aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological qguantum quench dynamics carrying arbitrary
Hopf and second Chern numbers
Motohiko Ezawa
Phys. Rev. B 98, 205406 — Published 9 November 2018
DOI: 10.1103/PhysRevB.98.205406


http://dx.doi.org/10.1103/PhysRevB.98.205406

Topological quantum quench dynamics carrying arbitrary Hopf and second-Chern numbers
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A quantum quench is a nonequilibrium dynamics governed by the unitary evolution. We propose a two-band
model whose quench dynamics is characterized by an arbitrary Hopf number belonging to the homotopy group
73(S?) = Z. When we quench a system from an insulator with the Chern number C; € m2(S?) = Z to
another insulator with the Chern number C/, the preimage of the Hamiltonian vector forms links having the
Hopf number Cy — C;. We also investigate a quantum-quench dynamics for a four-band model carrying an
arbitrary second-Chern number N € 74(S*) = Z, which can be realized by quenching a three-dimensional
topological insulator having the three-dimensional winding number N € 73(S?) = Z.

I. INTRODUCTION:

Topological physics has been investigated intensively in
this decade. It is characterized by a topological number quan-
tized for distinct phases. Topological properties are exten-
sively studied in equilibrium, while they are yet to be explored
in nonequilibrium. One successful example is a Floquet
system'©, where the external field is oscillating. Quantum
quench is another method to create a nonequilibrium state,
where some parameters are suddenly changed, and afterwards
the wave function develops under unitary transformation’'2,

The Hopf number is described by the homotopy class
73(.92), which is a linking number in three dimensions. It
is naturally realized in a two-band system in physical sys-
tem, since it is characterized by S2. Nontrivial Hopf tex-
tures are discussed for cold atoms!>!*, light fields'> and lig-
uid crystal'®. The topological Hopf insulator is a three-
dimensional (3D) topological insulator possessing a nonzero
Hopf number'”?2.  The topological Hopf semimetal has
been proposed, whose Fermi surface contains linked loop
nodes?*~?’. Recently, the Hopf number also appears in the
2D topological insulator after quench?-28-32, It is shown that
the Hopf number is 1 when the system turns from a trivial
insulator to a topological insulator with the Chern number 1.
This topological quantum quench has already been realized in
cold atoms by performing quasimomentum-resolved Bloch-
state tomography for the azimuthal phase®3-33. There are sev-
eral studies on the quench from a trivial insulator to a topo-
logical insulators, while there are few studies on the quench
from a topological insulator to a trivial insulator or the quench
from a topological insulator to another topological insulator.

The second-Chern number was originally introduced in the
context of the time-reversal invariant topological insulators in
three dimension3®, which is constructed by the dimensional
reduction of 4D topological insulators characterized by the
second-Chern number. Since the second-Chern number is
characterized by the homotopy 74(S%), it requires 4D space.
However, in quantum quench dynamics, since time introduces
an additional dimension, the second-Chern number can be de-
fined in 4D space-time. Indeed, a quantum quench carrying
the second-Chern number was recently proposed®?, where the
system is quenched from a trivial insulator to a topological
insulator indexed by the 3D winding number 73(S?).

In this paper, we propose a model which is characterized by
an arbitrary Hopf number after quench. For this purpose, we

first construct a model carrying an arbitrary Chern number on
square lattice. The dynamics of the density matrix is analyti-
cally solved in this system. We show that the Hopf number is
identical to the difference of the Chern numbers between the
initial and final phases. Finally, we propose a quantum quench
dynamics carrying arbitrary second-Chern numbers.

II. MODEL

We consider a two-band tight-binding model defined on
square lattice. The Hamiltonian is given by

(B
H(FQ* F1>a (D

where

Fy = t1 (cos ky + cos ky) + ta cos ky cos by —m, 2)
Fy = (sink, +isink,)" 3)
in momentum space, with N being an integer. It has Dirac
cones at the I' point (k, k) = (0,0), the M point (7, 7), the

X point (7,0) and the Y point (0, 7). The mass is given by
the diagonal element F} at the Dirac point, which reads

Mpr =2t +ty —m “4)
at the I point,
My = =2t +to —m &)
at the M point, and
Mx =My = —to —m (6)

at the X and Y points.

There are several topological phases in the Hamiltonian.
The topological phase diagram is constructed by examining
the Dirac masses. The phase boundaries are determined by
the condions Mr = My; = Mx = My = 0 as in Fig.2.

The Hamiltonian is rewritten as

H=d o 7)

in terms of the Pauli matrices . The normalized vector
d = d/ |d| points a Bloch sphere and thus forms an S? man-
ifold. Hence, the Chern number is defined to characterize the
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FIG. 1: Hamiltonian vector with (a) N = 1, (b) N = 2 and (c)
N = 3. They form meron structure with the winding number N at
the high-symmetry points I', M, X and Y,

Hamiltonian, which is the Pontryagin number,
1 o . A
C= _7/ d’k[d - (O, d x Oy, d)]. ®)
47T BZ v

We show the d vector in Fig.1. It exhibits meron structures
at the I', M, X and Y points. In the vicinity of the high-
symmetry points K = I', M, X and Y, since F} = Mg, we
may approximate the Hamiltonian as

My kY
Hy = ) 9
o= (i i) ®

where we have defined k4 = k; £ ik, and £ = + for the
I" and M points and ¢ = — for the X and Y points. The d
vector winds N times around the z axis as the azimuthal angle
increases from 0 to 27. The total Chern number is thus given
by

N
0= ¢y ven (1)
K

N N
= Esgn (2t1 +to —m) + Esgn (=2t; +ta —m)
+ Nsgn (t2 +m). (10)

We show the topological phase diagram in Fig.2. It has five
phases indexed by the Chern numbers C' = 0, £ N, +2N.

III. QUANTUM QUENCH

We investigate a quantum quench of the Hamiltonian be-
ween two phases in the phase diagram in Fig.2. We start with
an initial Hamiltonian where d = d'. At a certain time tg, we
suddenly change it to the final Hamiltonian where d = d’,
while keeping the system to remain in the ground state of the
initial Hamiltonian. (We choose ¢y = 0 for simplicity.) Af-
ter the quantum quench, the system is no longer the ground
state but an excited state with respect to the final Hamiltonian.
For t > tg, the dynamics is described by the density matrix
p+ = |1+ ) (14| satisfying the Liouville-von-Neumann equa-
tion,

ot

whose solution is given by an unitary evolution as

— [H (k).ps (kD). (D

p+ (K, t) = e_in(k)tpi (k,0) M OLY (12)
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FIG. 2: Topological phase diagram as a function of ¢tz /¢; and m/t1.
The Chern number is shown in each phase. The phase boundaries are
determined by the condition My = 0, where K stands for the high-
symmetry point indicated in the figure. The arrows in red represent
the quantum quench processes we have numerically studied.

In the two-band system, the density matrix is rewritten in
terms of the d vector as

pa (k,0) = [udi : a’} /2. (13)
The time-evolved density matrix is then given by>°
p (k,t) = [1d (k,) - o] /2 (14)

with the time-evolved d vector

~

d(k,t) = e; + excos (2¢t) + ez sin (2et),  (15)

where we have defined an orthogonal basis®”

er=d (4" df), (16)
er=d —d (di-df), a17)
es=d xd. (18)

The d vector is initially d' and rotates on the Bloch sphere
with period 7/e. Hereafter, we rescale the time as 7 = et.
Then, the quench dynamics is periodic with period 7 as a
function of 7, forming a manifold S'. The mapping from
(ks, ky, 7) to the Bloch sphere is a mapping from the T to
the S2, which is characterized by the Hopf number.

We study various quantum quench processes from an insu-
lator with C; to another insulator with C'y. We first study a
quantum quench from a trivial insulator to a topological insu-
lator, and then a quantum quench from a topological insula-
tor to a trivial insulator, and finally a quantum quench from a
topological insulator to another topological insulator



FIG. 3: Trivial to topological quench. Bird’s eye’s view of the al-
most zero-energy surface of the Hamiltonian vector with N = 1.
They form closed linking structures. We have quenched from the
trivial state with the mass m/¢t1 = 3 to the topological state with the
mass m/t1 = 1 while keeping t2/¢t1 = 0 to draw figures. (a) The
preimage of dy = 1 is colored in magenta, while that of dy =-1
is colored in cyan. (b) The preimage of d. = 11is colored in ma-
genta, while that of d., = —1 is colored in cyan. (c) The preimage
of Jz = 11is colored in magenta, while that of ciz = —1iscolored in
cyan. The d vectors are also shown in (a).

IV. TRIVIAL TO TOPOLOGICAL QUENCH

First, we consider a quantum quench from a trivial insula-
tor to a topological insulator with N. We show the d vector
in Fig.3(a), where the preimages of aZy (ky,ky,7) = £1in
the space time (k,, ky, 7) are also shown. We also show the
preimages of dg (kz, ky,7) = £1 and d, (s, ky,7) = £1
in Fig.3(b) and (c), respectively. All of them have the iden-
tical linking number. Hence it is enough to show only one
of them. In the following we only show the preimages of
czy (ks ky,7) = £1.InFig.4, we find the two preimages form
torus links with the Hopf number N. We numerically calcu-
late the quench dynamics between the trivial insulator with
m/t1 = 3 and the topological insulator with m /¢, = 1 while
keeping t2/t; = 0. See the vertical arrow in the phase dia-
gram (Fig.2), where the vertical arrow crosses only the phase
boundary determined by Mt = 0.

It is possible to construct an analytical expression for a
quantum quench from a trivial insulator with the mass m = oo
to a topological insulator with the mass M. Note that the
trivial insulators with m/t; = 3 and m = oo belong to the
same phase. In this quench, since the sign of the mass M is
relevant, it is enough to analyze the low-energy theory in the
vicinity of the I" point, where the wave function of the Hamil-
tonian (9) is given by

[ (t = 0)) = <<MF+vk2N+M2) ) (19)

C

with ¢ the normalization constant. Hence, the initial wave
function is [¢) (t = 0)) = (1,0)" for m = oc. By using

—id_sinT
A , (20
cosT +id, sinT > (20)

the time-evolved wave function is expressed as

we) = w oy = (7 id: ). e

—zd+ sinT

i T _ [ COST — id, sinT
—Zd_;,_ sin 7
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FIG. 4: Trivial to topological quench. Bird’s eye’s view of the almost
zero-energy surface of the Hamiltonian vector with (al) N = 1,
(b1) N = 2 and (c1) N = 3. They form closed linked loops. We
have quenched from the trivial state with the mass m/t; = 3 to the
topological state with the mass m/t1 = 1 while keeping t2/t1 = 0
to draw figures. The preimage of dy = 1 is colored in magenta,
while that of czy = —1 is colored in cyan. (a2)—(c2) and (a3)—(c3)
are the corresponding top and side views.

Making a cylindrical symmetric parametrization,

. kY. .
+= 9N sinf (k) , d, = cosf (k), (22)
with
Mr EN
cosl (k) = ————=, sinb (k) = ———=s,
W=V W R
we obtain the Berry connection
N
A, =sinTsinf (k) [— klzy sin7sin 6 (k) + %9’ (k) cos ],
24
Nky . .
A, =sinTsinf (k)| k]; sinTsin 6 (k) + %9' (k) cos 7],
(25)
Ay = —cosb (k), (26)

and the Berry curvature

N
F, =2sinTsinf (k) [— i

ky ,
A + ?8;69 (k) sin 7],

27

= cosTsind (k)

N
F, = —2sin7sinf (k) | ky

(k) + %ma (k) sin 7],

(28)
= —8k9 (k) sin® 7sin 26 (k) . (29)
By using
N »
A-F =——[0cosf (k)] sin® T, (30)
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FIG. 5: Topological to trivial quench. Bird’s eye’s view of the almost
zero-energy surface of the Hamiltonian vector with (al) N = 1, (b1)
N = 2 and (cl) N = 3. They form open linked helix. We have
quenched from the topological states with the mass m /¢1 = 1 to the
trivial states with the mass m/t; = 3 while keeping ¢2/t1 = 0 to
draw figures. The preimage of cfy = 1 is colored in magenta, while
that of (fy = —1 is colored in cyan. (a2)—(c2) and (a3)—(c3) are the
corresponding top and side views.

the Hopf number is calculated as

X:l/ dT/ kdkA - F
™ Jo 0

- _N [ lim cosf (k) — 0089(0>]

k—o0
. Mr
=—-N |f}i{r;o m — SgnMp]
= NsgnMr. a3

It is identical to the change of the Chern number at the I" point
since the Chern number at the I' point is given by %sgnMF.
Namely, the Hopf number is identical to the Chern number
Cy.

V. TOPOLOGICAL TO TRIVIAL QUENCH

We next consider a quantum quench from a topological in-
sulator with [V to a trivial insulator. We show the preimages of
zzy (ks ky,7) = 1 in Fig.5, where the two preimages form
open helix links with the Hopf number N. We numerically
calculate the quench dynamics between the topological insu-
lator with m /¢, = 1 and the trivial insulator with m/t; = 3
while keeping to/t; = 0: See the vertical arrow in the phase
diagram (Fig.2).

It is possible to analytically discuss the Hopf number in an
extreme case of the quantum quench from a topological insu-
lator with the mass M to a trivial insulator with the infinite

mass m = oo. By inserting the final state d’ = (0,0,-1)
into (15) and we find

€1 = (O,O7d,zz) , €2 = (d;,d;,o) , €3 = (dzya _d?pao) ’
(32)
and
d(k,T) = (cos (2¢t) d’, + sin (2et) d,
cos (2¢t) d; — sin (2et) di, d%). (33)
The time-evolved Hamiltonian is proportional to
dk,7)- 0=/ - d: . cz,e?” . 34)
d+€—217' _dz

In the vicinity of the I" point, the wave function is given by

W)= - ( e (e SR ) ) . 69)
+

c

The Berry connection is given by

NE My
Ay =——212 36
2k2 < + /2N 1 M%) ’ (36)

Nk, My
Ay =50 (2 t M12> , 37)
A =1-— _ M (38)

NCaES e
and the Berry curvature is given by

N Mk,

x = . (39
J2N =2 (2N +Mlg)3/2
N Mrk,
F,=— a 75 (40)
k2N-2 (kzN + Mlg)
N2ZM,
F, = Fg 7 1)
K2N=2 (k2N 4 M2)
By using
N2Mrp
A-F=- IN-2 (L2N 2)3/2’ “2)
k (k2N 4+ Mg)
the Hopf number is calculated as
1 s o0
X:—/ dT/ kdkA - F
T Jo 0
e N2 My
- _/ IN—2 (12N 213/2 ek
0o k (k2N + MZ)
= —NsgnMr. (43)



FIG. 6: Topological to topological quench (a) from a topological in-
sulator with C; = —1 to another topological insulator with C'y = 1,
(b) from a topological insulator with C; = —1 to another topologi-
cal insulator with C'y = 2 and (c) from a topological insulator with
C; = —2 to another topological insulator with Cy = 2. The Bril-
louin zone is indicated by the square. The preimage of dy =1lis
colored in magenta, while that of (iy = —1is colored in cyan.

As aresult, we find the Hopf number to be N. We note that the
signs of (31) and (43) are opposite since the two processes are
the inverse processes. As in the case of the trivial to topologi-
cal quench, it is identical to the change of the Chern number at
the I" point since the Chern number at the I' point is given by
%sgnMF. Namely, the Hopf number is identical to the Chern
number —C;.

VI. TOPOLOGICAL TO TOPOLOGICAL QUENCH

Finally, we study quench from a topological insulator to
another topological insulator. We show preimages in Fig.6 for
the case of N = 1. We find that torus links and open helix
links with the Hopf number N appear at the high-symmetry
points where the sign of the mass changes and the Hopf num-
ber is identical to C'y — C;. We explicitly study the following
three cases, where the parameter ¢5 is quenched while keeping
m = 0: See the horizontal arrows in the phase diagram given
in Fig.2. In the following, we study the case with N = 1 for
simplicity, where links with the Hopf number 1 emerge at the
high-symmetry points.

(a) For example, if we quench from the topological insula-
tor with t5/t; = —1 and C; = —1 to the topological insulator
with t3/t; = 1 and Cy = 1, two Hopf links with the Hopf
number 1 appear at the X and Y points since the sign of the
masses at the X and Y points change [Fig.6(a)]. Then the to-
tal Hopf number is 2, which is identical to the difference of

the Chern numbers. The shape of the Hopf link at the X point
is the closed loop, while that at the Y point is the open helix.
It seems that the Cy symmetry is violated. However, this is
an artifact due to the preimages of (fy = +1. The closed loop
and the open helix are inverted when we plot the preimages of
d, = +1.

(b) When we quench from the topological insulator with
ta/ty = —1 and C; = —1 to the topological insulator with
ta/t1 = 3 with Cy = 2, three Hopf links with the Hopf num-
ber 1 appear at the X, Y and M points [Fig.6(b)]. Then the
total Hopf number is 3.

(c) In the same way, when we quench from the topological
insulator with t5/t; = —3 and C; = —2 to the topological in-
sulator with ¢5 /t; = 3 with Cy = 2, three Hopf links with the
Hopf number 1 appear at the I', X, Y and M points [Fig.6(c)].
Then the total Hopf number is 4.

VII. QUANTUM QUENCH WITH SECOND-CHERN
NUMBER

A quantum quench carrying the second-Chern number 1
has been proposed®?. We generalize it to a quantum quench
carrying an arbitrary second-Chern number N.

We consider the Hamiltonian

H= Z fa(k)Teo0 + m(k)T.00, (44)

where 7 and o represent the Pauli matrices, while o is the
unit matrix. We define a unit vector

1
[E(k)|

with the energy

+m?2(k). (46)

0T
a=x,y,z

Since the unit vector forms a three sphere .S’ 3, the Hamiltonian
is characterized by the 3D winding number®’® 13 describing
the third Homotopy m3(S?) = Z,

1
Vg = —=

o2 dBk‘EadeCiaakw Cibaky Cicakz ch. (47)
™ Jpz

} When

The unitary evolution is given by U (t) [—i
1,0,0,0), the

we start with the initial state |4 (0))
quenched wave function is given by

[ (7)) = e~ 7 14 (0))

= (cos T, —imygsin T, 0,

= exp
= (1,

—ifogsinT, (fyr —ifer)sinT)’.  (48)

We define the order parameter as

L= <"/}k(t)| (TxJz7Tx0y7TzUza 7_277—?;) |wk(t)>7 (49)



which forms the four sphere S* since L is a unit vector satis-
fying |L| = 1. It is classified by the fourth homotopy 74(S%),
where the dynamical second-Chern number is defined by3>36

/2
Cy = 3 [ d3 ke L, 0y, LyOy, Loy, Lady L.
872 Jo BZ !

(50)
It is shown that the dynamical second-Chern number is iden-
tical to the 3D winding number3?

3 71'/2
Co=v3—5 / sin® 27dr = v (51)
47 0
with (47).
Now we explicitly study the model given by
fo(k) = Re[(sin k, + isink, )], (52)
fy (k) = Im[(sin &, + isin k, )], (53)
f2(k) =sink,, (54)
m(k) = m — t1(cos ky + cosk, + cosk.). (55)

It follows that the 3D winding number is given by v3 = N for
1 < |m/t1] < 3,vs = —2N for [m/t1] < 1 and v3 = 0 for

|m/t1] > 3. Accordingly, the quantum quench is character-
ized by the second-Chern number V.

VIII. CONCLUSION

We have constructed models of quantum quench, which are
characterized by an arbitrary Hopf number or by an arbitrary
second-Chern number. We have explored new types of topo-
logical quantum quenches. One is the topological to trivial
quench and the other is the topological to topological quench,
which have different link structures compared to the previ-
ously studied trivial to topological quench.
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