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We present a theoretical investigation of the voltage-driven metal insulator transition based on
solving coupled Boltzmann and Hartree-Fock equations to determine the insulating gap and the
electron distribution in a model system – a one dimensional charge density wave. Electric fields that
are parametrically small relative to energy gaps can shift the electron distribution away from the
momentum-space region where interband relaxation is efficient, leading to a highly non-equilibrium
quasiparticle distribution even in the absence of Zener tunnelling. The gap equation is found to
have regions of multistability; a non-equilibrium analogue of the free energy is constructed and used
to determine which phase is preferred.

PACS numbers: 71.10.-w, 71.30.+h, 71.45.Lr

I. INTRODUCTION

Insulator to metal transitions (IMTs) driven in ther-
mal equilibrium by variation of temperature, strain or
chemical composition are of long-standing interest in con-
densed matter physics1. Recently, attention has shifted
to non-equilibrium transitions driven by application of
strong optical2–7, terahertz8,9 or dc10–16 electric fields.
Two broad classes of transition mechanisms have been
addressed in the literature: virtual electronic transitions
causing changes in the Hamiltonian (“Floquet engineer-
ing”) and real electronic transitions, changing the elec-
tron distribution function. Typically, important effects
occur when the non-equilibrium drive is comparable to
some important energetic or lattice scale; for example,
when Hamiltonian parameters are changed enough to
drive a system through a T = 0 phase transition, or a
large enough number of valence band carriers are excited
over the gap, or atomic positions are displaced by a sig-
nificant fraction of the lattice constant.

In an interesting recent experiment, Maeno and
collaborators17,18 reported that in Ca2RuO4

19,20, mod-
est electric fields F ? ∼ 40 V/cm can suppress the metal
insulator transition temperature from TIMT = 356 K to
substantially below room temperature. One might ex-
pect that the main effect of an applied dc field would be
to enable carriers to tunnel across a band gap, and that
the critical electric field required to drive an IMT would
have to be strong enough to produce a large number of
real excitations, i.e. to be of the order of the energy gap
divided by some suitable atomic-scale length. For exam-
ple, a non-equilibrium dynamical mean field analysis of a
current-driven Mott insulator21 found important effects
when applied fields F were large enough that the voltage
drop across one unit cell ∼ eFa was comparable to the
Mott gap.

From this point of view, the value of the critical field
required to drive the transition in Ca2RuO4 is remark-
ably small: the electronic energy gap of the insulator
is ∆ ≈ 0.2 − 0.6 eV so the experimentally applied field
∼ 40 V/cm corresponds to a length L? = ∆/F ? ∼ 105

lattice constants. Landau-Zener tunnelling22,23 leads to

an excitation rate proportional to e−∆2/WeFa where W
is a measure of the bandwidth, and thus to a field scale
∆2/Wea which is parametrically smaller (in the limit
of small gap) but still set by fundamental atomic-scale
energies. In the Ca2RuO4 case inserting W ∼ 1.5 eV
into the Zener formula would yield a length L? ∼ 104

lattice constants. The results of Refs. 17,18 therefore mo-
tivate further investigation into alternative mechanisms
for non-equilibrium metal-insulator transitions.

In this paper we analyse a mechanism by which an
applied electric field can change an electronic distribu-
tion function without directly exciting carriers over a gap.
The key point is that interband relaxation is strongly de-
pendent on position in momentum space, so that an elec-
tric field can shift carriers away from points of rapid re-
laxation, leading to a population imbalance that is set by
comparing the electric field to a relaxation time, rather
than an energetic scale. The resulting effects are power
law, not exponentially small, in the field strength. To
investigate this issue we use a Boltzmann equation plus
mean field analysis of a one dimensional model of spinless
fermions with a charge density wave instability24. The
field-induced renormalization of the critical temperature
can be large, eventually pushing the linear instability to
density wave order down to zero temperature. However
the destabilization of the density wave state is weaker,
leading to a bistable behavior, characterized by the co-
existence of both metallic and gapped stable phases. We
emphasize that our work is not intended to specifically
model the experiments of Refs. 17,18; rather it is a the-
oretical study of an alternative mechanism, motivated
by the key features of the experiments of Maeno et. al.
Our work is complementary to recent work25 studying
the IMT when the Zener tunneling is important.

The rest of this paper is organized as follows: in section
II we present the model we study, analyze the scattering
mechanisms and write the Boltzmann equation, which we
solve in section III; in section IV we report the results
for the gap and in section V we study the stability of the
phases. Section VI provides a summary, conclusions, and
prospects for future work. Appendices provide technical
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details.

II. MODEL

A. Hamiltonian and kinetic equation

We study a model of a single band of spinless fermions
moving on a one-dimensional lattice of lattice constant
a with energy dispersion εk; we assume the band is half
filled and that the fermions are subject to an interaction
parameterized by the coupling constant G that leads to a
commensurate (period π/a) site-centered charge density
wave of amplitude ∝ ∆.

We define the electron annihilation operator on site j
as cj , and write the mean field hamiltonian in the Fourier
basis appropriate to the doubled unit cell as:

H =
∑
k

(
c†k c†k+Q

)(
εk ∆
∆ εk+Q

)(
ck
ck+Q

)
, (1)

where ck = 1√
N

∑
j e
ikjcj , the wavevector k is measured

in units of 1/a and Q = π.
The eigenstates of the Hamiltonian are conduction (c)

and valence (v) bands with energies

E
c/v
k =

εk + εk+Q

2
±

√(
εk − εk+Q

2

)2

+ ∆2. (2)

The minimum band gap is 2∆ and we choose εk such
that the point of minimum gap is k = ±Q/2.

The mean field equation for the gap is

1 =
G

N

∑
k

nvk − nck√(
εk−εk+Q

2

)2

+ ∆2

, (3)

where n
v/c
k are the occupations of states k in the va-

lence/conduction band.
In equilibrium at T = 0, nv = 1, nc = 0 and perfect

nesting of 1D band structures means that at k = Q/2 =
π/2, εk = εk+Q; thus the logarithmic divergence of the
sum in Eq. (3) at ∆ → 0 implies the existence of a
solution with ∆ 6= 0. As T is increased, nv decreases
and nc increases, eventually leading (within mean field
theory) to a second order transition at a temperature
TC set by G. Because this is a one dimensional system,
beyond mean-field effects will convert the transition to a
crossover between a high-T short ranged correlated state
and a low T state described by an exponentially large,
although finite, correlation length. This physics is not
relevant to the considerations of this paper.

We now consider how an applied electric field changes
the distribution functions and thus the solution of the
gap equation. To this end we write and solve Boltzmann
transport equations for the steady state conduction and

valence band occupation n
c/v
k . The transient state, while

FIG. 1. Sketch of scattering processes near the gap. The rates are:
ΓI for the interband scattering mediated by photons (wavy curves) or

phonons (curly curves), ΓZ for the Landau-Zener tunneling, τ−1 for
the momentum relaxation and ΓE for the energy relaxation.

interesting in its own right, is beyond the scope of this
paper. The crucial ingredients of a Boltzmann equa-
tion are the acceleration of the carriers by the applied
field F , a momentum relaxation process (which we con-
sider to come from energy-conserving scattering with rate
τ−1), an interband scattering that changes the number
of particles in each band (rate ΓI), the Landau-Zener
tunneling (rate ΓZ) and an intraband energy relaxation
process (rate ΓE). Not notating the dependences of the
Γ on the distribution functions, we have

∂tn
c
k = −eFa

~
∂kn

c
k − ΓI + ΓZ −

nck − nc−k
τk

+ ΓcE ; (4)

∂tn
v
k = −eFa

~
∂kn

v
k + ΓI − ΓZ −

nvk − nv−k
τk

+ ΓvE . (5)

The Boltzmann equations (4)–(5) are coupled nonlin-
ear equations and the general solution is complicated. To
simplify the presentation without losing essential features
we assume particle-hole symmetry in the electron disper-
sion and scattering amplitudes. In this case, nv = 1−nc
and the two equations can be collapsed to one. For no-
tational simplicity we choose the origin of k to coincide
with the gap minimum, assume εk = −2t sin k, define the
Fermi velocity vF = 2t and normalize all energy scales to
the hopping term t.

We exploit the symmetry under k ↔ −k to separate
the odd and even parity parts of the distribution, defining

ne/o =
1

2
(nck ± nc−k), (6)

and rearrange the equations to make the physically in-
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teresting limit Γτ � 1 more transparent, obtaining

E∂kne = −no − γI,o + γZ,o + γE,o; (7a)

E∂kno = −γI,e + γZ,e + γE,e. (7b)

Here we have neglected the dependence on the momen-
tum of the elastic scattering rate, defined the dimen-
sionless electric field E = eFaτ/(2~) and normalized
the even/odd part of the i-th scattering rate γi,e/o ≡
Γi,e/oτ/2.

If all of the Γ� 1
τ and the electric field is not too large,

Eq. (7a) implies no = −E∂kne and Eq. (7b) becomes

E2∂2
kne = γI,e − γZ,e − γE,e. (8)

B. Scattering processes

In this subsection we specify important features of the
inelastic scattering processes (sketched in Fig. 1). Details
are provided in Appendix A.

We take the interband process ΓI to arise from scatter-
ing involving a bosonic mode (photon or optical phonon)
and calculate it using the standard Fermi golden rule

ΓI(k) = A2
k [nck (1− nvk) (1 + b)− nvk (1− nck) b] . (9)

Here b is the Bose distribution at energy ∆Ek = Eck −
Evk ≡ 2Ek and Ak is the transition matrix element. We
have assumed that the interband scattering is essentially
vertical (momentum conserving); this is clearly justified
in the case of optical emission and is a reasonable approx-
imation for optical phonons when the phonon energy ωph
is much smaller than the bandwidth so that the process is
only important for electrons in a range δk ∼ ωph/vF � 1
of the gap minimum. We recast Eq. (9) using the defini-
tions and approximations of section II.A

γI,e = γb(n
2
e + 2neb− b); γb ≡ A2

kτ/2. (10)

This form will be used in our subsequent analysis.
In Eq. (10) the matrix element Ak plays a crucial role.

On physical grounds we expect Ak to drop rapidly as k
is shifted away from the gap: for optical emission the
probability is A2

k ∼ ∆2/Ek, while when the conduction-
valence band energy difference becomes greater than ωph,
the multiple phonon emissions required for downscatter-
ing lead to a rapid suppression: in other words, interband
relaxation is only efficient for carriers with energies near
the conduction band minimum (valence band maximum).
This is important because in equilibrium the “upscatter-
ing” (second term in Eq. (9)) and “downscattering” (first
term) processes cancel, as can be verified by substitut-
ing the appropriate distribution functions in Eq. (9).
At low T upscattering is controlled by the probability of
finding a thermally excited boson of the correct energy
while downscattering is constrained by fermion occupan-
cies. Out of equilibrium the field F sweeps carriers away
from the conduction band minimum/valence band max-

imum (gap) into regions where the interband relaxation
is less efficient, leading to changes in population even
without Zener tunnelling.

We now study the energy relaxation term ΓE : we imag-
ine that the system is in contact with a reservoir held at
temperature T with which it can exchange energy in very
small increments δE; this leads to an intraband scatter-
ing mechanism whose rate is evaluated with the Fermi
golden rule (see Appendix A for more details):

γE,e = γRT∂
2
Ene + γR∂E

(
ne − n2

e

)
, (11)

where γR is a dimensionless rate (which includes the ex-
changed energy δE normalized to t) and ∂E is the deriva-
tive with respect to the conduction band energy. Notice
that γE,e vanishes if n is the Fermi-Dirac distribution.

Finally we briefly address Landau-Zener tunneling: it
promotes electrons from valence to conduction band with

a rate proportional to e−π∆2/(2teFa); thus it is exponen-
tially small in ∆ and for the values of electric field con-
sidered here it is relevant only for ∆ . 0.005.

C. Final form of Kinetic Equation

Substituting the expressions for the interband and en-
ergy relaxation into Eq. (8), neglecting the Zener tun-
nelling term and introducing v ≡ ∂kEk, we have

γb
(
n2
e + 2neb− b

)
=
(
E2v2 + γRT

)
∂2
Ene +

+(γR(1− 2ne) + E2v∂Ev)∂Ene. (12)

In equilibrium, the left hand side of Eq. (12) vanishes if n
is the Fermi-Dirac distribution nFD, as detailed balance
requires.

Eq.(12) is the basis for our subsequent analysis.

III. BOLTZMANN EQUATION ANALYSIS

Even though Eq. (12) cannot be solved analytically,
progress can be made in particular limits:

Zero gap case. Let us first assume ∆ = 0 so there is
no CDW order. In this case the interband scattering is
irrelevant and for energies near the Fermi level v = vF ,
so that we have(

v2
FE2 + γRT

)
∂2
Ene + γR∂Ene (1− 2ne) ≈ 0. (13)

The solution is a thermal distribution with an effective
temperature Teff given by

Teff = T + v2
FE2/γR, (14)

reflecting the balance between Joule heating of the elec-
trons (v2

FE2) and energy dissipation into the reservoir
(γR). This Joule heating leads to a suppression of the
linear instability to CDW order, which now occurs at
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FIG. 2. (Color online) Plot of the even part of the distribution ne as
function of the energy E for ∆ = 0.1, T = 0.05, γR = 0.001, ωph = 0.1
and values of the normalized electric field corresponding to E = 0.006
(a) and E = 0.01 (b). The insets show ne in a range of energies closer
to the gap.

the reduced value

TC(E) = TC(E = 0)− v2
FE2/γR. (15)

TC is suppressed to 0 when E = E?T ≡
√
γRTC/vF .

∆ > T case. For ∆ 6= 0, Eq. (12) has an interesting
structure: its right hand side conserves the particle num-
ber in the conduction band while its left hand side (in-
terband transitions) does not; this means that the steady
state solution must be such that the average over ener-
gies of the left hand side of Eq. (12) vanishes. When
∆ > T , γZ is negligible and we expect the contribution
from γb to be small and vanish rapidly for E & ∆. Thus
we set the left hand side of Eq. (12) to zero and neglect
the quadratic terms, finding

∂2
Ene = −1 + E2v∂Ev/γR

T + E2v2/γR
∂Ene. (16)

As shown in detail in Appendix B, Eq. (16) determines
ne up to a multiplicative constant, which can be found
by requiring that the upscattering and downscattering
terms in Eq. (12) balance:∑

k

(n2
e + 2neb− b)γb = 0. (17)

In the low T limit the integrals are confined to E ∼ ∆;
in this region ne ∼ b1/2 ∼ e−∆/T . The consequence is
that ne (see Fig. 2) is of the order of e−∆/T multiplied
by a factor depending on energy, temperature and field

ne ∼ e−
∆
T f(E, T, E). (18)

An inspection of Eq. (16) at E � ∆ shows f ∼
e−(E−∆)/Teff so that the distribution function is pseu-
dothermal, spread over a wider energy range ∼ Teff and
comprises more particles than in equilibrium; however at
E−∆ . ∆, f . 1, implying that for small energies ne is
less than its equilibrium value. Because the gap equation
(3) weights more low energies, the increase in ne (relative
to equilibrium) at high energies can be compensated by

FIG. 3. (Color online) Plot of the gap ∆ as function of the tem-
perature T for several values of the electric field E and for G = 1.6
(corresponding to TC ≈ 0.09), ωph = 0.1, γR = 0.001. The values
of the IMT transition temperature are T1 ≈ 0.055 for E = 0.015 and
T1 ≈ 0.049 for very high E.

the decrease at low energies leading to a small net re-
duction of the gap, in particular at low ∆. This follows
from the weak coupling model considered here; the gap
decrease would be larger if the CDW were not driven by
a low energy instability.

Moreover, Eq. (18) implies that any modification to
the gap equation (3) will be exponentially small in ∆/T ,
making an insulating phase ∆ � T hard to destabilize
even at high E ; on the other hand, the instability of the
metal phase is suppressed to very low temperatures for
E2v2

F /γR ∼ TC . This leads to a bistability region in
a range of T and E , characterized by a coexistence of
insulating and metal phase.

∆ < T case. When the gap is non-zero but smaller
than the temperature, the terms that are quadratic in ne
cannot be neglected in principle and no analytic solution
is obtainable. However we expect the occupation in this
regime to be a crossover between the Fermi-Dirac distri-
bution with effective temperature Teff and the solution
given by Eq. (18).

IV. NUMERICAL RESULTS

We solve numerically Eq. (12) in the general case,
choosing reasonable values for the parameters ωph/t ∼
0.1 and γR, γb (∼ 10−3, 10−4). We then substitute ne
into Eq. (3) and self-consistently solve for ∆(T ), which
is plotted for different E (Fig. 3). When E2/γR & 1 no
appreciable change occurs by increasing the electric field,
consistently with the run-away heating regime appearing
when Teff is of the order of the bandwidth.

We observe the bistability predicted in section III: for
a given E there exists a range of temperatures TC(E) <
T < T1(E) for which a stable high ∆ insulating phase
coexists with a stable metal ∆ = 0 phase. Notice that the
gapped phase and the metal phase are not analytically
connected through a stable phase: thus any switching
between the two phases occurs with a jump in ∆, which
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corresponds to a first order phase transition. The value
of the insulator to metal transition temperature T1(E)
decreases as E increases, but is limited from below by
T1∞ = T1(E → ∞): even at high E ∼ 0.1 the insulating
state survives for T < T1∞, see Fig. 3.

At low E , we also observe the appearance of a stable
low ∆ phase (which is not insulating, being characterized
by ∆ � T ) for T2(E) < T < T3(E); T3(E) can be larger
or smaller than T1(E) and the difference T3(E) − T2(E)
decreases with E until it vanishes. This phase is caused by
the previously mentioned effect that a ne(E ∼ ∆) < nFD
has on the gap equation at low ∆.

V. STABILITY ANALYSIS

To study the stability of the different phases, we mul-
tiply Eq. (3) by ∆ obtaining

∆−∆
G

N

∑
k

nvk − nck
Ek

≡ ∆− Φ[∆, T, E ] = 0. (19)

We interpret the left hand side of Eq. (19) as the deriva-
tive with respect to ∆ of a nonequilibrium “free energy”
and integrate it (in practice the integral is performed nu-
merically) obtaining

F [∆, T, E ] =

∫ ∆

0

d∆′(∆′ − Φ[∆′, T, E ]). (20)

The stationary points of F solve the gap equation: the
minima correspond to stable solutions and the maxima
to unstable ones.

In Fig. 4a we plot F for three values of T both in
equilibrium and out of equilibrium. At T < TC and
E = 0 we observe the usual behavior of the equilibrium
free energy of a system below its critical temperature;
by increasing E , the metal phase becomes locally stable,
a local maximum appears at intermediate values of ∆
(corresponding to the unstable middle branch of Fig. 3)
and the free energy of the high ∆ phase increases. For
T < T ?(E) the insulating phase is “energetically favored”
compared to the metal phase, so it is globally stable; for
T ?(E) < T < T1(E) the metal phase is “favored” and the
insulating phase becomes only locally stable, eventually
disappearing at T > T1(E); the temperature T ?(E) is
defined by F [∆(T ?), T ?, E ] = 0.

We observe that this energy functional implies that
there may be hysteresis when the system is tuned through
the transition. For example, consider the system to be
initially in the insulating phase below T ?(E), with E
strong enough to exclude a stable low ∆ phase. On
heating, the insulating phase becomes metastable for
T ?(E) < T < T1(E) and a sufficiently strong pertur-
bation can make the system switch to the metal phase;
if no perturbation occurs, the phase transition occurs at
T = T1(E). If the system is now cooled down, it remains
in the metal phase down to T = T ?(E) and below this

FIG. 4. (Color online) Plot of the free energy F as function of the gap
∆ for G = 1.6, ωph = 0.1 at electric field E = 0.02 (a) or temperature
T = 0.05 (b). In (a), the IMT temperature is T1 ≈ 0.053 at E = 0.02,
while T? ≈ 0.05. In (b), T1(E = 0.04) ≈ 0.05 and T?(E = 0.02) ≈ 0.05.

temperature the metallic state is metastable and the sys-
tem could switch back to the insulating phase under a
suitable perturbation. A similar hysteresis cycle occurs
at fixed T by varying E (Fig. 4b for the free energy).
A detailed study of the dynamics of the phase switch-
ing requires an analysis of nucleation processes which is
beyond the scope of this paper.

VI. SUMMARY AND CONCLUSIONS

In summary, we have shown that a nonequilibrium
drive may change the distribution function of a corre-
lated insulator by sweeping carriers from regions of rapid
interband relaxation to regions where the relaxation is
less efficient. The ratio between electric field strength
and a suitable relaxation rate affects the properties of
the resulting distribution, which has much more weight
at high energies, but less at the low energies that domi-
nate the gap equation, and is still exponentially small in
∆/T ; despite the parametrically large change in distribu-
tion function, the gap magnitude is only weakly affected
by the field at T � ∆. Therefore the electric field is less
effective in destabilizing the gap than Joule heating is in
stabilizing the metallic phase, leading to a region of bista-
bility, in which both the zero gap and large gap phases
are locally stable, and thus to a first order transition in
the presence of the field.

A key finding is hysteresis in the behavior when viewed
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as a function of electric field strength. The hysteresis we
predic should be observable in simple two terminals ex-
periments and indeed hysteretic behaviors in the current-
voltage curve have been reported12,17. Further, the broad
pseudothermal conduction band distribution we predict
mays be observable in photoemission experiments con-
ducted under conditions of current flow.

We remark here on the relation of our results to those
obtained by Han and coworkers25 on essentially the same
model, but in a different and complementary limit. The
two key differences are that Han et. al. consider en-
ergy relaxation arising from a fermionic bath, whereas in
our work the energy relaxation is provided by a bosonic
bath (acoustic phonons). Also we focus on field-induced
changes in the electronic distribution function; these ef-
fects were not considered in Ref. [25] and are relevant
at much lower fields than the Zener tunneling on which
Han et al focus. It is also important to note that our
results depend on the presence of thermally excited car-
riers. Our finding that the CDW phase is always stable
at T = 0 arises from our neglect of Zener tunneling.

The results presented here were motivated by the ex-
periments on Ca2RuO4, but the physics we find may not
be operative in Ca2RuO4. In the model studied here, the
stabilization of the metallic phase is due to Joule heat-
ing of the electrons and the metastability arises because
the insulating phase is affected less by the field than the
metallic phase. While the electron temperature has not
been directly measured in Ca2RuO4, Joule heating of the
entire sample was found not to be significant and the ex-
perimental consensus is that the involved physics is not
a heating effect. However, many other materials12–14,16

exhibit voltage-driven metal insulator transitions with
threshold fields that lie in the range ∼ 0.3 ÷ 4 kV/cm.
In these materials the effect we find would be much big-
ger than in Ca2RuO4 and could play a substantial role
in driving the transition.
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Appendix A: Scattering processes details

Here we analyze more in detail the scattering processes,
depicted in Fig. 5. We use standard Fermi golden rule
methods to calculate the scattering rates, assuming rea-
sonable values for the interaction strengths.

Interband photon assisted scattering. The typical en-
ergy carried by a photon is of order t ∼ 1 eV, corre-

sponding to a wavevector q ∼ t/(~c) ∼ 5 · 10−8 Å
−1

� 1/a ∼ 0.2 Å
−1

; thus the photon momentum is neg-
ligible compared to the typical electron momentum and
the transition can be considered vertical.

FIG. 5. (a) Feynmann diagrams of intraband scattering (top two rows)
and interband scattering (third row). Solid lines represent electrons,
wavy or curly lines represent the mediating bosons; the momentum is
indicated for each particle, c and v refer to conduction and valence
band. (b) Possible scattering processes for the energy relaxation mech-
anism ΓE ; notice the backscattering processes.

The matrix element is A2
k = Γ0∆2 cos2(ka)/Ek with

Γ0 ∼ 109 s−1; the change rate for electrons in conduction
band is given by the difference between up-scattering and
down-scattering:

ΓI,up(k) = A2
k(1− nck)nvkb;

ΓI,down(k) = A2
kn

c
k(1− nvk)(1 + b); (A1)

ΓI = ΓI,down − ΓI,up.

Interband optical phonons assisted scattering. The
optical phonons have a constant dispersion relation
ωopt(k) = ωph ∼ 0.1. This interband scattering occurs
for ωph > 2∆ and is qualitatively similar to that me-
diated by photons, but the transitions are not exactly
vertical. Nevertheless, ω is small and the scattering is
limited to a tiny region around the gap (|k| . ωph/2);
we neglect variations of nk within this region and treat
the scattering as vertical. Analogously we have up and
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down-scattering

ΓphnI,up(k) = (Aphnk )2(1− nck)nvkb;

ΓphnI,down(k) = (Aphnk )2nck(1− nvk)(1 + b); (A2)

ΓphnI = ΓphnI,down − ΓphnI,up;

(Aphnk )2 = Γopt0

[(ωph − εk)2 + ε2k − 2∆2](ωph − εk)

8
√

(ωph − εk)2 −∆2
,

(A3)

where Γopt0 ∼ 1010 s−1.

Elastic scattering. We imagine that this scattering
arises from interaction with acoustic phonons, which have
a linear dispersion ωac(k) = vs|k| (very similar results
would be obtained if the scattering came from randomly
positioned weak impurities). The sound velocity is typi-
cally low vs � vF so that the phonon energy is negligi-
ble compared to the typical electron energy and thus the
scattering conserves energy and occurs between states
with opposite momentum. The matrix element of the
transition contributes τb ∝ τ0∂kεk to the scattering time
(τ0 ∼ 10−12 s); the change rate of conduction/valence
electron is

Γ
c/v
el,k =

(1− nc/vk )n
c/v
−k [1 + 2b(2vs|k|)]− (k ↔ −k)

τb

= −
n
c/v
k − nc/v−k

τb tanh(vs|k|/T )
≡ −

n
c/v
k − nc/v−k

τk
. (A4)

Landau-Zener tunneling. The electric field creates a
non-zero probability of tunneling between the two bands:

Γ
(0)
Z =

eFa

π~
e−π∆2/2teFa; (A5)

γZ,0 =
E
2π
e−

π∆2

2teFa
e−

πε2k
2teFa√

2t/eFa
; (A6)

γZ = γZ,0(nvk − nck). (A7)

In Eq. (A5) Γ
(0)
Z is the total scattering rate22,23. In cal-

culating γZ,0 in Eq. (A6), we observed that the tunneling
occurs preferentially near the gap and modeled this be-
havior by assuming a gaussian dependence on the energy
E2
k = ε2

k + ∆2 and normalizing the k-dependent part.

Intraband energy relaxation. This intraband energy re-
laxation mechanism couples electrons to an external bath
of bosons at temperature T (for example phonons), en-
abling the exchange of a small quantity of energy δE
between electrons at a rate ΓR.

We consider a state with momentum k and energy Ek
scattering with states at momentum ±(k+q1) and ±(k−

q2) that satisfy energy conservation: Ek+q1/2
= Ek± δE.

ΓcE = ΓR[− (1 + b)nk(1− nek−q2) + bnek−q2(1− nk)−
− bnk(1− nek+q1) + (1 + b)nek+q1(1− nk)] =

= ΓR[nek+q1 − nk + nk(nek−q2 − n
e
k+q1)+

+ b(nek−q2 + nek+q1 − 2nk)].

We calculate the even and odd part of the scattering
rate, expanding for small q1/2 and using b ≈ T/δE:

ΓE,e ≈ ΓRδE[
1

vk
∂kn

e
k(1− 2nek) +

T

v
∂k

1

v
∂kn

e
k]; (A8)

ΓE,o = −ΓRn
o
k[1 + 2

T

∆E
+ 2

δE

v
∂kn

e
k], (A9)

where ∂k
v = ∂E and from Eq. (11) γR ≡ ΓRδE

τ
2 .

Appendix B: Boltzmann equation solution for ∆ > T

In this appendix we study the Boltzmann equation Eq.
(12). We integrate Eq. (16) directly, getting

∂Ene =
C

Teff
e−φ(E); (B1a)

φ(E) =

∫ E

∆

dE′
γR + E2v∂E′v

γRT + E2v2
, (B1b)

where C is an arbitrary constant to be determined by
requiring that the interband up and down scattering pro-
cesses balance on average.

Integration of Eq. (B1a) determines ne except for
an additive constant that we determine assuming that
the range of energies is infinite and requiring n → 0 as
E →∞; this is equivalent to have a vanishing net parti-
cle current at infinite energy, which is the most physical
condition. The result is

ne =
C

Teff

∫ ∞
E

dE′e−φ(E′). (B2)

We now introduce an energy cutoff Ec � ∆ in order
to deal with the finite range of energies of the Brillouin
zone. For E > Ec, φ(E) ≈ E

Teff
and the distribution is

exponentially decreasing, while for E < Ec we write

ne =
C

Teff

(∫ ∞
Ec

+

∫ Ec

E

)
dE′e−φ(E′). (B3)

We rearrange the first term and obtain

ne = Ce−φ(Ec) +
C

Teff

∫ Ec

E

dE′e−φ(E′), E < Ec; (B4)

ne ≈ Ce−(E−Ec)/Teff e−φ(Ec), E ≥ Ec. (B5)

We may evaluate φ analytically: we use the E < Ec
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expression for the velocity v = vF
√
E2 −∆2/E and write

φ(E) =

∫ E

∆

dE′
1

Teff

(E′)2 +
Teff−T
E′ ∆2

(E′)2 − Teff−T
Teff

∆2
. (B6)

We recognize that the integrand in φ(E) can be written
as 1/Teff plus an energy dependent contribution which

can be integrated using Eq. (B1b), leading to

φ(E) =
E −∆

Teff
+

1

2

∑
±

(
1∓ Θ∆

Teff

)
ln

(
1± Θ∆

E

1±Θ

)
(B7)

where Θ =
√

(Teff − T )/Teff . The combination of Eq.
(B4), (B5) and (B7) allows to evaluate ne for all energies
and then determine C.
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