of pressure on explicit anhar-
monicity are evident in the phonon linewidths (which
are, of course, zero in the QHA). Phonon linewidths
are dominated by effects of cubic anharmonicity, since
quartic anharmonicity gives no imaginary contribution to
the phonon self-energy.34,35 Pressure-induced changes in
three-phonon processes explain the pressure-driven dif-
ferences in thermal phonon broadening seen in Fig. 9.
At low or moderate temperatures, the line broadening of
the optical modes ω(q) around the Γ point are dominated
by down-conversion processes that have the kinematical
factor

D↓(i,q) =
1

N

∑
q1,q2,j1,j2

∆(q− q1 − q2)δ(ω − ω1 − ω2) ,

(10)
where ω(q1) and ω(q2) are acoustic phonons. As pressure
is increased, Fig. 5 shows that the optical modes shift
upwards proportionally faster than the acoustic modes.
The ratio of energies of the bottom of the optical modes
to the top of the acoustic modes changes from approx-
imately 1.55 at 0 GPa to 1.71 at 60 GPa for wurtzite,
and changes from 1.61 at 0 GPa to 1.66 at 30 GPa for
zincblende. If this were to reach 2.0, there would be
zero terms in Eq. 10, but in three dimensions a change
from 1.55 to 1.71 causes a large decrease in the number of

possible three-phonon processes around the Γ-point. The
effects of cubic anharmonicity on the thermal linewidths
should therefore be reduced strongly with pressure. The
observed decrease in thermal broadening with increasing
pressure is consistent with this, indicating a reduction
in cubic anharmonicity from three-phonon processes. As
thermal broadening decreases, harmonic phonons become
better eigenstates of the system.

At temperatures of order 1000 K and pressures of or-
der 10 GPa it is not appropriate to consider only a quasi-
harmonicity ∝ P , and an anharmonicity ∝ T . These
two contributions are not additive. The T -dependences
of phonon frequency shifts and linewidths are pressure
dependent; in other words, the effects of temperature
and pressure on phonon frequencies have a coupling term
∝ TP . Finally, the nonlinearity of the phonon shifts with
pressure seen in Fig. 5 shows that a term proportional
to P 2 may also be necessary to account for the phonon
shifts at tens of GPa.

Both phonon frequency shifts and phonon linewidths
are related to thermal conductivity. One implication of
the failures of the QHA, and the anharmonicity at ele-
vated T and P , is that calculations of thermal conductiv-
ity must be performed at the at high T and P of interest.

B. Elastic anisotropy and lattice instabilities

By calculating elastic anisotropy as a function of pres-
sure, we showed that elastic anisotropy in both wurtzite
and zincblende GaN increases with pressure. Both the
zincblende and wurtzite structures of GaN become elasti-
cally unstable, and cannot exist at pressures higher than
40 and 65 GPa, respectively. Rocksalt is the thermody-
namically favored structure of GaN at elevated pressures,
with zincblende GaN predicted to transform to rocksalt
GaN near 40 GPa, and wurtzite GaN observed to trans-
form to rocksalt between 30 and 50 GPa. The predicted
mechanism by which zincblende transforms to rocksalt
begins with a tetragonal distortion1, which is consistent
with our result that zincblende GaN becomes elastically
unstable due to tetragonal shear. A consensus in the
literature is that wurtzite GaN forms a tetragonal inter-
mediate structure prior to transforming to rocksalt. The
work of Saitta, et al.8, implicate softening of the C44 and
C66 elastic constants in this transformation. This is con-
sistent with our work, where softening of C44 and C66

with increasing pressure lead to failures of two elastic
stability conditions in wurtzite GaN at 65 and 72 GPa,
respectively.

Our result that elastic instability occurs at 65 and 40
GPa in wurtzite and zincblende GaN, respectively, places
upper bounds on the existence of these structures. In dis-
cussing the transformation pathway of wurtzite to rock-
salt in AlN, InN, and GaN, one author ruled out the
metastability of the wurtzite structure above the trans-
formation pressure for AlN and InN, but not for GaN.3

This same work calculated a coexistence pressure of 74
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GPa for the SC16 and wurtzite structures of GaN, sug-
gesting the possibility of wurtzite metastability up to at
least 74 GPa. Our work shows that by 65 GPa, wurtzite
GaN will be mechanically unstable, preventing such a
thermodynamic metastability. Similarly, above 40 GPa,
zincblende GaN will no longer be thermodynamically
metastable.

The phonon dispersion relations of GaN indicate that
these results on elastic anisotropy and elastic stability of
wurtzite and zincblende GaN should not be significantly
dependent on temperature.

In the long wavelength limit, the elastic constants
may be determined as a function of force constants.
Given this relationship between elastic constants and
force constants, invariance of low-energy acoustic phonon
branches equates to invariance of the elastic constants. In
Fig. 3, we see that the low-energy acoustic phonon modes
are not sensitive to temperature; in particular, we see in
Fig. 3 that the red and blue curves in each panel overlap
nearly perfectly when the acoustic branches extending
from the Γ point are linear. (As shown in the Supple-
mental Information, the low-energy acoustic modes are
insensitive not only to the full effects of temperature
but also to the temperature-driven volume changes be-
tween 0 and 1120 K.) Similarly we see in Fig. 2 that the
phonon DOS at 0 and 1120 K overlap nearly perfectly be-
low about 5 THz in both structures of GaN. As the elastic
constants of either structure do not change significantly
with temperature, temperature will not significantly alter
the pressures at which these structures become elastically
unstable, or the elastic anisotropy trends at 0 K.

V. CONCLUSIONS

For a pressure of 0 GPa, a simple quasiharmonic ap-
proximation, which attributes both temperature and
pressure dependences of phonon self-energies to changes
in volume, predicts temperature dependences of phonons
in wurtzite and zincblende GaN that are approximately
correct. Effects of the explicit anharmonicity of phonons

varies with pressure, and our results suggest a quasihar-
monic approximation predicts thermal shifts of phonons
less successfully by 30 GPa.

Pressure determines the degree to which temperature
alters the lifetimes of optical phonons, owing to a de-
crease in the number of 3-phonon downscattering chan-
nels for optical modes. Accounting for the effects of T
and P on the phonons in both zincblende and wurtzite
GaN over a range of T and P of approximately 1000 K
and tens of GPa requires, at a minimum, that phonon fre-
quencies have terms that depend on P (quasiharmonic-
ity), T (explicit anharmonicity), PT , and P 2.

The elastic anisotropy was found to increase with pres-
sure in both wurtzite and zincblende GaN. An elastic
instability was found in wurtzite GaN at 65 GPa and
in zincblende GaN at 40 GPa, providing upper bounds
for the possible metastability of either phase, after rock-
salt GaN becomes thermodynamically favorable. Ther-
mal trends in long-wavelength phonons show that the
pressures of elastic instability should be reliable to tem-
peratures of 1120 K.
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