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We describe a practical and efficient approach to represent physically realistic long-range interac-
tions in two-dimensional tensor network algorithms via projected entangled-pair operators (PEPOs).
We express the long-range interaction as a linear combination of correlation functions of an auxiliary
system with only nearest-neighbor interactions. To obtain a smooth and radially isotropic interac-
tion across all length scales, we map the physical lattice to an auxiliary lattice of expanded size. Our
construction yields a long-range PEPO as a sum of ancillary PEPOs, each of small, constant bond
dimension. This representation enables efficient numerical simulations with long-range interactions
using projected entangled pair states.

I. INTRODUCTION

The accurate description of strongly correlated quan-
tum many-body systems is a major challenge in con-
temporary physics. Nonetheless, some of the most in-
triguing macroscopic quantum phenomena, such as high-
temperature superconductivity and the fractional quan-
tum Hall effect, arise from strong quantum correla-
tions. In recent years, tensor network states (TNS) [1–
6], including matrix product states (MPS) [7–10] and
projected entangled-pair states (PEPS) [11–14], have
emerged as promising classes of variational states to nu-
merically approximate the low energy physics of cor-
related quantum systems with area or near-area law
physics. Their power stems from systematically improv-
able accuracy through increasing the tensor bond dimen-
sion D [15], and the O(A) linear complexity of the asso-
ciated algorithms with respect to the system size A (un-
der assumption of contractibility of the underlying tensor
network, as is common in many physical applications, us-
ing approximate contraction methods [11, 12, 16–20].)

One promising application of TNS is to accurate cal-
culations of electronic structure of realistic materials.
While the electronic structure Hamiltonian can be rep-
resented in multiple ways [21–24], the simplest – and the
one of interest in this work – is a real-space grid formu-
lation [25–29],

Ĥ = −t
∑
<i,j>

(a†iσajσ + h.c.) +
∑
i

vnei ni + V̂ ee,

V̂ ee =
∑
i

veeii niαniβ +
∑
i<j

veeij ninj , (1)

where i, j label lattice sites, σ ∈ {α, β} labels spin, t is
the kinetic energy matrix element, and a†, a, and n are
fermion creation, annihilation, and number operators, re-
spectively. As the spacing between grid points (h) goes
to zero, the parameters scale as t ∝ h−2 and veeij ∝ h−1;

these become exact representations of − 1
2∇

2 and the

continuum Coulomb potential 1/rij with rij , |ri − rj |
[26, 28]. This simple form of the electronic structure
Hamiltonian is especially suited to TNS algorithms as

the Coulomb interaction is a pairwise operator as op-
posed to a general quartic operator when using a non-
local basis, and Eq. (1) can be viewed as an extended
Hubbard model with long-range terms. Ground states of
such grid Hamiltonians have been computed in 1D us-
ing MPS and the density matrix renormalization group
(DMRG), yielding near exact electronic structure bench-
marks for small lattice spacings [1, 2, 25]. In principle,
this success in 1D should be extensible to 2D and 3D by
using PEPS instead of MPS, and would then provide a
route to simulate arbitrarily complex electronic structure
problems with arbitrarily improvable accuracy.

However, current state-of-the-art PEPS applications to
physical problems have not yet advanced beyond local
lattice models in 2D [18, 30–34]. There are two principal
complications. The first is that long-range interactions
can in principle lead to increased entanglement, and even
volume-law entanglement, that would be difficult or im-
possible to capture with a PEPS with a finite bond di-
mension. Fortunately, in applications of the density ma-
trix renormalization group using the Coulomb interaction
(for example, to electronic structure) it is seen that the
increase in entanglement is modest and volume law en-
tanglement is not observed [23, 25, 35–38]. The second
complication is simply the increased cost of all operations
when long-range interactions are considered, even for a
fixed bond dimension. To see the basic challenge, con-
sider the evaluation of the energy expectation value: for
a Hamiltonian with localized interactions, the number of
terms in a standard term-by-term calculation scales lin-
early with the size of the system, O(A). However, for a
Hamiltonian with long-range interactions, the number of
terms scales like O(A2), which is prohibitively expensive
in two (or higher) dimensions, as we take the continuum
limit. Alternatively, one might try to use an exact ten-
sor network operator, or projected entangled pair opera-
tor (PEPO), to represent the long-range interaction [39],
avoiding the explicit term-by-term evaluation. However,
the exact PEPO representation for arbitrary long-range
interactions in 2D has a bond dimension that scales as
O(A1/4), causing the overall cost to compute expectation
values to scale as O(A2) [40].
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FIG. 1. (a) The construction of the nonzero parts of the CF-

PEPO tensor W[k] via the coupling of the finite state machine
(FSM) tensor (red) with the Ising correlation function tensors

(blue). Note that here the physical indices of W[k] are explic-
itly shown, whereas they are suppressed in Eq. (3). (b)-(c)
Two possible constructions of the long-range PEPO for a 3x3
physical system with 1 fictitious Ising site (blue) in between
adjacent physical sites (red) and a 2 site buffer to help miti-
gate boundary effects in the encoding of the potential. Black
bonds are D′O = 2 and red bonds are DO = 8 (b) and 6 (c).

In 1D, the increased computational cost of long-range
interactions can be eliminated if they are smooth and
decaying. In this case one can approximate the exact
matrix product operator (MPO) by a compressed MPO
of constant bond dimension D that generates a sum of
exponential interactions, and smoothly decaying interac-
tions can be approximated well by such sums [39, 41, 42].
Exponential interactions in MPOs arise naturally from
the matrix product structure, which also gives rise to
the exponential decay of two-point correlation functions
in MPS. Extending the correlation function analogy to
2D leads to an efficient representation of long range in-
teractions in 2D when their form exactly coincides with
the correlation function of a 2D lattice model. This was
demonstrated in Ref. [39], which constructed a compact
pair interaction PEPO whose interaction potential was
given by the critical 2D Ising correlation function.

Building on these ideas, in this work we describe how
general long-range interactions in two dimensions, includ-
ing the Coulomb interaction, can be efficiently encoded
as a sum of low rank correlation function valued PEPOs.
Although superficially similar to the problem of approxi-
mating a smooth interaction in 1D by a sum of exponen-
tials, additional complications arise in two dimensions
because physical interactions possess different analytic
properties from two-point correlation functions on the
same lattice. For example, the Coulomb interaction is
radially isotropic at all distances, while the two-point
lattice correlation functions are isotropic only at large

distances due to the lattice discretization. We show how
to overcome these and other difficulties by introducing
an expanded auxiliary lattice, and demonstrate the ef-
fectiveness of the representation in a ground-state finite
PEPS simulation of a 2D spin model with Coulombic
Heisenberg interactions. Although we specifically treat
only the Coulomb interaction and two dimensions in our
numerical examples, our arguments naturally extend to
representing smooth and radially isotropic interactions in
any dimension.

II. CORRELATION FUNCTION VALUED PEPOS

We first define correlation function valued PEPOs
(CF-PEPOs), which are central to this work. As mo-
tivation, we recall the construction of MPOs for smooth
interactions approximated by sums of exponentials. This
is usually done in the language of finite state machines
(FSM), where the MPO is viewed as an operator val-
ued MPS, and the incoming and outgoing bonds of each
MPO tensor are interpreted as machine states [41, 42].
An FSM can encode an exponentially decaying interac-
tion strength e−λrij via a single non-zero element in each
MPO tensor with value e−λ, that gets multiplied along
the lattice as long as the FSM stays in a specified state.
The pairwise operator

∑
i<j e

−λrijninj can then be rep-
resented by an MPO with bond dimension 3, with the
two additional states in the FSM acting to combine the
exponential scalar values with the operators ninj . The
construction can be extended to the general 1D inter-
action

∑
i<j V (rij)ninj ≈

∑
i<j

∑Nt

t=1 cte
−λtrijninj by

introducing additional states for each of the Nt exponen-
tial decays, for a total MPO bond dimension of Nt + 2
(or alternatively, Nt MPOs of bond dimension 3). How-
ever, while this representation is natural in 1D, its direct
extension to 2D is not. This is because multiplying the
element e−λ along any single FSM path between two sites
i and j creates an exponentially decaying strength as a
function of the Manhattan distance |x|+ |y|, not the de-
sired Euclidean distance (x2 +y2)1/2, as the elements are
multiplied out along the grid lines [40].

A different starting point, that is more natural in
higher dimensions, is to consider scalar interaction
strengths generated by the two-point correlation func-
tion 〈o(ri)o(rj)〉β of a classical model at inverse tem-
perature β. We term the PEPO for the operator∑
i<j〈o(ri)o(rj)〉βninj , a correlation function valued

PEPO (CF-PEPO). Using a classical model with local in-
teractions yields a CF-PEPO with low bond dimension,
as noted in Ref. [39]. As a concrete example, consider
the spin-spin correlation function 〈σiσj〉 of the 2D Ising
model, which has the Hamiltonian H = −

∑
〈m,n〉 σmσn,

σ ∈ {+1,−1}. For two given points on the lattice i and
j, this correlation can be exactly represented by the Ising
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PEPS with D = 2 [13, 43], viz.,

〈σiσj〉β =
1

Z
Tr

 ∏
k 6=i,j

T
[k]
lkukdkrk

M
[i]
liuidiri

M
[j]
ljujdjrj

 .

(2)
Here Z = Tr

∏
kT

[k] is the partition function and the
tensors T and M are the local tensors of the PEPS
off and on the correlation function sites, respectively.
These tensors are obtained from the eigenvalue decom-
position X = UλUT of the familiar 2×2 Ising model
transfer matrix Xij = exp((−1)δij+1Jβ), which encodes
the local terms of the partition function for a pair of
nearest neighbor spins [44]. In tensor network language,
these X matrices would be placed on each bond of the
square lattice. In order to create a local tensor net-
work description of the system, we define the “square
root” of this transfer operator as P = U

√
λUT, and de-

fine the local tensors as Tludr =
∑
a PlaPuaPadPar and

Mludr =
∑
ab PlaPuaPdaσ

z
abPbr, where σz is the standard

Pauli matrix.
To obtain the Ising CF-PEPO, we combine the tensors

T[k], M[k] of the Ising PEPS at each site with (transla-
tionally invariant) tensors Y[k] of a PEPO for the inter-
action

∑
i<j ninj . As demonstrated in a general fashion

in [40] based on work in [41], the Y[k] tensors can be
obtained by a FSM construction in 2D, where each ele-
ment of the tensor YL,U,D,R at a given site corresponds
to a specific local state of the FSM and returns a specific
local operator {0, Î, n}. The Ising CF-PEPO tensors are
then formed by a selective direct product between Y[k],
T[k], and M[k],

∑
i<j

〈σiσj〉βninj = Tr

(∏
k

W
[k]
(Lk,lk)(Uk,uk)(Dk,dk)(Rk,rk)

)
,

W
[k]
(Lk,:)(Uk,:)(Dk,:)(Rk,:)

= Y
[k]
Lk,Uk,Dk,Rk

⊗T[k] if Y = Îk,

W
[k]
(Lk,:)(Uk,:)(Dk,:)(Rk,:)

= Y
[k]
Lk,Uk,Dk,Rk

⊗M[k] if Y = nk,

W
[k]
(Lk,:)(Uk,:)(Dk,:)(Rk,:)

= 0 if Y = 0. (3)

Here W[k] (Fig. 1(a)) is the operator valued tensor in
the Ising CF-PEPO and (Lk, lk) is a composite index of
the bond Lk for the 2D FSM and the bond lk of the
Ising PEPS. Note that the selective direct product can
be formed unambiguously due to the 1 : 1 correspondence
between possible states of Y[k] and the Ising PEPS ten-
sors M[k] and T[k].

Since the FSM tensors Y[k] only need to encode the
two operators ninj and contain no information about
the distance between them, there is some flexibility in
the possible topologies of the FSM (see Fig. 1). The
snake geometry in (c) has a significantly reduced compu-
tational complexity compared to the original FSM from
[40] shown in (b), and it also imposes an ordering that al-
lows for a simple way to include fermionic statistics (via

Jordan-Wigner strings) at the operator level, eliminating
the need for swap gates in fermionic PEPS [45]. The full
specifications for constructing the tensors Y[k] according
to both FSM geometries are given in Appendix A. As an
important note, both of these constructions are compat-
ible with existing iPEPS [46] algorithms.

III. CF-PEPOS AND THE AUXILIARY LATTICE

Using the above arguments, we might now consider ap-
proximating the form of a physical, smooth, and isotropic
interaction V (rij) by a sum of Nt lattice correlation
functions at different temperatures, V (rij) ≈ Vfit(rij) =∑Nt

t=1 ctfβt(rij) [fβt(rij) , 〈o(ri)o(rj)〉βt ], giving the in-
teraction operator as a sum of CF-PEPOs. In Fig. 2(a)
we show the maximal absolute error in a direct fit of 1/rij
using Ising correlation functions on an LxL lattice. For
large rij , the maximal error (at a given radius) can be
seen to converge rapidly, with a fitted convergence rate
of ∼ O(r−2.7

ij ) (Fig. 2(a)), showing we can easily capture
the long distance behavior of the Coulomb potential that
is sampled at large system sizes. However, for small rij ,
the maximal errors are much larger, and the expansion
does not converge even with very many terms, as seen in
Fig. 2(b). This is because the lattice discretization of
the correlation functions prevents radial isotropy in the
basis {fβt

} at short lattice distances. In addition, for
finite lattices, boundary effects also cause errors in the
isotropy and translational invariance.

The short distance anisotropy error can be remedied by
representing the isotropic physical interaction by correla-
tion functions generated on an expanded auxiliary lattice
with additional “fictitious” sites. The physical distance
rij (on the original lattice) maps to the expanded dis-
tance Rij = (Nf + 1)rij on the auxiliary lattice (Nf de-
notes the number of fictitious sites added to the sides of
one unit square on the original lattice). This gives us a
rescaled potential that is easier to fit at small rij ,

Ṽ
[Nf ]
fit (rij) , (Nf + 1)Vfit(Rij) = (Nf + 1)

Nt∑
t=1

ctfβt(Rij),

(4)
where the specific rescaling in Eq. (4) has been shown for
the Coulomb potential. Choosing a sufficiently large ex-
pansion factor Nf ensures that the fitting basis becomes
isotropic up to an error ε, and the radial fit can then be
performed to increasing accuracy with increasing Nt up
to a similar ε. Further, choosing a suitably large side
length of the auxiliary lattice buffering the physical re-
gion also removes the boundary effects in a finite lattice
simulation.

In Figs. 2(b)-(c) we show the behavior of the maximal

error in fitting Ṽ
[Nf ]
fit (rij) to 1/rij for several values of rij ,

as a function of both the number of fictitious sites Nf and
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fitting terms Nt. They demonstrate that for Nf = 10
and a modest Nt = 8, we are able to obtain a maximum

error of 10−3 with Ṽ
[10]
fit (rij). In Fig. 2(c), note that the

rij = 1 curve (i.e. the maximal error curve) converges as
∼ (Nf + 1)O(N−2.7

f ) ∝ N−1.7
f due to the rescaling factor

in Eq. (4). Thus by further increasing Nf the error can
be continually decreased.

Up to this point in this section, we have implicitly con-
sidered rij only on the unit lattice, i.e., rij , |(x, y)i −
(x, y)j |;x, y ∈ Z, which is to say that the lattice spacing
h = 1. In addition to the above discussion of increasing
Nf to reduce the fitting error for a fixed spacing h = 1,
an alternative (but equivalent) viewpoint is that Nf can
be increased to maintain a given maximal error in the po-
tential as h→ 0. Precisely, the maximal error in the new
potential will occur at the new shortest physical distance,

V (h) = h−1Ṽ
[Nf ]
fit (1). The error at this point ε(V (h))

scales as ε ∝ h−1N−1.7
f , which reveals that Nf must in-

crease as Nf ∝ h−1/1.7 = h−0.59 in order to maintain the

level of error originally incurred at the point Ṽ
[Nf ]
fit (1) (for

h = 1).
In summary, the full CF-PEPO is obtained by cou-

pling the FSM of the operators (either in the snake form,
or the full 2D FSM) to the Ising CF-PEPS on an ex-
panded lattice as specified by Eq. (4), and as shown in
Fig. 1(b)-(c). The total error of the fit is controlled by
the expansion parameter Nf and the number of terms
Nt. For the Coulomb interaction and a desired accuracy,
Nt is only weakly dependent on the physical lattice dis-
cretization and system size. This is similar to what is
observed in MPO fits in one dimension [25, 39, 41, 42] as
well as analytical work on exponential fits of the Coulomb
operator in 2D [47].

IV. COMPUTATIONAL COST

We now consider the evaluation of a finite PEPS ex-
pectation value for a PEPS of bond dimension DS and
an Ising CF-PEPO of bond dimension DO. To define
the computational cost, we must choose an approximate
contraction scheme. Here we use a simple generaliza-
tion of the “optimized” contraction scheme proposed in
Ref. [48] to include a PEPO. Using the full 2D FSM
(Fig. 1(b)), the CF-PEPO has bond dimension DO = 8
for the bonds emanating from the physical sites and
D′O = 2 for bonds that only connect fictitious sites,
and the leading contraction cost can be derived to be
Nt[O(Aχ3D3

O) + O(ANfχ
3D

′2
ODO) + O(AN2

fχ
3D

′3
O ) +

O(Aχ3D3
S) + O(ANfχ

3D
′2
ODS)], where χ is the maxi-

mum bond dimension appearing in the approximate con-
traction scheme and can be taken as χ ∼ D2

SDO. For
the snake FSM construction (Fig. 1(c)) DO = 6 instead
of 8, and the physical PEPO tensors only have two large
bond dimensions instead of four. This reduces the over-
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FIG. 2. Convergence properties of Coulomb fitting. For all
plots rij = 0 is the central point on the lattice. (a) The
upper envelope of |Vfit(rij)− 1/rij | obtained with Nt = 12,
rij = Rij , a least squares weight function of r1.5

ij , and Ising
model lattices with different side lengths L. The fits were
performed on a disc with radius equal to the maximum rij
displayed for a given curve. (b) and (c): The maximum fitting

error
∣∣∣Ṽ [Nf ]

fit − 1/rij

∣∣∣ at selected values of rij as functions ofNt

(b) and Nf (c). In (b), the open circles correspond to Nf = 0
and the closed circles to Nf = 10. In (c), Nt = 12. The fits
in (b) and (c) were performed on discs of radius rij = 36 with
L = 199 and a weight function of r1.5

ij .

all scaling to Nt[O(Aχ3D
′2
ODO) + O(ANfχ

3D
′2
ODO) +

O(AN2
fχ

3D
′3
O ) +O(Aχ3D3

S) +O(ANfχ
3D

′2
ODS)].

In both cases, the cost is linear in the system area
A as we originally desired. However, it is instructive
to compare these costs to an implementation without a
PEPO. In a naive implementation of the exact term-by-
term contraction of each ninj operator in the Coulomb
potential, a single term would involve a contraction of
cost O(Aχ3D3

S) with χ ∼ D2
S , and there would be O(A2)

such terms, giving an O(A3) cost. Assuming a reason-
ably large value for DS , this cost can be compared to the
analogous term in the (snake) PEPO contraction cost,
which gives an approximate crossover when A2 ∼ NtD3

O,
which for Nt = 10, DO = 6, corresponds to A ∼ 50.
In a more sophisticated exact implementation, we could
rewrite

∑
ij Vijninj as

∑
i niÔi, with Ôi =

∑
j Vijnj .

Each Ôi can be represented as a snake-like MPO with
bond dimension D = 3, and the cost of contracting
a single Ôi expectation value is then O(Aχ3D3

S) with
χ ∼ DD2

S , with O(A) such terms. The crossover with our
(snake) PEPO representation then occurs when A ∼ 8Nt,
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FIG. 3. (a) Average accuracy of energy per site expectation
values for 6× 6 FM and AFM trial PEPS with DS = 1. The
solid triangular markers show FM states while the open circles
show AFM states. Ψ0 is a true FM or AFM state, while the
“x flip” regions are Ψ0 perturbed by x random spin flips. The
average error is taken over 5 PEPS for each x and each Nf .

(b) The signed error 1/rij − Ṽ [0]
fit (rij), where rij = 0 is the

white square in the center, each adjacent square is rij = 1,
etc. For (a)-(b) the fitted potentials are obtained from Eq.
(4) with Nt = 12.

which for Nt = 10 corresponds to A < 100. Thus in
either comparison, a crossover between our PEPO rep-
resentation and other implementations of the long-range
operator is achievable already at modest lattice sizes.

V. RESULTS

To numerically test our PEPO’s faithful discretized
representation of long range interactions, we have explic-
itly constructed a long-range S=1/2 Heisenberg Hamil-
tonian on 4× 4, 6× 6, and 8× 8 square lattices,

Ĥ =
∑
i<j

~Si · ~Sj
rij

, (5)

in which every pair of spins has an interaction strength of
Coulomb form. To represent this operator, we first used
the fitting scheme described in Eq. (4) with Nt = 12.
Figure 3(a) shows the accuracy of the energy per site
expectation value (e0) for 6× 6 trial ferromagnetic (FM)
and anti-ferromagnetic (AFM) PEPS with DS = 1. The
FM and AFM states show similar levels of error for a
given value of Nf , indicating that the fitted operator can
obtain similar levels of error even for states which have
different structures of the signed error.

We next performed a simple gradient-based variational
optimization for the ground state PEPS with DS = 1, 2
[49, 50]. Note that our goal here is not to demonstrate
fully converged physics with respect to the PEPS bond
dimension, which will be discussed in future studies, but
rather to show that our PEPO leads to a stable optimiza-
tion procedure. Here we refined the fit for each lattice
size to ensure that the maximum PEPO fitting error was
limited to ∼ 4.5 · 10−4 with only Nf = 4, Nt = 12.
Fig. 4 shows the initial convergence behavior of the en-
ergy optimization using the PEPO compared to the same
optimization using the more expensive sum over terms
formalism. We observe that the trajectories are similar

0 5 10 15 20 25
iterations

0.4

0.3

0.2

En
er

gy
 p

er
 si

te
 (e

0)

sum
PEPO

χ sum e0 PEPO e0 〈ψ[P ]
0 |ψ

[s]
0 〉

4× 4, DS = 1 40 -0.184314 -0.184425 0.999244
4× 4, DS = 2 100 -0.408209 -0.408492 0.999070
4× 4, exact – 0.424577 – –

8× 8, DS = 1 40 -0.193983 -0.193861 0.994549
8× 8, DS = 2 120 -0.414653 -0.414422 0.989271
8× 8, exact – -0.431648 – –

FIG. 4. Top: The trajectories over the first 25 iterations of
the energy optimization for the 4×4 DS = 2 system using the
PEPO and the explicit sum over all O(A2) terms in (5). The
long tails of the trajectories are excluded for clarity. Bottom:
Ground state energies per site e0 for the Hamiltonian (5) with
various system sizes and bond dimensions. The fifth column is
the overlap of the normalized ground states obtained with the
two different methods. In all cases Nf = 4 and Nt = 12. The
“exact” rows are the results of converged DMRG calculations.

and the use of the PEPO does not change the stability
of the gradient optimization, although it does require a
larger value of χ. The small-DS converged energies and
normalized wavefunction overlaps are given in Fig. 4.
In all cases, the CF-PEPO nicely reproduces the explicit
sum-over-terms algorithm, as the maximum fitting error
is faithfully reflected in the accuracy of e0. It is also in-
teresting to see that the error of the ground-state energy
using DS = 2 is ∼ 3% for both the 4×4 and 8×8 lattice,
suggesting that the entanglement does not grow signif-
icantly with system size despite the long-range interac-
tion, which is a similar observation to other simulations
of physical Coulombic systems.

Conclusions. — In summary, we have detailed the
efficient construction of a PEPO capable of encoding
long-range interactions in 2D TNS that maintains the
strengths of tensor network algorithms: systematically
improvable accuracy and linear computational complex-
ity in the system size. Despite an increased cost prefac-
tor compared to local simulations, this approach allows
for the possibility of practically including long-range in-
teractions in numerical studies of physically realistic sys-
tems that have an entanglement structure consistent with
PEPS. The crossover between our approach and other
more naive implementations of long-range interactions
can be achieved at modest system sizes. In the context
of ab initio electronic structure calculations, while there
remain many issues to explore, in particular associated
with the continuum limit of relevance to such applica-
tions, this advance presents a first step towards these
calculations using higher dimensional tensor networks.
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APPENDIX A: FINITE STATE MACHINE RULES

The finite state machine picture of a PEPO views each
tensor as a node in a graph, and each virtual bond of di-
mension D as a directed edge in that graph that can pass
D different signals (or has D different possible states).
Note that the following presentation of these ideas heav-
ily follows in the spirit of Ref. [40].
Full 2D FSM. — By convention we have chosen our di-
rected edges to point up and right so that, for a given
tensor at position k, its U and R indices pass outgoing
signals while its D and L indices receive incoming sig-
nals. For special combinations of incoming and outgoing
signals for a tensor at position k, the corresponding ten-

sor entry is a non-zero local operator O
[k]
nkn′

k
(which may

be the identity operator). These special index values are
precisely the state machine rules that construct the cor-
responding desired state machine. When the four virtual
index values do not match any of these desired rules, the

value of O
[k]
nkn′

k
is the zero operator 0̂, meaning such a

configuration of the state machine (and therefore such a
configuration of the local operators) is disallowed. The
complete list of rules that define the full 2D FSM PEPO
which generates all pairwise interactions

∑
i<j ÂiB̂j with

bond dimension D = 4 is given in Table I.
Each index value corresponds to a different signal,

which is used to pass a different message. “0” is the
default signal, which generally means that nothing inter-
esting is happening along that signal path. “1” is the sig-
nal that tells nearby tensors that they should not “turn

on” their physical operator O
[k]
nkn′

k
, but instead should

just return the identity operator. This is used when an-
other tensor along a certain signal path has turned on its
physical operator and does not want an interaction to be
generated along the signal path on which it just sent a
“1” message. “2” is the signal that is passed along the
“typical” interaction path between the physical operator
at site i and the physical operator at site j. A typical in-
teraction path is one in which a signal traveling from site
i to site j must only propagate upward and to the right
(along the allowed directions of the directed edges). The
signal “3” is reserved for the cases in which the signal
traveling from site i to site j must travel to the left. In
order to generate all pairs of sites, one must either have
signals that travel up and to the left or down and to the
right (violating one of the directed edge directions), but
the case of down and to the left can be avoided due to the
fact that we are generating all pairs of interactions only
once (hence i < j in the summations). By convention,
we have chosen this pathological case to be described by
a signal that travels up and to the left. Since a signal
cannot travel against the direction of a directed edge,
this case is resolved by having the operator at site j (the
operator at the “end” of the signal) send a “3” signal
to the right, which then meets with a “2” signal that

Rule number
Index values

(Lk, Uk, Dk, Rk)
O

[k]

nkn
′
k

1 (0,0,0,0) Ik
2 (0,2,2,0) Ik
3 (2,1,0,2) Ik
4 (0,1,1,0) Ik
5 (1,1,0,1) Ik
6 (0,2,0,0) Âk
7 (0,1,0,2) Âk
8 (0,1,2,2) Ik
9 (0,1,2,1) B̂k
10 (2,1,0,1) B̂k
11 (3,1,0,3) Ik
12 (3,1,2,1) Ik
13 (0,1,0,3) B̂k
14∗ P top right

0,0,0,0 0̂k

TABLE I. The rules for the full 2D FSM PEPO that gen-
erates all pairwise interactions

∑
i<j ÂiB̂j with D = 4. All

combinations of indices not listed in this table correspond to

O
[k]

nkn
′
k

= 0̂k. Importantly, Â and B̂ do not have to be the

same, although for the ab initio Hamiltonian under consid-
eration in the main text, they are both nk. Ik is simply the
identity operator.

was sent upwards from site i, generating an interaction
along a “non-typical” path. These cases are illustrated
diagrammatically in Fig. 5.

The rules in Table I are broken up into different groups
according to what they describe. Rules 1-5 are back-
ground rules that account for the propagation of “1” and
“2” signals through the FSM. Rules 6-10 give the addi-
tional rules necessary for describing a typical interaction.
Rules 11-13 add the rules for non-typical interactions. Fi-
nally, Rule 14 is a special rule that only applies to the
top right tensor in the network, where all signals ter-
minate. This rule is included to disallow the state of
the machine where all tensors have virtual index values
(0, 0, 0, 0) and a spurious 1 is added so that the final op-
erator is 1 +

∑
i<j ÂiB̂j instead of

∑
i<j ÂiB̂j .

Snake FSM. — The snake construction for the FSM
shown in Fig. 1(c) of the main text is much simpler
than the full 2D FSM above because it is precisely just
an MPO with a few extra dummy legs at each site so
that the direct product with the Ising tensors can be
performed. As discussed briefly in the main text, the
operator-valued local matrices for an MPO that encodes
the interactions

∑
i<j ÂiB̂j are given by,

M [k] =

Îk Âk 0̂k
0̂k Îk B̂k
0̂k 0̂k Îk

 . (6)

Since this snake imposes an explicit ordering of all the
sites on the 2D square lattice, it very naturally lends it-
self to the inclusion of fermionic statistics at the operator
level via Jordan-Wigner strings. If the operators Âi and
B̂j are spinless fermionic creation or annihilation opera-
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(a) (b) (c) (d)

FIG. 5. The four cases of rules needed to build the PEPO that encodes all the pairwise terms in
∑
i<j ÂiB̂j for arbitrary

operators Â and B̂. All virtual bonds are labeled with their index value, except those that are indexed 0 which are left
unlabeled. The red path denotes the path of the signal from Âi to B̂j , which are signified by the two red tensors. Note that

all the blue sites will be Î in these cases.

tors (and i < j), then we have,

M [k] =

Îk âk(1− 2n̂k) 0̂k
0̂k 1− 2n̂k b̂k
0̂k 0̂k Îk

 , (7)

where âk and b̂k are the hard-core bosonic cre-
ation/annihilation operators and 1 − 2n̂k encodes the
fermionic statistics. For spinful fermionic operators we
have to distinguish between spin up and spin down cases.
For terms like Âi↑B̂j↑ we have ,

M
[k]
↑↑ =

Îk âk(−1)n̂k 0̂k
0̂k (−1)n̂k b̂k
0̂k 0̂k Îk

 , (8)

and for terms like Âi↓B̂j↓,

M
[k]
↓↓ =

Îk âk 0̂k
0̂k (−1)n̂k (−1)n̂k b̂k
0̂k 0̂k Îk

 . (9)

Here 1 − 2n̂k changes to (−1)n̂k because we need to ac-
count for the possibility of double occupancy at a given
site k, and this is also why we distinguish between the
spin up and spin down cases.

APPENDIX B: Fitting methodology

There are many possible ways to fit a given long-range
potential with the correlation functions of an auxiliary
lattice. In this work, we first computed the Ising model
correlation functions at 60 different temperatures. To
choose these temperatures, we first note that away from
the critical temperature of the model (Tc), the correlation
functions behave according to ∼ er/ξ, where

ξ ∝
(
T − Tc
Tc

)−1

, (10)

is the correlation length. Thus, a geometric series in
(T −Tc)/Tc was used to select the temperatures, starting
from T1 = Tc + δ and ending at T60 = 50J/kB , where we
chose δ = 5 · 10−4.

With all of this data, a large “basis matrix” A can
be formed in which each column is a correlation function
at a different temperature β. We then solve the linear
regression problem A~c + ~ε = 1/~r, where ~c contains the
fitting coefficients and ~ε is the fitting error. In order to
improve conditioning, a rank-revealing QR decomposi-
tion is performed on A to give a best guess at the Nt
most relevant basis functions (temperatures). This al-
lows for a new, smaller matrix Ã with only Nt columns
to be formed, for which the linear regression problem is
solved by weighted least-squares. Results of this fitting
procedure can be seen in Figs. 2 and 6.

APPENDIX C: COMPUTATIONAL COST

In the main text we claimed that the leading computa-
tional cost for evaluating finite PEPS expectation values
using the full 2D FSM CF-PEPO is

Nt[O(Aχ3D3
O) +O(ANfχ

3D
′2
ODO)+

O(AN2
fχ

3D
′3
O ) +O(Aχ3D3

S) +O(ANfχ
3D

′2
ODS)].

Similarly, the leading cost of using the snake CF-PEPO
was reported to be,

Nt[O(Aχ3D
′2
ODO) +O(ANfχ

3D
′2
ODO)+

O(AN2
fχ

3D
′3
O ) +O(Aχ3D3

S) +O(ANfχ
3D

′2
ODS)],

where in both cases χ ∼ D2
SDO, DO is the large PEPO

bond dimension, D′O = 2 is the Ising model bond dimen-
sion, and DS is the PEPS bond dimension.

In the contraction scheme proposed in [48], the funda-
mental operation is to contract a boundary MPS of bond
dimension χ with a row of tensors corresponding to either
the PEPO layer or the PEPS layer, and then to perform
a subsequent truncation of the boundary bond dimension
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FIG. 6. (a) The upper envelope of |Vfit(rij)− 1/rij | for differ-
ent least squares weight functions rαij with Nt = 12, L = 199,
and rij = Rij . (b) All the errors |Vfit(rij)− 1/rij | at each rij
for the Nt = 12, α = 1.5, L = 199, rij = Rij fit. Note that
most of the errors for a given rij are significantly smaller than
the upper envelope that was shown in Fig. 2a. (c) The lat-
tice discretized Vfit(rij) compared to the continuous Coulomb
potential for the Nt = 12, α = 1.5, L = 199, rij = Rij fit.
Note that at small values of rij the values of Vfit visibly devi-
ate from the exact solution, while as rij grows the agreement
gets significantly better.

back to χ. The main contractions which occur during this
process are shown in the top row of Figure 7. The pri-
mary modification of the scheme in [48] is to account for
the fact that the PEPO has two kinds of sites (fictitious
and physical) which have different bond dimensions. For
the full 2D FSM CF-PEPO, (a) shows the contraction
of the boundary MPS with a physical site tensor in the
PEPO; (b) shows the contraction of the boundary MPS
with a fictitious site tensor that falls in the same row
as physical site PEPO tensors; (c) shows the contraction
of the boundary MPS with a fictitious site tensor that
does not fall in the same row or column as the physical
tensors. Diagrams nearly identical to (a) and (c) also oc-
cur when contracting the boundary MPS into the PEPS
layer, with the only difference being that DO → DS .

The dominant cost arises from the SVDs that must be
performed after contraction to reduce the new composite
bond dimension back to χ. The bottom row of Figure 7
shows the objects which we need to perform SVDs on,

corresponding to the object that was formed by perform-
ing the contraction right above it in the Figure. The
reason why the objects on the bottom row appear asym-
metric along the horizontal bonds is due to the sweeping

𝜒𝜒

𝐷𝑂𝐷𝑂

𝐷𝑂

𝐷𝑂

𝜒𝜒

𝐷𝑂𝐷𝑂

𝐷𝑂
′

𝐷𝑂
′

𝜒𝜒

𝐷𝑂
′𝐷𝑂

′

𝐷𝑂
′

𝐷𝑂
′

𝜒𝐷𝑂𝜒
𝐷𝑂 𝜒𝐷𝑂𝜒

𝐷𝑂
′

𝜒𝐷𝑂
′𝜒

𝐷𝑂
′

(a) (b) (c)

FIG. 7. Operations which occur during the evaluation of ex-
pectation values using the optimized contraction scheme. The
top row shows contraction of the boundary MPS into the next
row of the grid. The bottom row shows the corresponding ob-
ject on which an SVD must be performed. (a) operations on
physical sites of the PEPS, and also on physical sites of the
full 2D FSM CF-PEPO. (b) operations on physical sites of
the snake CF-PEPO, and also the operations on all fictitious
or identity tensors which lie in the same row as the physical
PEPO or PEPS tensors. (c) operations on PEPO fictitious
sites which do not lie in the row or column of any physical
sites.

nature of the SVDs, which here was assumed to sweep
from left to right.

The cost of performing SVDs on these objects is as
follows: (a)PEPO = O(χ3D3

O), (a)PEPS = O(χ3D3
S),

(b)PEPO = O(χ3D
′2
ODO), (b)PEPS = O(χ3D

′2
ODS), (c)

= O(χ3D
′3
O ), where the subscript denotes whether the

boundary MPS was first contracted into the PEPS or
PEPO layer.

The operations of type (a) need to be performed only
O(A) times, while the operations of type (b) need to be
performed O(ANf ) times, and the operations of type (c)
need to be performed O(AN2

f ) times. Thus, the total
leading cost of evaluating an expectation value using the
full 2D FSM CF-PEPO is

Nt[O(Aχ3D3
O) +O(ANfχ

3D
′2
ODO)+

O(AN2
fχ

3D
′3
O ) +O(Aχ3D3

S) +O(ANfχ
3D

′2
ODS)].

To obtain the result for the snake CF-PEPO, one re-
peats the above analysis. The only difference is that no
operations of type (a) appear for the PEPO. Instead, the
PEPO physical site operations have diagrams like type
(b). Thus, the first two terms of the cost of the snake
PEPO look identical, except that one occurs only O(A)
times while the other occurs O(ANf ) times.


