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We study the quantum phases of spinless fermions at one-third filling on a Kagome lattice featuring
a quadratic band touching Fermi point. In the presence of weak first and second nearest-neighbor
repulsive interactions (V1 and V2), we demonstrate an interaction driven quantum anomalous Hall
effect by employing exact diagonalization and density-matrix renormalization group methods. The
time-reversal symmetry is broken spontaneously by forming loop currents that exhibit long-range
correlation. Quantized Hall conductance corresponding to Chern number of ±1 is obtained by
measuring the pumped charge through inserting flux in a cylinder geometry. We find that the
energy gap, which topologically protects the emerging ground states, can be enhanced remarkably
by a moderate V2 < V1 via calculating the spectrum and charge excitation gaps, which highlights the
experimentally feasible scheme of realizing interaction driven topological phase by spatially decaying
interactions on topologically trivial lattice models.

I. INTRODUCTION

As an analogy of quantum Hall effect discovered in
the presence of strong perpendicular magnetic fields, the
quantum anomalous Hall effect (QAHE) was first pro-
posed by Haldane for honeycomb lattice with staggered
magnetic flux breaking time-reversal symmetry1. Such
QAHEs have been widely explored in non-interacting sys-
tems where nontrivial band topology arises from mag-
netization and spin-orbit coupling2–5. Meanwhile, in
strongly interacting systems, the searching of exotic
ground states has stimulated the interests of interaction-
driven QAHE from topologically trivial bands where
spontaneous time-reversal symmetry breaking can be re-
alized by interaction driven loop currents6,7. The first
example was proposed in Dirac band with ♣ extended
Hubbard interactions based on mean-field analysis and
functional renormalization group theory6. ♣ Further the-
oretical explorations by employing exact-diagonalization
(ED) method on clusters with periodic boundary con-
ditions8–11 and density-matrix renormalization group
(DMRG) method on infinite cylinder geometry suggest
that the spontaneous QAHE is predominated by other
competing phases12.

A key ingredient to realize the interaction-driven
QAHE is the presence of Fermi touching point, which
also emerges in bands with quadratic crossings protected
by both time-reversal symmetry and point group symme-
try13. This stimulates a broad research interest in various
lattice models14–17,23,25–34, where mean-field calculations
suggest that the QAHE emerges as long as weak repulsive
interactions are introduced. Although some ED results

indicate the presence of interaction driven QAHE25,32,
those evidences, i.e., double degeneracy of ground state
and finite loop currents for small systems, are subjected
to the finite size effect. Solid numerical evidences are
demanded to confirm whether these phases are stable
against quantum fluctuation in the thermodynamic limit.

Recently, several numerical evidences of interaction-
driven QAHE are reported on both Kagome34 and
checkerboard35,36 lattices based on the state-of-the-art
DMRG studies. The story for the Kagome systems turns
out to be interesting. Up to third nearest-neighbor in-
teractions with comparable strengths are required in the
lattice model to realize strong and robust QAHE with a
larger excitation gap, which makes it difficult to be real-
ized experimentally. Moreover, in contrast to the mean-
field results where infinitesimal interaction can induce
QAHE instability, finite interactions may be required to
stabilize the QAHE34, leaving the physics in the weak in-
teraction regime unsettled. In particular, the phase space
with only first and second nearest neighbor interactions
have not been studied in such large scale calculations.
With only first nearest-neighbor hopping and interaction
on Kagome lattice, earlier DMRG results suggest that the
system remains a metal for weak interaction33, which is
in contrast to mean-field results16,17. The main goals of
this work are to address the fate of the system in the pres-
ence of weak interactions, and to explore more realistic
conditions for realizing QAHE for potential experimental
systems.

In this work, we numerically map out the quan-
tum phase diagram driven by first and second nearest-
neighbor repulsive interactions (V1, V2) at one-third fill-
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ing of spinless fermion on Kagome lattice through ED
and DMRG simulations. Our extensive ED calculations
demonstrate the emergence of QAHE by doubly degen-
erate ground states and finite loop currents apart from
the V1-only case where the energy gap is found to be van-
ishingly small. The presence of V2 interaction enhances
the energy gap remarkably, signaling the robustness of
the topological phase. With a finite V2 < V1, the non-
trivial topology is confirmed by large-scale DMRG cal-
culations, which give rise to a uniform circulating loop
current spontaneously. The quantized Hall conductance
corresponding to a quantized Chern number C = ±1 is
also identified by pumping a unit charge from one side
of a cylinder to the other side through inserting U(1)
charge flux into the cylinder adiabatically. When the
strength of interactions increase, we reveal a continuous
quantum phase transition from the QAHE to a charge
density wave (CDW) without any intermediate phase.
Our results shows that spontaneous QAHE on Kagome
lattice can be stabilized by weak interactions making this
model experimentally feasible.
This paper is organized as follows. In Sec. II, we in-

troduce the model Hamiltonian of interacting spinless
fermion on a Kagome lattice model, and give a descrip-
tion of our numerical methods. In Sec. III, we study the
many-body ground states of the system, and present the
phase diagram in the interaction regime. With second
nearest-neighbor interaction, the topological characteri-
zation of QAHE is built up, and the enhanced gap is dis-
cussed. In Sec. IV, we demonstrate the continuous phase
transition from QAHE to CDW driven by the increase
of interactions. Finally, in Sec. V, we summarize and
discuss our numerical results, and propose the possible
experimental realization in cold atom systems.

II. MODEL AND METHODS

We consider the following spinless fermion-Hubbard
model on Kagome lattice with first and second nearest-
neighbor interactions. The Hamiltonian is written as

H = t
∑

〈ij〉

c†icj + V1
∑

〈ij〉

ninj + V2
∑

〈〈ij〉〉

ninj, (1)

where c†i (ci) is the creation (annihilation) operator of a

fermion at site i and ni = c†i ci is the particle number
operator. V1 and V2 are the strengths of repulsive in-
teractions between the first (〈. . .〉) and second (〈〈. . .〉〉)
nearest neighbors. We focus on the one-third filling case
in a finite system of Nx×Ny unit cells with total number
of sites Ns = 3 × Nx × Ny and the number of fermions
Ne = Ns/3. Here, we take t = 1, such that the lower en-
ergy flat band hosts a quadratic crossing with the middle
one.
To characterize the topological property of the ground

states driven by interactions, we employ the DMRG18,19

algorithm in complementary with ED method. In ED

FIG. 1. Phase diagram from ED calculation on Ns = 3×4×3
tours based on color maps of (a) the loop current amplitude
and (b) energy difference between lowest two states. The
phase boundary is indicated by a white dashed line. The
thick black line on V1-axis indicates that the quantum phase
of V2 = 0 is undetermined due to the vanishingly small energy
gap. Contour plots of static density structure factors S(k) are
shown for (c) QAHE and (d) k = (0, 0) CDW phase. White
dashed lines indicate the first Brillouin zone.

calculations, we study systems up to the maximal Ns =
36 sites, with the Hilbert space of the order 108. In a
periodic torus geometry, the energy eigenstates can be
labeled by the total momentum k = (kx, ky). To explore
larger systems, we exploit both finite and infinite DMRG
on the cylinder geometry with open boundary conditions
in the x-direction and periodic boundary conditions in
the y-direction20–22. In DMRG calculations, we set Ny

up to 5 unit cells (10 lattice sites) and keep the DMRG
states up to M = 4800 to guarantee a good convergence.
The maximal discarded truncation error is around 10−6.
To avoid the local minimum state, we choose different
random initial states with the sweep number more than
20 to get the converged ground state.

III. PHASE DIAGRAM

In this section, we begin with the numerical analysis of
the emergence of the interaction-driven quantum phases
at one-third filling. In the presence of interactions, we
map out the quantum phase diagram in the parameter
space spanned by V1-V2, based on both bond current and
charge density orders. Two topologically distinct phases,
i.e., QAHE and CDW phases, are displayed in Fig. 1(a).
The QAHE phase is characterized by doubly near degen-
erate ground states |ψ±〉. We make complex superposi-
tion of these lowest two states, which possess opposite
chiralities and are related to each other by time-reversal
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FIG. 2. Enhanced energy gap by V2. (a) Color map of spec-
trum gap between the third and second lowest energy levels
calculated by ED method in Ns = 36 site system. The spec-
trum gap is vanishingly small for V1 only case and increases
significantly in the presence of V2. (b) Single-particle excita-
tion gap ∆(Ns) vs V1 for V2 = 0 and V2 = V1/2 calculated by
ED in systems of Ns = 27, 36 sites and by DMRG in system
of Ns = 72 sites. Gray dashed line indicates the critical point
between QAHE and CDW phases for V2 = V1/2.

operation. Such a near degeneracy is reflected by a small
energy difference between the lowest two energy levels as
shown in Fig. 1(b). For a complex superposition state
from these lowest energy states, the time-reversal sym-
metry is broken by forming loop currents measured by

the expectation of current operator 〈ĵij〉 = i〈c†icj − c
†
jci〉.

The magnitude of bond current is mapped to color in
Fig. 1(a) where a sizable current is found in the whole
QAHE region.

We point out that a thick black line is plotted for V1
only case, i.e., V2 = 0, to distinguish it from the QAHE
phase. In this case, although finite loop currents ap-
pear, the energy gap protecting the QAHE is found to
be vanishingly small, which is consistent with a gapless
state. However, the QAHE emerges with the turn on
of a weak V2 interaction. Furthermore, when V1 or V2
increases to cross the phase boundary, the bond current
decreases rapidly suggesting the transition to a trivial
phase. The CDW phase exhibits a charge distribution
imbalance among different sublattice sites characterized
by the density structure factor written as

S(k) =
1

3Ns

∑

α<β

∣∣∣∣∣∣

∑

j

eik·rj (nα
j − nβ

j )

∣∣∣∣∣∣

2

(2)

where k and rj are the wavevector in the Brillouin zone
and coordinate of j-th unit cell, separately. α/β = 1-
3 label the sublattices in each unit cell. As shown in
Figs. 1(c) and 1(d) for QAHE, S(k) defined for the den-
sity correlations of the same sublattice is featureless in
the whole Brillouin zone suggesting a uniform density
distribution, whereas for the CDW phase, S(k) shows
a strong Bragg peak at the center of the first Brillouin
zone.

A. Enhanced gap by second nearest-neighbor

interaction

To clarify the significance role of second nearest-
neighbor interaction, we compare the enhanced energy
gap in the presence of different interactions. To demon-
strate the dependence of energy gap on V1-V2, we show
the color map of energy difference between the third and
the second lowest energy levels as the spectrum gap in
Fig. 2(a). Inside the CDW phase, this energy difference is
extremely small, manifesting the three-fold degeneracy of
the ground state. In the QAHE phase, however, the spec-
trum gap exhibits strong dependence on V2. Extremely
small spectrum gap appears near the line of V2 = 0 even
for V1 = 2 in agreement with Ref.33, which reported a
gapless metallic phase for V1 only model. Nevertheless,
the presence of V2 can enhance the spectrum gap remark-
ably. As shown in Fig. 2(a), the spectrum gap increases
linearly with V2 and shows weak dependence on V1. A
robust gap appears when V2 is moderately large compa-
rable to t = 1.
Such an enhancement of the gap by V2 is further con-

firmed by the single-particle excitation gap defined as
∆(Ns) = E0(Ns, Ne+1)+E0(Ns, Ne− 1)− 2E0(Ns, Ne)
where E0(Ns, N) is the ground state energy of the sys-
tem with Ns sites and N particles. Figure 2(b) shows
the dependence of ∆ on V1 for different second neighbor
interactions V2 = 0 and V2 = V1/2 for different values
of Ns. For V2 = 0, the excitation gap ∆ is vanishingly
small for different Ns in good agreement with the spec-
trum gap. In the presence of finite V2 = V1/2, ∆ grows up
gradually as V1 increases, signaling the emergence of an
incompressible gapped QAHE phase. The linear depen-
dence of excitation gap ∆ on V2 is extraordinary compar-
ing to the exponentially small gap for weak interaction
predicted by mean-field calculations14,16,17,23. It is note-
worthy that the single-particle excitation gap here repre-
sents the charge gap as there is no pairing mechanism in
our system24. We also studied the two-particle excitation
gap by calculating the energy of ground states with two
more/less particles24, which is found to be much larger
(not shown here) than the single-particle gap. Thus, the
combination of both finite single-particle and two-particle
excitation gaps establishes the robustness of an incom-
pressible QAHE phase.

B. Current and charge pumping

Following the last section, we move on to discuss the
topological characterization of QAHE based on time-
reversal symmetry breaking loop current and integer
quantized charge pumping. In relation to the phase di-
agram, we now perform a numerical DMRG exploration
of the QAHE under weak interactions in large systems.
Starting from an initial complex wavefunction, we obtain
different ground states |ψ±〉 with near identical energies
and opposite loop currents from a complex DMRG al-
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FIG. 3. (a) Current-current correlation vs distance for cylin-
der geometry of Ny = 4 and Ny = 5 from infinite DMRG.
Finite constant correlation as distance increases indicates the
presence of long-range order. Inset shows the current pattern
in a Ns = 3× 4× 4 torus from finite DMRG algorithm. Red
arrows indicate the current directions. Color maps the ampli-
tude of the current of each triangle. (b) Net charge transfer
∆Q = Q(θ)− Q(0) pumped by threading a U(1) charge flux
θ adiabatically through the hole of a cylinder as illustrated in
the inset.

gorithm in different runs. As these two states are re-
lated by time-reversal operation, we focus on |ψ+〉 here-
inafter. The loop current is schematically shown in the
inset of Fig. 3(a), which distributes almost uniformly and
circulates clockwise (anti-clockwise) around each trian-
gle (hexagon) leading to a vanishing total flux similar
to Haldane-honeycomb model1. In Fig. 3(a), we plot

the current-current correlation 〈ĵi,j ĵi0,j0〉 as a function
of bond distance |ri,j − ri0,j0 | in an infinite cylinder ge-

ometry with different widths, where ĵi,j is the current op-
erator between nearest-neighbor sites i, j. For different
system sizes, the correlation functions tend to converge
to finite constants for large distance limit, indicating the
behavior of time-reversal symmetry breaking in the ther-
modynamic limit.

The quantized topological nature of the QAHE is char-
acterized by Chern number C = 1 obtained by cal-
culating the topological Laughlin pumping in the x-
direction by adiabatically inserting a U(1) charge flux
θ into the cylinder hole (as a twist boundary phase in
the y-direction) based on the recently developed adia-
batic DMRG20,21. Here, we partition the infinite cylin-
der along the x-direction into two halves. The transverse
transfer of total particle number from the right cylinder
edge to the left edge is encoded by the variation of the to-

tal charge in the left part Q(θ) = tr[ρ̂L(θ)N̂L], where N̂L

and ρ̂L are particle number operator and reduced den-
sity matrix of left part, respectively. The change ∆Q =
Q(θ) −Q(0) indicates the transverse transfer of particle
as shown in Fig. 3(b). In one cycle, a unit of particle
C+ = Q(2π) − Q(0) ≃ 1 is pumped, visualizing a quan-
tized transverse Hall conductance σxy = C+e

2/h for |ψ+〉
state. Similarly, we obtain σxy = C−e

2/h = −C+e
2/h

for |ψ−〉 state.

FIG. 4. (a) Lowest energy levels vs interaction V1 = V2 for
the momentum sector (π, 0)/(0, 0) for Ns = 36/27 site system.
The inset of 36-site panel shows the continuous variation of
ground state energy as V1 = V2 increases. (b) Fidelity sus-
ceptibility χ vs V1 = V2 for the lowest (red solid square) and
second lowest (green solid triangle) energy levels of Ns = 36
system as well as lowest energy level (blue solid circle) of
Ns = 27 system. (c) DMRG results for bond current magni-
tude and particle density imbalance between different sublat-
tices in a cylinder of Nx ×Ny. Gray dashed line indicates the
critical point. (d) DMRG results for fidelity susceptibility of
the ground state in a cylinder of Nx ×Ny = 16× 4.

IV. PHASE TRANSITION

In this part, we turn to analyze the phase transition be-
tween QAHE and CDW as interaction strength increases.
Without loss of generality, we focus on the case along
the line V2 = V1. Figures 4(a) and 4(b) show the evo-
lution of the lowest several energy levels at the momen-
tum sector where ground states are located, for differ-
ent system sizes. As the interaction strength increases,
the lowest energy level evolves smoothly, and does not
show any level crossing with other excited levels, imply-
ing a continuous transition. We further calculate the fi-
delity f(V ) = 〈ψ(V − δV )|ψ(V )〉 between two wavefunc-
tions with slightly different interaction strengths (δV is
as small as 0.001t near the transition region). For two
states belong to the same phase, f(V ) is close to 1 and
the phase transition can be reflected by the peak of fi-
delity susceptibility37

χ(V ) = 2
1− f(V )

(δV )2
. (3)

As plotted in Fig. 4(b), a smooth function χ with a sin-
gle peak structure indicates a direct continuous quantum
phase transition from QAHE to CDW, without any evi-
dence of an intermediate phase.
To further verify the continuous transition nature, we

also exploit DMRG approach for larger systems. The
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bond current and maximal density imbalance between
different sublattices are presented in Fig. 4(c). Similar
to our ED analysis, both bond current and CDW order
parameters exhibit continuous evolution from weak inter-
actions to strong interactions, such that we can exclude
the possibility of a first-order phase transition. Mean-
while, similar single-peak behavior of χ is also observed
from DMRG calculations in Fig. 4(d). Thus, our ED and
DMRG studies consistently support the direct continu-
ous phase transition between QAHE and CDW.

V. SUMMARY AND DISCUSSION

In summary, we have demonstrated a remarkably
stable QAHE by neighboring V1-V2 interactions on a
Kagome lattice, evidenced by doubly degenerate ground
states, spontaneous bond currents with long-range corre-
lation, and quantized Hall conductance. Without second
nearest-neighbor interaction V2, we found vanishingly
small spectrum and charge excitation gaps in agreement
with previous works. In the presence of V2, we found the
energy gap that protects the ground state exhibits linear
dependence on V2, which is strongly enhanced comparing
to the exponentially small gap ♣ hosting QAHE induced
by weak interaction V1 predicted by mean-field studies.
By tuning the interactions V1 and V2, the QAHE under-
goes a continuous quantum phase transition into a CDW
phase. Furthermore, our numerical methods of identify-
ing such a topological phase can find wide applications for
studying interaction driven topological phases including
quantum spin Hall effect, and QAHE in strongly corre-
lated Mott systems.
As a final remark, we emphasize that our results based

on V1-V2 model indicate QAHE can be stabilized by the
extended repulsive interactions, which is feasible for fu-

ture experimental implementations. With fermionic po-
lar molecules such as 40K87Rb38 and 23Na40K39 loaded
into the Kagome optical lattice40, the effective interac-
tion potential between these fermionic particles is ex-
pected to be in the form V (r − r

′) = d2/|r − r
′|3 ver-

sus distance when the dipole moment d is aligned in the
z-direction by a strong external field. By including up
to the third nearest-neighbor interactions and truncat-
ing off the tiny terms for longer distance couplings, we
confirm that QAHE survives, and verify the robustness
of the QAHE from measurements of bond current and
energy gap in different finite system sizes Ns = 36, 27 for
moderate dipolar interaction strength d2/a3 ∼ t. Thus
our identification of the key role played by weak tails of
repulsion interaction suggests that the cold atom trapped
polar molecules can naturally realize a QAHE phase on
the Kagome lattice. The possible realization of QAHE
driven by spatially decaying dipolar interactions on a
Kagome lattice, makes the study of the interaction-driven
topological phase promising within current experimental
technologies.
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8 T. Durić, N. Chancellor, and I. F. Herbut, Phys. Rev. B
89, 165123 (2014).
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