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The out-of-time-ordered correlators (OTOCs) have been proposed and widely used recently as a
tool to define and describe many-body quantum chaos. Here, we develop the Keldysh non-linear
sigma model technique to calculate these correlators in interacting disordered metals. In particular,

we focus on the regularized and unregularized OTOCs, defined as f (r)(t) = Tr
[√

ρ̂Â(t)
√
ρ̂Â†(t)

]
and f (u)(t) = Tr

[
ρ̂Â(t)Â†(t)

]
respectively (where Â(t) = {ψ̂(r, t), ψ̂†(0, 0)} is the anti-commutator

of fermion field operators and ρ̂ is the thermal density matrix). The calculation of the rate of
OTOCs’ exponential growth is reminiscent to that of the Altshuler-Aronov-Khmelnitskii dephasing
rate in interacting metals, but here it involves two replicas of the system (two “worlds”). The intra-
world contributions reproduce the Altshuler-Aronov-Khmelnitskii dephasing (that would correspond
to a decay of the correlator), while the inter-world terms provide a term of the opposite sign that
exceeds dephasing. Consequently, both regularized and unregularized OTOCs grow exponentially in
time, but surprisingly we find that the corresponding many-body Lyapunov exponents are different.
For the regularized correlator, we reproduce an earlier perturbation theory result for the Lyapunov
exponent that satisfies the Maldacena-Shenker-Stanford bound, λ(r) ≤ 2πkBT/~. However, the Lya-

punov exponent of the unregularized correlator parametrically exceeds the bound, λ(u) � 2πkBT/~.

We argue that λ(u) is not a reliable indicator of many-body quantum chaos as it contains additional
contributions from elastic scattering events due to virtual processes that should not contribute to
many-body chaos. These results bring up an important general question of the physical meaning
of the OTOCs often used in calculations and proofs. We briefly discuss possible connections of the
OTOCs to observables in quantum interference effects and level statistics via a generalization of the
Bohigas-Giannoni-Schmit conjecture to many-body chaotic systems.

I. INTRODUCTION

The butterfly effect is a metaphor for describing extreme sensitivity of classical trajectories to initial conditions in
classically chaotic systems. The butterfly effect is quantified by the rate of divergence of initially infinitesimally close
trajectories with time – the Lyapunov exponent. Recently, there has been great interest in generalizing the notion
of butterfly effect and Lyapunov exponents to quantum systems, including interacting many-body systems1–38. A
conceptual difficulty in defining quantum butterfly effect and more generally quantum chaos is due to the absence of
the notion of a trajectory in quantum mechanics. However, interesting progress has been made in overcoming this
fundamental difficulty by employing the notion of the out-of-time-ordered correlator (OTOC).

OTOC was introduced for the first time by Larkin and Ovchinnikov39 in the context of a rather technical discussion
on the quasiclassical methods in the theory of superconductivity. However, the actual calculation of the OTOC in
that early paper was done for a non-interacting disordered Fermi gas, describing electrons scattering off of finite-
size impurities. In particular, the following quantity was considered and calculated to be exponentially (Lyapunov)

growing with time Cpp(t) = −
〈

[p̂(t), p̂(0)]
2
〉
∝ exp(2λt), with p̂(t) being Heisenberg momentum operator. The

correlator allows a natural interpretation in the quasiclassical limit: since, p̂(0) = −i~ ∂
∂x(0) , it measures the sensitivity

of the distance between the trajectories (which do make sense in the quasiclassical limit for some time) in phase space
to initial conditions. Since the classical system of randomly positioned finite-size impurities is chaotic, the early
time behavior of the quantum OTOC exhibits signatures of classical chaos until quantum mechanics washes it out.
Note that the Lyapunov exponent for the quantum OTOC found by Larkin and Ovchinnikov was temperature- and
~-independent classical constant.

A similar behavior of OTOC was found by one of the authors and collaborators for other single-particle and weakly-
interacting fermion models such as the stadium Bunimovich billiard (and other classically chaotic billiards)40, standard
map/quantum kicked rotor41, and the weakly-interacting version of the Larkin-Ovchinnikov model42. These results
strongly suggest that if non-interacting and in some cases weakly-interacting fermions are “embedded” in a classically
chaotic model, then (unless there is localization) the presence of a Fermi surface and a finite Fermi velocity would
ensure the early exponential growth in the quasiclassical regime (which in effect means that the relevant wave packets
at the Fermi surface are squeezed into length-scales smaller than the geometric features responsible for the chaoticity).
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On the other hand, as shown by Kurchan43, “embedding” bosons into the classically chaotic system would lead to
a strongly-temperature dependent Lyapunov exponent that appears bounded by λ ≤ 2πkBT/~ and that eventually
vanishes at T = 0. This is due to the fact that the bosons tend to condense at low temperatures and therefore their
characteristic velocity vanishes with T → 0. Since the Lyapunov exponent is trivially proportional to the velocity
(the faster the particles go along two runaway trajectories, the faster they diverge), it is suppressed by temperature
in the case of bosons (but not non-interacting fermions). In both cases however, the many-body quantum systems
exhibit signatures of single-particle classical chaos.

A much more interesting class of problems was introduced and considered by Kitaev1,2, Stanford3–6, Shenker7–9,
and Maldacena10,11, Sachdev12–14 et al, and many others 15–31 with an eye on strongly-correlated models and field
theories, where the appearance of many-body quantum chaos (to be defined) is due to interactions rather than
underlying single-particle classical chaos or disorder (which may or may not be present). In this context, the notion

of OTOC is generalized to interacting many-body systems to involve rather arbitrary operators, X̂(t) and Ŷ (0),

fXY = −Tr
{
ρ̂
[
X̂(t), Ŷ (0)

]2}
, where ρ̂ = exp(−βĤ)/Z is the thermal density matrix (β = 1/kBT is the inverse

temperature, Ĥ is the Hamiltonian, and Z is the partition function). This correlator, or more precisely its out-of-

time ordered part Tr
[
ρ̂X̂(t)Ŷ (0)X̂(t)Ŷ (0)

]
, measures the sensitivity of X-operator measurement at time t to the

application of operator Y at t = 0. The presence of an exponential Lyapunov-like behavior in the correlator is viewed
as a signature and in many cases the definition of many-body quantum chaos and the measure of quantum butterfly
effect.

Furthermore, Ref.11 have proved a rather remarkable result regarding a bound on many-body quan-
tum chaos. Maldacena, Shenker, and Stanford considered the following regularized correlator f(t) =

Tr
[
ρ̂1/4X̂(t)ρ̂1/4Ŷ (0)ρ̂1/4X̂(t)ρ̂1/4Ŷ (0)

]
and showed that under the conditions of analyticity of the regularized cor-

relator function and the reasonable assumptions about factorization, specifically assuming that 〈X̂2(t)〉〈Ŷ 2(0)〉 −
〈X̂(t)Ŷ (0)X̂(t)Ŷ (0)〉 > 〈X̂2(t)Ŷ 2(0)〉 − 〈X̂2(t)〉〈Ŷ 2(0)〉, its rate of exponential growth (if any) must satisfy λ ≤
2πkBT/~.

One may wonder how this bound reconciles with the Larkin-Ovchiinikov’s result and Refs.41, which manifestly
violate the bound. There is no contradiction here however. As was pointed out by Maldacena44, the second condition
is not satisfied for the Larkin-Ovchinnikov free fermion model in the thermodynamic limit, hence the theorem does
not apply. There are however a number of interesting models, where the bound does hold and the regularized
OTOC behaves as expected and diagnoses/defines many-body quantum chaos. The models include Sachdev-Ye-Kitaev
model2,5,10,13,16 (where the bound is saturated), non-Fermi liquid gauge-fermion model12, and the more conventional
model of an interacting disordered metal (with point impurities)14.

This paper considers the latter model, which has been studied for decades in more conventional contexts and
where a large arsenal of techniques has been developed. In particular, the Keldysh non-linear sigma model45–50 has
been particularly useful in deriving non-perturbative results for the dephasing rate51–53 in interacting metals. As
shown below (see also, Refs.14), the calculation of the quantum Lyapunov exponent is conceptually similar to the
Altshuler-Aronov-Khmelnitskii dephasing rate and focuses on calculating a self-energy of the diffusion propagator (or

diffuson, whose unperturbed form is the Green’s function of the diffusion equation): D(ω,q) =
[
−iω +Dq2

]−1 →[
−iω +Dq2 − Σ

]−1
. In the conventional case, the diffuson self-energy at zero external frequency and momentum is

negative Σ(ω = 0,q = 0) = −1/τφ and represents a decaying-in-time diffuson propagator. The case of an OTOC
is different, as there are two replicas (or two “worlds” using terminology of Ref.15) experiencing dephasing processes
and the appearance of a positive eigenvalue of Σ(ω = 0,q = 0) in the corresponding matrix space represents the rate
of Lyapunov growth.

Following Patel et al.14, we consider two OTOCs – an unregularized OTOC

f (u)(t, r) = Tr

[
ρ̂
{
ψ̂(t, r), ψ̂†(0,0)

}{
ψ̂(t, r), ψ̂†(0,0)

}†]
(1)

and a regularized OTOC for which the bound on chaos theorem is expected to apply directly:

f (r)(t, r) = Tr

[√
ρ̂
{
ψ̂(t, r), ψ̂†(0,0)

}√
ρ̂
{
ψ̂(t, r), ψ̂†(0,0)

}†]
. (2)

In both equations, ψ̂(t, r) are fermion field operators, {·, ·} represents an anti-commutator of fermion fields, and
r is the spatial coordinate (we will primarily focus on the two-dimensional case). The manuscript develops the
technical Finkel’stein non-linear sigma model (FNLσM) technique54 to calculate both correlators and outlines a non-
perturbative extension of the theory for the regularized OTOC. One of the surprising results of our analysis (which
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does come out from the non-linear sigma model calculation but should be accessible by simpler techniques as well)

is that the two growth rates for f (u)(t) ∝ eλ
(u)t and f (r)(t) ∝ eλ

(r)t are very different: the former explicitly violates
the bound, while the latter satisfies it (in agreement with Patel et al.14). We argue that the former does not measure
many-body quantum chaos. More specifically, the virtual processes with large energy transfer provide contribution to
the unregularized growth rate λ(u) but not to the regularized one λ(r). These processes are associated with the elastic
scattering of particles off the static Friedel oscillations of charge density53,55 and are therefore irrelevant to many-body
quantum chaos. However, we emphasize that they are essential to the single-particle chaos as in the chaotic billiards
or the aforementioned Larkin-Ovchinnikov model.

The main technical part of the paper is organized as follows. In Sec. II, we present the derivation of the FNLσM
in the augmented Keldysh formalism15. It is obtained using two types of contours to evaluate the regularized and
unregularized correlation functions f(r, t). Secs. III and IV contain the technical details of the evaluation of the cor-
relators. In Sec. III, we explicate the Feynman rules and derive the dressed propagator for the Hubbard-Stratonovich
field that decouples the interactions. In Sec. IV, we obtain the one-loop self energy diagrams for the matrix field which
encodes the diffuson modes. Using these diagrams, we then compute and compare the regularized and unreguarlized
versions of the growth exponent λ in Sec. V. Finally, in Sec. VI, we investigate how Cooperon attributes to the growth
exponent λ.

II. DERIVATION OF THE NON-LINEAR σ MODEL IN THE AUGMENTED KELDYSH FORMALISM

A. Augmented Keldysh formalism

The unregularized and regularized correlation functions defined, respectively, in Eqs. 1 and 2 contain a piece that
is out-of-time ordered, and therefore can not be computed using the conventional Keldysh technique. For this reason,
we employ the augmented Keldysh formalism developed by Aleiner et al15 (see also56) to enable the evaluation of
OTOCs. In contrast to the conventional Keldysh technique, the contour now possesses two closed time loops (two
pairs of forward and backward paths running parallel to the real time axis). The evolution along these two loops
can be considered as that of two “worlds” with the same Hamiltonian. The butterfly effect describes the decoherence
between two identical worlds that are perturbed differently, and therefore can be investigated in this framework.
We employ two different types of contour in the complex time plane, which will be called the “unregularized” and
“regularized” contours in this paper. Fig. 1(a) shows the unregularized contour which goes forward and backward
along the real time axis twice before it drops vertically from −∞ to −∞ − iβ. This type of contour is useful for
the evaluation of the unregularized OTOC [Eq. 1]. For the regularized contour depicted in Fig. 1(b), the vertical
segment is split into two parts. The upper and lower time loop are now separated by an imaginary time of β/2. This
contour enables us to compute the regularized OTOC [Eq. 2]. In both cases, the vertical part of the contour encodes
information about the temperature, while the horizontal pieces correspond to the physical time evolution. We label
the horizontal paths by indices a ∈ {u, l} and s ∈ {+,−}. Here u (l) corresponds to the upper (lower) loop, and +
(−) refers to the forward (backward) part of the loop.

(a)

−∞ +∞

−∞ +∞

−∞− iβ

u+

u−
l+

l−

(b)

−∞ +∞

+∞− i
β

2
−∞− i

β

2

−∞− iβ

u+

u−

l+

l−

FIG. 1: Augmented Keldysh contours introduced to calculate the (a) unregularized and (b) regularized correlators. Both
contours contain two forward and two backward paths parallel to the real time axis. Fig. (a) shows the “unregularized” contour
where the path runs back and forth between −∞ and +∞ twice. After that, it goes vertically from −∞ to −∞− iβ. Fig. (b)
illustrates the “regularized contour” whose vertical segment is separated into two parts of equal length. One of them is inserted
between the upper and lower loops which are placed away from each other with spacing equal to an imaginary time of β/2.

In this section, we derive the FNLσM in the augmented Keldysh formalism using both the regularized and un-
regularized contours. It is an extended version of the conventional Keldysh FNLσM45,46,48,50. We consider a two
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dimensional disordered system of spinless fermions with short-range density-density interactions. We first study the
simplest case where the time-reversal symmetry is broken. Later in Sec. VI, we will restore the time-reversal symmetry
to examine the Cooperon’s contribution to the correlation function f(r, t).

The starting point is the generating functional, which can be written as

Z[V̂] =

∫
Dψ̄Dψ exp {iS0 + iSI + iSs} , (3a)

iS0 = i

∫
r,t,r′,t′

ψ̄(r, t)Ĝ−1(r, t; r′, t′) ψ(r′, t′), (3b)

iSI = − i

2
U0

∑
a=u,l

∑
s=±

ζs

∫
t,r

[
ψ̄a,s(r, t)ψa,s(r, t)

]2
, (3c)

iSs = − i
∫
t,r

ψ̄(r, t)V̂(r, t)ψ(r, t), (3d)

for both types of contours. Here U0 denotes the interaction strength. Throughout the paper, we use the units
~ = e = kB = 1. Fermionic field ψ is a four-components vector

ψ = [ψu,+, ψu,−, ψl,+, ψl,−]
T
, (4)

that carries indices in both Keldysh and augmented spaces, and ψa,s resides on the horizontal path labeled by a and
s. Here a ∈ {u, l} denotes the index of the augmented space, while s ∈ {+,−} stands for the Keldysh space label. ζs
is defined as

ζs =

{
1, s = +,

−1, s = −. (5)

Ĝ is the noninteracting Green’s function defined in the aforementioned augmented Keldysh contours

Ĝ(X,X ′) ≡ −i
〈
Tc ψ(X) ψ̄(X ′)

〉
0
, (6)

where Tc stands for the contour ordering symbol, and X ≡ (r, t). The angular bracket with subscript 0 denotes

the functional averaging over the noninteracting action. For both regularized and unregularized contours, Ĝ has the
following structure

Ĝ ≡


GT G< G̃< G̃<
G> GT̄ G̃< G̃<
G̃> G̃> GT G<
G̃> G̃> G> GT̄

 . (7)

For the component diagonal in the augmented space, ψ(X) and ψ̄(X ′) are placed on the same loop. Owing to the
cyclic invariance of the trace, the diagonal component for the unregularized and regularized contours are exactly
the same. ĜT/T̄, Ĝ< and Ĝ> represent, respectively, the conventional (anti)time-ordered, lesser and greater Green’s
functions which are defined as

iGT/T̄(X,X ′) =Tr
[
ρ̂Tt/Tt̄ ψ̂(X) ψ̂†(X ′)

]
,

iG<(X,X ′) = − Tr
[
ρ̂ψ̂†(X ′) ψ̂(X)

]
,

iG>(X,X ′) =Tr
[
ρ̂ψ̂(X) ψ̂†(X ′)

]
,

(8)

where ρ̂ represents the thermal density matrix and Tt (Tt̄) stands for the (anti)time-ordering operator. On the other

hand, the off-diagonal components G̃< and G̃> in the augmented space for unregularized contour are different from
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their regularized counterparts:

iG̃<(X,X ′) =


−Tr

[
ρ̂ψ̂†(X ′) ψ̂(X)

]
, unregularized contour,

−Tr
[
ρ̂1/2ψ̂†(X ′) ρ̂1/2ψ̂(X)

]
, regularized contour,

iG̃>(X,X ′) =


Tr
[
ρ̂ψ̂(X) ψ̂†(X ′)

]
, unregularized contour,

Tr
[
ρ̂1/2ψ̂(X) ρ̂1/2ψ̂†(X ′)

]
, regularized contour.

(9)

The unregularized version of G̃< (G̃>) becomes the conventional lesser (greater) Green’s function Ĝ< (Ĝ>) .

In Eq. 3(d), V̂(r, t) is a 4× 4 matrix whose entries are source fields introduced to calculate the correlation function
f(r, t). Its diagonal components in the augmented space (intra-world components) are set to 0:

V̂ =

 0 0 Vu+;l+ Vu+;l−
0 0 Vu−;l+ Vu−;l−

Vl+;u+ Vl+;u− 0 0
Vl−;u+ Vl−;u− 0 0

 . (10)

Both the unregularized [Eq. 1] and regularized [Eq. 2] correlation functions can be decomposed into 4 terms. Each
term is a four-point function which can be evaluated by placing the 4 fermion fields in different horizontal paths
according to their order. We find f(r, t) can be evaluated as

f(r, t) =
〈
Tcψl,−(r, t)ψ̄l,+(0, 0)ψu,−(0, 0)ψ̄u,+(r, t)

〉
+
〈
Tcψ̄l,−(0, 0)ψl,+(r, t)ψ̄u,−(r, t)ψu,+(0, 0)

〉
+
〈
Tcψl,−(r, t)ψ̄l,+(0, 0)ψ̄u,−(r, t)ψu,+(0, 0)

〉
+
〈
Tcψ̄l,−(0, 0)ψl,+(r, t)ψu−(0, 0)ψ̄u,+(r, t)

〉
.

(11)

Here, the functional expectation is taken with respect to the total action in Eq. 3 and the contour ordering symbol
Tc is used to make sure the fermion fields are ordered according to their locations on the contour. We emphasize
that fermion fields in Eq. 11 are placed on the unregularized and regularized contours for the calculation of f (u)(r, t)
[Eq. 1] and f (r)(r, t) [Eq. 2], respectively. Using Eq. 11, it is straightforward to prove that f(r, t) can be calculated

by taking derivatives of the generating functional Z[V̂] with respect to the source fields

f(r, t) = +
δ2Z[V̂]

δVu+,l−(r, t)δVl+,u−(0, 0)

∣∣∣∣∣
V̂=0

+
δ2Z[V̂]

δVu−,l+(r, t)δVl−,u+(0, 0)

∣∣∣∣∣
V̂=0

− δ2Z[V̂]

δVu−,l−(r, t)δVl+,u+(0, 0)

∣∣∣∣∣
V̂=0

− δ2Z[V̂]

δVu+,l+(r, t)δVl−,u−(0, 0)

∣∣∣∣∣
V̂=0

.

(12)

Next, we introduce the HubbardStratonovich (HS) fields φa,cl and φa,q to decouple the interaction term SI. The
generating functional now becomes

Z[V̂] =

∫
Dψ̄DψDφeiS

iS =
2i

U0

∫
t,r

∑
a

φa,cl(r, t)φa,q(r, t) + i

∫
r,t,r′,t′

ψ̄(r, t)Ĝ−1(r, t; r′, t′) ψ(r′, t′)− i
∫
t,r

ψ̄(r, t)
[
V̂(r, t) + P̂(r, t)

]
ψ(r, t)

(13)

where P̂ is defined by

P̂as,bs′ = δa,bδs,s′ (ζsφa,cl + φa,q) . (14)

Note that, for simplicity, here we have rescaled the HS field by φ→
√

2φ.

B. Keldysh and “thermal” rotations

We now perform the Keldysh rotation

ψ → τ̂3ÛKψ, ψ̄ → ψ̄Û†K, ÛK ≡ 1√
2
(1̂ + iτ̂2), (15)
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where the 4× 4 matrix τ̂ is defined as the direct product of the Pauli matrix acting in the Keldysh space τ̂K and the
identity matrix in the augmented space 1̂a

τ̂ i ≡ τ̂ iK ⊗ 1̂a, i = 1, 2, 3. (16)

Under the Keldysh rotation, the Green’s function is transformed to

Ĝ′ = Û†Kτ̂
3ĜÛK =

GR GK 0 GΓ̄

0 GA 0 0
0 GΓ GR GK
0 0 0 GA

 , (17)

where the intra-world components GR, GA and GK are the conventional retarded, advanced and Keldysh Green’s
functions, respectively. Moreover, the inter-world component GΓ (GΓ̄) is just 2G̃> (2G̃<). The elements of Green’s

function Ĝ′ are related through15

GK(ω; r, r′) = [GR(ω; r, r′)−GA(ω; r, r′)]F (ω),

GΓ(ω; r, r′) = [GR(ω; r, r′)−GA(ω; r, r′)] Γ(ω)

GΓ̄(ω; r, r′) = [GR(ω; r, r′)−GA(ω; r, r′)] Γ̄(ω)

(18)

where F (ω), Γ(ω) and Γ̄(ω) are generalized distribution function defined as

F (ω) = tanh

(
βω

2

)
,

Γ(ω) =


1 + tanh

(
βω

2

)
, unregularized contour,

sech

(
βω

2

)
, regularized contour,

Γ̄(ω) =


−1 + tanh

(
βω

2

)
, unregularized contour,

− sech

(
βω

2

)
, regularized contour.

(19)

Note that the distribution functions Γ(ω) and Γ̄(ω) for the unregularized contour are different from their regularized
counterparts.

It is straightforward to verify that, if one further implements the transformation of the fields

ψ(ω, r)→ M̂F (ω)M̂Γ(ω)ψ(ω, r), ψ̄(ω, r)→ ψ̄(ω, r) M̂Γ(ω)M̂F (ω), (20)

the Green’s function becomes distribution-function independent:

Ĝrot(ω) = M̂Γ(ω)M̂F (ω)Û†Kτ̂
3ĜÛKM̂F (ω)M̂Γ(ω) =

[(
ω +

∇2

2m
+ εF − u(r)

)
1̂ + i0+τ̂3

]−1

, (21)

Here u(r) represents the static impurity potential. The matrices M̂F (ω) and M̂Γ(ω) contain information about the
temperature, and are defined as

M̂F (ω) ≡

1 F (ω) 0 0
0 −1 0 0
0 0 1 F (ω)
0 0 0 −1

 , M̂Γ(ω) ≡

1 0 0 −Γ̄(ω)
0 −1 0 0
0 −Γ(ω) 1 0
0 0 0 −1

 . (22)

The combined transformation generated by successive applications of the Keldysh (Eq. 15) and thermal (Eq. 20)
rotations is given by

ψ(ω, r)→ τ̂3ÛKM̂F (ω)M̂Γ(ω)ψ(ω, r), ψ̄(ω, r)→ ψ̄(ω, r) M̂Γ(ω)M̂F (ω)Û†K. (23)

It removes the distribution function from the non-interacting action S0 and transforms the generating functional Z[V̂]
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in Eq. 13 to

Z[V̂] =

∫
Dψ̄DψDφ eiS

iS =
2i

U0

∫
t,r

∑
a

φa,cl(r, t)φa,q(r, t) + i

∫
r,r′,ω

ψ̄(ω, r)Ĝ−1
rot (ω; r, r′) ψ(ω, r′)

− i
∫

r,ω1,ω2

ψ̄(ω1, r)M̂Γ(ω1)M̂F (ω1)Û†K

[
V̂(ω1 − ω2, r) + P̂(ω1 − ω2, r)

]
τ̂3ÛKM̂F (ω2)M̂Γ(ω2)ψ(ω2, r).

(24)

C. Effective matrix field theory

We then average the disorder dependent term in the partition function Eq. 24 over impurity potential u(r) assumed
to be Gaussian distributed according to

P [u] = exp

−πν0τel

∫
r

u2(r)

 , (25)

where τel and ν0 denote the elastic scattering time and the density of states at the Fermi level, respectively. The
disorder averaging generates an effective quartic interaction term Sdis

exp [iSdis] ≡
〈

exp

−i ∫
r,ω

ψ̄(ω, r)u(r)ψ(ω, r)

〉
dis

= exp

− 1

4πν0τel

∫
r,ω,ω′

ψ̄a,s(ω, r)ψa,s(ω, r)ψ̄a′,s′(ω
′, r)ψa′,s′(ω

′, r)

 ,
(26)

which is further HS decoupled with a unitary matrix field Q̂

exp [iSdis] =

∫
DQ̂ exp

−πν0

4τel

∫
r,ω,ω′

Qa,µ;b,ν
ω,ω′ (r)Qb,ν;a,µ

ω′,ω (r)− 1

2τel

∫
ω,ω′,r

ψ̄a,µ(ω, r)Qa,µ;b,ν
ω,ω′ (r)ψb,ν(ω′, r)

 . (27)

Qa,µ;b,ν
ω,ω′ (r) is of the same structure as the bilinear product ψa,µ(ω, r)ψ̄b,ν(ω′, r) and carries indices in the Keldysh,

augmented as well as frequency spaces. We then integrate out the fermion field ψ, leading to an effective matrix field
theory:

Z[V̂] =

∫
DQ̂Dφ eiS

iS =
2i

U0

∫
t,r

∑
a

φa,cl(r, t)φa,q(r, t)− πν0

4τel

∫
r

Tr Q̂2(r)

+ Tr ln

{
ω̂ −

(
−∇

2

2m
− εF

)
1̂ + i0+τ̂3 ⊗ 1̂ω + i

1

2τel
Q̂−

[
M̂Γ(ω̂)M̂F (ω̂)Û†K

[
V̂ + P̂

]
τ̂3ÛKM̂F (ω̂)M̂Γ(ω̂)

]
⊗ 1̂ω

}
,

(28)

where 1̂ω represents the identity matrix in the frequency space, and ω̂ is defined such that 〈ω1| ω̂ |ω2〉 = δω1,ω2
ω1.

The saddle point of the matrix field Q̂ solves the equation

Q̂SP =
i

πν0

∫
k

[
ω̂ −

(
k2

2m
− εF

)
1̂ + i0+τ̂3 ⊗ 1̂ω + i

1

2τel
Q̂SP

]−1

, (29)
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obtained from taking the variation of the action over the matrix Q̂. Here we have assumed the influence of interactions
to the saddle point can be ignored. The solution takes the simple form

Q̂SP = τ̂3 ⊗ 1̂ω. (30)

Fluctuations around the saddle point can be divided into two groups: the massive and massless modes. The massive
modes can be integrated out which leads to inessential contribution, and therefore are neglected. The massless modes,
or more specifically the Goldstone mode can be generated by unitary transformation of the saddle point

Q̂ = Û−1Q̂SPÛ. (31)

The low energy physics is governed by these Goldstone modes which can be further divided into two different classes:
the diffuson and Cooperon modes. Since here we consider the system with broken time-reversal invariance, the
Cooperon channel is suppressed in this case.

Inserting Eq. 31 into Eq. 28, we expand the action in terms of ∇U and ∂tU
45,46, and arrive at the NLσM

Z[V̂] =

∫
DQ̂Dφ exp [iSQ + iSc + iSφ + iSV ] , (32a)

iSQ = − 1

2g

∫
r

Tr

[(
∇Q̂(r)

)2
]
− i2h

∫
r

Tr
[
ω̂Q̂(r)

]
, (32b)

iSc = i2h

∫
Tr
{[(

Û†K

(
V̂ + P̂

)
τ̂3ÛK

)
⊗ 1̂ω

] [
M̂F (ω̂)M̂Γ(ω̂)Q̂M̂Γ(ω̂)M̂F (ω̂)

]}
, (32c)

iSφ = i
4

π
h

1

γ

∑
a

∫
t,r

φa,cl(r, t)φa,q(r, t), (32d)

iSV = i
h

π

∫
t,r

(2Vu+,l+Vl+,u+ − 2Vu−,l−Vl−,u−)

+i
h

π

∫
t,r

(Vu+,l+Vl+,u− + Vu+,l+Vl−,u+ + Vu+,l−Vl+,u+ + Vu−,l+Vl+,u+)

−ih
π

∫
t,r

(Vu+,l−Vl−,u− + Vu−,l+Vl−,u− + Vu−l−Vl+,u− + Vu−,l−Vl−,u+)

. (32e)

Here the coupling constants are defined as

h ≡ πν0

2
,

1

g
≡ πν0

2
D, γ ≡ ν0U0

1 + ν0U0
, (33)

with D being the diffusion constant. Furthermore, g is proportional to the inverse dimensionless conductance and
acts as the small perturbation parameter in the NLσM. The matrix field Q̂ is subject to constraints

Tr Q̂ = 0, Q̂2 = 1̂, Q̂† = Q̂. (34)

Substituting Eq. 32 into Eq. 12 shows that f(r, t) follows from the correlation function of Q̂:

f(k, ω) = − 4h2
∑
(α,β)

sα,β

∫
ε1,ε2

〈
Tr
[(
M̂Γ(ε−1 )M̂F (ε−1 )Û†Kγ̂ατ̂

3ÛKM̂F (ε+
1 )M̂Γ(ε+

1 )
)
Q̂ε+1 ,ε

−
1

(k)
]

×Tr
[(
M̂Γ(ε+

2 )M̂F (ε+
2 )Û†Kγ̂β τ̂

3ÛKM̂F (ε−2 )M̂Γ(ε−2 )
)
Q̂ε−2 ,ε

+
2

(−k)
]〉∣∣∣∣∣

V̂=0

, (35)

Here ε± ≡ ε± ω/2, and the sum goes over the set

{(α;β) = (u+, l−; l+, u−), (u−, l+; l−, u+), (u−, l−; l+, u+), (u+, l+; l−, u−)} . (36)

sα,β equals 1 (−1) for the first (last) two elements in the set. γ̂α is a single-entry matrix defined such that the only
nonvanishing component is the “α” element of value 1. Note that the expectation is taken with the external source
field V̂ set to 0.
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III. PARAMETRIZATION AND FEYNMAN’S RULES

A. Parametrization

We follow the standard procedure and parameterize Q̂ in the Keldysh space as

Q̂ =

[√
1̂− ŴŴ † Ŵ

Ŵ † −
√

1̂− Ŵ †Ŵ

]
K

, (37)

where Ŵ is an unconstrained matrix in the augmented and frequency spaces. This matrix field is then rescaled by:

Ŵ → √gŴ, (38)

where g [Eq. 33] – the inverse dimensionless conductance – is the perturbation parameter.

Inserting the parametrization from Eq. 37 into the action and expanding in powers of Ŵ , we find, up to quartic
order in Ŵ

SQ + Sc[V̂ = 0] = S
(2)
W + S

(4)
W , (39a)

iS
(2)
W = −

∫ [
W † a,b1,2(k1)Mba,dc

21,43(k1,k2)W c,d
3,4 (k2) + J̄ a,b

1,2(k)W b,a
2,1 (k) +W † a,b1,2(k)J b,a2,1 (k)

]
, (39b)

iS
(4)
W = −g

8

∫
δk1+k3,k2+k4W

† a,b
1,2(k1)W b,c

2,3(k2)W † c,d3,4(k3)W d,a
4,1 (k4)

× [−2(k1 · k3 + k2 · k4) + (k1 + k3) · (k2 + k4) + ihg(ω1 − ω2 + ω3 − ω4)] .

(39c)

Here, the superscripts are indices in the augmented space, while the numeric subscripts represent the frequencies.
More specifically, we use index i (−i) to denote ωi (−ωi). For simplicity, in the following, we also employ the notation

Fi ≡ F (ωi), Γi ≡ Γ(ωi), Γ̄i ≡ Γ̄(ωi), δ1,2 ≡ δω1,ω2 . (40)

The definition of matrices M̂, Ĵ and ˆ̄J are given by Eq. A1 in Appendix A.

B. Feynman’s rules

In the previous subsection, the action is expressed in terms of matrix field Ŵ and HS field φ. The propagator for
Ŵ describes a joint propagation of a particle and a hole, i.e., the diffuson propagator. In the absence of interactions,
it takes the form 〈

W a,b
1,2 (k)W † c,d3,4(k)

〉
0

= ∆0(k, ω2 − ω1)δ1,4δ2,3δa,dδb,c, (41)

where we have defined the function

∆0(k, ω) ≡ 1

k2 + ihgω
. (42)

The bare propagator arises from the quadratic action S
(2)
W by setting φ = 0. In Fig. 2(a), it is represented diagram-

matically by two opposite directed black lines, corresponding to the particle and hole propagation respectively. The
labels appearing alongside these lines are indices carried by the Ŵ matrix. The nearby short arrows are introduced
to indicate the momentum flow and also to distinguish Ŵ and Ŵ † matrices. For matrix Ŵ (Ŵ †), the short arrow is
directed into (out of) the propagator.

The quartic action S
(4)
W in Eq. 39 describes the interaction between the diffuson modes. It gives rise to the 4-point

diffusion vertex, as depicted in Fig. 2(b). The amplitude of this vertex takes the form

(b) = −g
4

[−2(k1 · k3 + k2 · k4) + (k1 + k3) · (k2 + k4) + ihg(ω1 − ω2 + ω3 − ω4)] , (43)

which has been multiplied by a symmetry factor of 2.
In Fig. 3, we show the interaction vertices coupling the HS field φ and matrix field Ŵ . These interaction vertices

arise from the action S
(2)
W in Eq. 39. Here and throughout this paper, the HS field φ is represented diagrammatically

by a red wavy line. The amplitudes of these interaction vertices are given by Eq. A2 in Appendix A.
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(a)

(c)

(e)

(g)

u, 2
k2

ρu(k1 − k2, ω2 − ω1)

a, 3

u, 1

a, 3
k1

l, 2
k2

ρl(k1 − k2, ω2 − ω1)

a, 3

l, 1

a, 3
k1

l, 2
k2

ρu,q(k1 − k2, ω2 − ω1)

a, 3

u, 1

a, 3
k1

u, 2
k2

ρl,q(k1 − k2, ω2 − ω1)

a, 3

l, 1

a, 3
k1

(i) u, 1

u, 2
k

ρu,q(−k, ω2 − ω1)

(k) l, 1

l, 2
k

ρl,q(−k, ω2 − ω1)

(m) u, 2

l, 1
k

ρ(k, ω2 − ω1)

(b)
k2

a, 3

u, 1

a, 3

u, 2
k1

(d)

ρu(k1 − k2, ω2 − ω1)

k2

a, 3

l, 1

a, 3

l, 2
k1

(f)

ρl(k1 − k2, ω2 − ω1)

k2

a, 3

l, 1

a, 3

u, 2

ρu,q(k1 − k2, ω2 − ω1)

k1

(h)
k2

a, 3

u, 1

a, 3

l, 2

ρl,q(k1 − k2, ω2 − ω1)

k1

(j) u, 2

u, 1
k

ρ(k, ω2 − ω1)

(l) l, 2

l, 1
k

ρ(k, ω2 − ω1)

(n) l, 2

u, 1
k

ρ(k, ω2 − ω1)

(b)

k1 k2

k3k4

a, 1

b, 2b, 2

c, 3

c, 3

d, 4d, 4

a, 1

(a) a, 1 a, 1

k
b, 2 b, 2

k

FIG. 2: Feynman rules: (a) the bare diffuson propagator and (b) the 4-point diffusion vertex. The Ŵ matrix field is represented
diagrammatically by two black lines with arrows pointing in the opposite directions.

FIG. 3: Feynman rules: interaction vertices coupling the matrix field Ŵ and the HS field φ represented by a red wavy line.
The amplitudes of all these vertices are given in Eq. A2.

C. Hubbard-Stratonovich field propagator

(a)

(c)

(d)

(e)

a, ε± a, ε±

a, ε∓ a, ε∓
±k ±k

φ(±k,±ω)φa,q(∓k,∓ω)

a, ε+ a, ε+

a, ε− a, ε−
k k

φa,cl(k, ω)φa,q(−k,−ω)

a, ε+ a, ε+

a, ε− a, ε−
k k

φa,q(k, ω)φa,q(−k,−ω)

u, ε− u, ε−

u, ε+ u, ε+
−k −k

φl,q(−k,−ω)φu,q(k, ω)

u, ε+ u, ε+

u, ε− u, ε−
k k

φl,q(k, ω)φu,q(−k,−ω)

(b) u, ε+ u, ε+

u, ε− u, ε−
−k −k

φa,cl(−k,−ω)φa,q(k, ω)

a, ε− a, ε−

a, ε+ a, ε+
−k −k

φa,q(−k,−ω)φa,q(k, ω)

l, ε+ l, ε+

l, ε− l, ε−
k k

φu,q(k, ω)φl,q(−k,−ω)

l, ε− l, ε−

l, ε+ l, ε+
−k −k

φu,q(−k,−ω)φl,q(k, ω)

FIG. 4: The leading order self energy diagram for HS field φ.

The action Sφ in Eq. 32 gives rise to the bare HS field propagator

iĜ
(0)
φ (k, ω) ≡

〈
φ(k, ω)φT(−k,−ω)

〉
0

= i

 0 πγ
4h 0 0

πγ
4h 0 0 0
0 0 0 πγ

4h
0 0 πγ

4h 0

 . (44)

Here we have defined the four-components vector: φ ≡ [φu,cl, φu,q, φl,cl, φl,q]
T

. Taking into account the interactions

between the HS field φ and matrix field Ŵ , we obtain, to the leading order in perturbation parameter g, the HS field’s
self energy Σφ, see Fig. 4. The self energy acquires the following structure

Σ̂φ =


0 Σ

(A)
φ 0 0

Σ
(R)
φ Σ

(K)
φ 0 Σ

(Γ̄)
φ

0 0 0 Σ
(A)
φ

0 Σ
(Γ)
φ Σ

(R)
φ Σ

(K)
φ

 , (45)
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where the entries are given by

−iΣ(R)
φ = − 4h2g∆0(k,−ω)

ω

π
, −iΣ(A)

φ = −4h2g∆0(k, ω)
−ω
π
,

−iΣ(K)
φ = − 4h2g [∆0(k,−ω) + ∆0(k, ω)]

ω

π
F (B)
ω ,

−iΣ(Γ)
φ = − 4h2g [∆0(k,−ω) + ∆0(k, ω)]

ω

π
Γ(B)
ω ,

−iΣ(Γ̄)
φ = − 4h2g [∆0(k,−ω) + ∆0(k, ω)]

ω

π
Γ̄(B)
ω .

(46)

Here F
(B)
ω , Γ

(B)
ω and Γ̄

(B)
ω are generalized bosonic distribution functions defined as

F (B)
ω ≡ coth

(
βω

2

)
,

Γ(B)
ω ≡


1 + coth

(
βω

2

)
, unregularized contour,

csch

(
βω

2

)
, regularized contour,

Γ̄(B)
ω =


−1 + coth

(
βω

2

)
, unregularized contour,

csch

(
βω

2

)
, regularized contour,

(47)

In deriving Eq. 46, we have made use of the following identities:∫
ε

(Fε+ω − Fε) =
ω

π
,

∫
ε

(1− Fε+ωFε) =
ω

π
F (B)
ω , −

∫
ε

ΓεΓ̄ε+ω =
ω

π
Γ̄(B)
ω , −

∫
ε

Γε+ωΓ̄ε =
ω

π
Γ(B)
ω . (48)

Here
∫
ε

stands for
∫∞
−∞ dε/2π. We notice that the Keldysh and inter-world self energy components are related to the

retarded and advanced counterparts through

Σ
(K)
φ =

[
Σ

(R)
φ − Σ

(A)
φ

]
F (B)
ω , Σ

(Γ)
φ =

[
Σ

(R)
φ − Σ

(A)
φ

]
Γ(B)
ω , Σ

(Γ̄)
φ =

[
Σ

(R)
φ − Σ

(A)
φ

]
Γ̄(B)
ω , (49)

as expected for a bosonic field15.
Employing the Dyson equation

Ĝφ =
[
(Ĝ

(0)
φ )−1 − Σ̂φ

]−1

, (50)

we arrive at the full HS field propagator which acquires the typical form of a bosonic Green’s function defined on the
augmented Keldysh contour15:

iĜφ(k, ω) ≡
〈
φ(k, ω)φT(−k,−ω)

〉
= i


G

(K)
φ (k, ω) G

(R)
φ (k, ω) G

(Γ̄)
φ (k, ω) 0

G
(A)
φ (k, ω) 0 0 0

G
(Γ)
φ (k, ω) 0 G

(K)
φ (k, ω) G

(R)
φ (k, ω)

0 0 G
(A)
φ (k, ω) 0

 . (51)

Its retarded and advanced components are given by

G
(R)
φ (k, ω) =

πγ

4h

∆u(k,−ω)

∆0(k,−ω)
, G

(A)
φ (k, ω) =

πγ

4h

∆u(k, ω)

∆0(k, ω)
, (52)

where ∆u is defined as

∆u(k, ω) ≡ 1

k2 + ihg(1− γ)ω
. (53)

The other components are related to the retarded and advanced Green’s functions in the same way as the self energy
[see Eq. 49]

G
(K)
φ (k, ω) =

[
G

(R)
φ (k, ω)−G(A)

φ (k, ω)
]
F (B)
ω ,

G
(Γ̄)
φ (k, ω) =

[
G

(R)
φ (k, ω)−G(A)

φ (k, ω)
]

Γ̄(B)
ω ,

G
(Γ)
φ (k, ω) =

[
G

(R)
φ (k, ω)−G(A)

φ (k, ω)
]

Γ(B)
ω .

(54)
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In the following, the HS field’s full (bare) propagator given in Eqs. 51, 52 and 54 (Eq. 44) will be represented
diagrammatically by a red wavy line with a solid dot (open circle) in the middle, as shown in Fig. 5(b) [Fig. 5(a)].

(a) (b)

FIG. 5: Diagrammatic representation of HS field’s (a) bare and (b) full propagators.

IV. CALCULATION OF THE GROWTH EXPONENT

We are interested in the correlation function f(k, ω), which can be obtained from the Q̂ correlator [see Eq. 35].

Expressing the matrix Q̂ in terms of Ŵ and inserting Eq. 37 into Eq. 35, an expansion to leading order in small
parameter g leads to

f(k, ω) = 4h2g

∫
ε1,ε2

[〈
W l,u

ε+1 ,ε
−
1

(k)W † u,l
ε−2 ,ε

+
2

(k)
〉

+
〈
Wu,l

ε−2 ,ε
+
2

(−k)W † l,u
ε+1 ,ε

−
1

(−k)
〉]
. (55)

Here we have used the fact that
〈
ŴŴ

〉
and

〈
Ŵ †Ŵ †

〉
vanish. The calculation of correlation function f(k, ω) has

now been reduced to the evaluation of the diffuson propagator.

In the absence of interactions,
〈
ŴŴ †

〉
in Eq. 55 is given by the bare propagator in Eq. 41. Using Eqs. 42 and 33,

we have

f(k, ω) = 2πν0

∫
ε

[
1

Dk2 − iω +
1

Dk2 + iω

]
, (56)

which is consistent with the result of Ref.14. Note that, in f(k, ω), there is an additional term 2πν0τel, which is
ignored since τ−1

el � ω,Dk2. Here the integral over ε is cut off in the ultraviolet limit by the elastic scattering rate

τ−1
el . Fourier transformation of Eq. 56 shows f(r, t) does not display exponential growth in the noninteracting case,

f(r, t) ∝
(

1

4πDt

)
exp

(
− r2

4πDt

)
, t > 0. (57)

A. Dressed propagator and self energy

k

a, ω1

b, ω2

c, ω4

c, ω3

k

φc,q(−k, ω3 − ω4)

φc,cl(k, ω1 − ω2)

=
+

+

...

FIG. 6: The dressed propagator for matrix Ŵ as stated in Eq. 59 is equivalent to an infinite geometric series with repeated
insertion of interaction vertices. Here, the red wavy line with a solid dot (open circle) in the middle represents the full (bare)
Hubbard-Stratonovich propagator, see Fig 5.

We now consider the impact of interactions on the correlation function f(r, t). For the moment, we disregard the

quartic diffusion action S
(4)
W along with the interaction terms quadratic in Ŵ . In other words, the total action is
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approximated by,

iS[V̂ = 0] = −
∫ [

W † a,b1,2(k)∆−1
0 (k, ω1 − ω2)W b,a

2,1 (k) + J̄ a,b
1,2(k)W b,a

2,1 (k) +W † a,b1,2(k)J b,a2,1 (k)
]

+ iSφ, (58)

where J̄ and J are defined in Eq. A1, while Sφ is given in Eq. 32. The full propagator of Ŵ matrix assumes the form〈
W a,b

1,2 (k)W † c,d3,4(k)
〉

= ∆0(k, ω2 − ω1)δ1,4δ2,3δa,dδb,c − iπhγg∆u(k, ω2 − ω1)∆0(k, ω2 − ω1)Fd(ε1, ε2)δc,dδ1+3,2+4

(59)

where

Fd(ε1, ε2) =



Fε1 − Fε2 , c = u, b = u, a = u,

−Γ̄ε2 , c = u, b = l, a = u,

Γε1 , c = u, b = u, a = l,

Fε1 − Fε2 , c = l, b = l, a = l,

Γ̄ε1 , c = l, b = l, a = u,

−Γε2 , c = l, b = u, a = l,

0, otherwise.

(60)

The full propagator is composed of the bare and interaction dressed components, represented by the first and second
terms in Eq. 59, respectively. The dressed component is equivalent to an infinite geometric series of diagrams with
repeated insertion of linear interaction vertices, see Fig. 6. This means that the interaction strength is treated to all
orders here. The dressed component given in Eq. 59 vanishes when a = d = u(l) and b = c = l(u). Therefore it does
not contribute to the correlation function f(k, ω).

(a)

a, ε−

b, ε+ b, ε+

a, ε−

b, ε+ b, ε+ + ξ b, ε+

l l

k k

φb,cl(l,−ξ) φb,q(−l, ξ)

(c)
φb(−l,−ξ)φb(l, ξ)

k− l

b, ε+ b, ε+ − ξ b, ε+

a, ε−a, ε−a, ε−
k k

(e)

φa(−l, ε2 − ε1)

φb(l, ε1 − ε2)

k− l

b, ε+1 b, ε+2 b, ε+2

a, ε−2a, ε−1a, ε−1

k k

(b)

l l

φa,cl(l,−ξ) φa,q(−l, ξ)

b, ε+

a, ε−
k

b, ε+

a, ε−
k

a, ε− a, ε− − ξ a, ε−

(d)

φa(−l,−ξ)φa(l, ξ)

k− l

b, ε+ b, ε+ b, ε+

a, ε−a, ε− + ξa, ε−
k k

(f) φb(−l, ε1 − ε2)

φa(l, ε2 − ε1)

k− l

b, ε+1 b, ε+1 b, ε+2

a, ε−2a, ε−2a, ε−1

k k

FIG. 7: Diagrams for self energy component Σa,b;b,a.

We then include the 4-point diffusion and quadratic interaction vertices, and compute the self energy for Ŵ matrix
field at one-loop level. The self energy diagrams are shown in Figs. 7, 8 and 9. Diagrams in Fig. 7 provide contribution
to self energy components Σa,a;a,a and Σa,b;b,a, while those appearing in Fig. 8(a) and 8(b) correspond to Σa,b;a,a and
Σa,b;b,b, respectively. The components Σa,a;b,a and Σa,a;a,b are given by diagrams in Fig. 9(a) and 9(b), respectively.
Note that there are no diagrams that contribute to the remaining components Σa,b;a,b and Σa,a;b,b,

Σa,b;a,b
ε−1 ,ε

+
1 ;ε+2 ,ε

−
2

(k) = Σa,a;b,b

ε−1 ,ε
+
1 ;ε+2 ,ε

−
2

(k) = 0. (61)

Here a and b represent arbitrary but different indices of the augmented space. The explicit expression for the one-loop
self energy are relegated to Appendix B.
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(a) (b)

(b)(a)

φa,cl(−l, ε2 − ε1)

φa,q(l, ε1 − ε2)

k− l

b, ε+1 a, ε+2 a, ε+2

a, ε−2a, ε−1a, ε−1

k k

φb,cl(−l, ε1 − ε2)

φb,q(l, ε2 − ε1)

k− l

b, ε+1 b, ε+1 b, ε+2

b, ε−2b, ε−2a, ε−1

k k

φa,q(−l, ε1 − ε2)

φa,cl(l, ε2 − ε1)

k− l

b, ε+1 b, ε+1 a, ε+2

a, ε−2a, ε−2a, ε−1

k k

φb,q(−l, ε2 − ε1)

φb,cl(l, ε1 − ε2)

k− l

b, ε+1 b, ε+2 b, ε+2

b, ε−2a, ε−1a, ε−1

k k

φa,cl(−l,−ξ)φa,q(l, ξ)

k− l

b, ε+ a, ε+ − ξ a, ε+

a, ε−a, ε−a, ε−
k k

l l

φb,cl(l,−ξ) φb,q(−l, ξ)

b, ε+

a, ε−
k

b, ε+

b, ε−
k

a, ε− b, ε− − ξ b, ε−

φb,cl(−l,−ξ)φb,q(l, ξ)

k− l

b, ε+ b, ε+ b, ε+

b, ε−b, ε− + ξa, ε−
k k

a, ε−

b, ε+ a, ε+

a, ε−

b, ε+ a, ε+ + ξ a, ε+

l l

k k

φa,cl(l,−ξ) φa,q(−l, ξ)

φb,cl(−l,−ξ)φb,q(l, ξ)

k− l

a, ε+ b, ε+ − ξ b, ε+

a, ε−a, ε−a, ε−
k k

l l

φb,cl(l,−ξ) φb,q(−l, ξ)

a, ε+

a, ε−
k

a, ε+

b, ε−
k

a, ε− b, ε− − ξ b, ε−

φb,cl(−l,−ξ)φb,q(l, ξ)

k− l

a, ε+ a, ε+ a, ε+

b, ε−b, ε− + ξa, ε−
k k

a, ε−

a, ε+ b, ε+

a, ε−

a, ε+ b, ε+ + ξ b, ε+

l l

k k

φb,cl(l,−ξ) φb,q(−l, ξ)
FIG. 8: Diagrams for self energy components (a) Σa,b;a,a and (b) Σa,b;b,b, where a and b denote arbitrary but different indices
of the augmented space.

One can then carry out an expansion of the self energy in terms of external energy ω and momentum k. The term
independent of ω and k, i.e., the “mass” term, determines the growth exponent λ to the leading order in g. The
higher order terms renormalize the NLσM’s coupling constants {g, h, γ} and therefore only give contribution to the
growth exponent λ at higher order in g. We set external frequency ω and momentum k to 0, and find the mass term
for Σu,l;l,u

(Σ)
u,l;l,u
ε1,ε1;ε2,ε2

(k = 0) = +
i

4
πhγg2

∫
l,ξ

∆0(l, ξ)

[
∆u(l, ξ)

∆0(l, ξ)
− ∆u(l,−ξ)

∆0(l,−ξ)

] [
2F

(B)
ξ − Fξ+ε1 − Fξ−ε1

]
δε1,ε2

− i

4
πhγg2

∫
l

[∆0(l, ε1 − ε2) + ∆0(l, ε2 − ε1)]

[
∆u(l, ε1 − ε2)

∆0(l, ε1 − ε2)
− ∆u(l, ε2 − ε1)

∆0(l, ε2 − ε1)

]
Γ

(B)
ε1−ε2 .

(62)

Σl,u;u,l
ε1,ε1;ε2,ε2(k = 0) can be obtained by replacing the generalized bosonic distribution function Γ(B) in Eq. 62 with

Γ̄(B). The self energy Σ u,l;l,u
ε1,ε1;ε2,ε2 (Σ l,u;u,l

ε1,ε1;ε2,ε2) can be decomposed into a part that is diagonal in frequency space and
also one that contains only the off-diagonal entries. The off-diagonal part exhibits “translationally invariant” matrix
structure. More specifically, we have

Σ a,b,b,a
ε1,ε1;ε2,ε2 = Σa,b;b,adia (ε1)δε1,ε2 + Σa,b;b,aoff (ε1 − ε2), a 6= b. (63)

The diagonal (off-diagonal) part is given by the first (second) term in Eq. 62, and comes from diagrams in Figs. 7(a)-(d)
[Figs. 7(e)-(f)].

We also find that Σa,a;b,a and Σa,a;a,b at zero external frequency ω and momentum k vanish

Σa,a;a,b
ε1,ε1;ε2,ε2(k = 0) = Σa,a;b,a

ε1,ε1;ε2,ε2(k = 0) = 0, (64)

where a 6= b. As will become apparent later, Σa,a;a,a, Σa,b;b,b and Σa,b;a,a do not enter into the calculation of correlation
function f(k, ω). For this reason, here we do not give the explicit expressions for these components.
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(a) (b)

(b)(a)
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k− l

b, ε+1 b, ε+1 a, ε+2

a, ε−2a, ε−2a, ε−1

k k

φb,q(−l, ε2 − ε1)

φb,cl(l, ε1 − ε2)

k− l

b, ε+1 b, ε+2 b, ε+2

b, ε−2a, ε−1a, ε−1

k k

φa,cl(−l,−ξ)φa,q(l, ξ)
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b, ε+ a, ε+ − ξ a, ε+

a, ε−a, ε−a, ε−
k k

l l

φb,cl(l,−ξ) φb,q(−l, ξ)

b, ε+

a, ε−
k

b, ε+

b, ε−
k

a, ε− b, ε− − ξ b, ε−

φb,cl(−l,−ξ)φb,q(l, ξ)

k− l

b, ε+ b, ε+ b, ε+

b, ε−b, ε− + ξa, ε−
k k

a, ε−

b, ε+ a, ε+

a, ε−

b, ε+ a, ε+ + ξ a, ε+

l l

k k

φa,cl(l,−ξ) φa,q(−l, ξ)

φb,cl(−l,−ξ)φb,q(l, ξ)

k− l

a, ε+ b, ε+ − ξ b, ε+

a, ε−a, ε−a, ε−
k k

l l

φb,cl(l,−ξ) φb,q(−l, ξ)

a, ε+

a, ε−
k

a, ε+

b, ε−
k

a, ε− b, ε− − ξ b, ε−

φb,cl(−l,−ξ)φb,q(l, ξ)

k− l

a, ε+ a, ε+ a, ε+

b, ε−b, ε− + ξa, ε−
k k

a, ε−

a, ε+ b, ε+

a, ε−

a, ε+ b, ε+ + ξ b, ε+

l l

k k

φb,cl(l,−ξ) φb,q(−l, ξ)

FIG. 9: Diagrams for self energy components (a) Σa,a;b,a and (b) Σa,a;a,b, where a and b are two different augmented space
indices.

B. Dyson equation and the full Green’s function

The full Green’s function can be extracted from the Dyson equation(
Ĝ−1

0 − Σ̂
)
Ĝ = 1̂, (65)

where Ĝ is defined as

Ga,b;c,dε1,ε2;ε3,ε4(k) ≡
〈
W a,b
ε1,ε2(k)W † c,dε3,ε4(k)

〉
. (66)

Ĝ0 is given by the sum of the bare and dressed propagators in Eq. 59. The self energy Σa,b;c,d
ε±1 ,ε

∓
1 ;ε∓2 ,ε

±
2

(k) is approximated

by its value at ω = 0 and k = 0 as explained above.
Given the fact that half of the self energy components in the augmented space vanish (see Eqs. 61 and 64), it is

straightforward to verify that Ga,b;b,a is determined only by the Σa,b;b,a component(
G−1

0
a,b;b,a − Σa,b;b,a

)
Ga,b;b,a = 1, a 6= b. (67)

Applying the Dyson equation (Eq. 65) which can be rewritten as

Ĝ = Ĝ(0) + Ĝ(0)Σ̂Ĝ(0) + Ĝ(0)Σ̂Ĝ(0)Σ̂Ĝ(0) + ..., (68)

one find∫
ε1,ε2

Ga,b,b,a
ε±1 ,ε

∓
1 ;ε±2 ,ε

∓
2

(k) =

∫
ε1,ε2

∆0(k,∓ω)δ1,2 + ∆2
0(k,∓ω)Σ a,b,b,a

ε1,ε1;ε2,ε2 + ∆3
0(k,∓ω)

∫
ε3

Σ a,b,b,a
ε1,ε1;ε3,ε3Σ a,b,b,a

ε3,ε3;ε2,ε2 + ...

 .
(69)

Here we have made use of the fact that G0
a,b;b,a

ε±1 ,ε
∓
1 ;ε∓2 ,ε

±
2

(k) equals ∆0(k,∓ω)δε1,ε2 when a 6= b (see Eq. 59). With the

help of

∫
ε1,ε2

Σ a,b,b,a
ε1,ε1;ε2,ε2 =

∫
ε

Σdia(ε) +

∫
ξ

Σoff(ξ)

 ,
∫

ε1,ε2,...εn+1

Σ a,b,b,a
ε1,ε1;ε3,ε3Σ a,b,b,a

ε3,ε3;ε4,ε4 ...Σ
a,b,b,a
εn+1,εn+1;ε2,ε2 =

∫
ε

Σa,b,b,adia (ε) +

∫
ξ

Σa,b,b,aoff (ξ)


n

, n = 2, ...

(70)
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which can be verified using Eq. 63, we find Eq. 69 is equivalent to,

∫
ε1,ε2

Ga,b,b,a
ε±1 ,ε

∓
1 ;ε±2 ,ε

∓
2

(k) =

∫
ε

1

∆−1
0 (k,∓ω)−

[
Σa,b;b,adia (ε) +

∫
ξ

Σa,b;b,aoff (ξ)

] .
(71)

Here Σa,b;b,adia and Σa,b;b,aoff correspond to self energy’s diagonal and off-diagonal components in the energy space, see

Eq. 63. We further approximate Σa,b;b,adia (ε) in the denominator with its value at ε = 0 since the integral extends over

a narrow energy shell |ε| < τ−1
el around the Fermi level (ε = 0). Substituting Eq. 71 into Eq. 55 leads to

f(k, ω) = 4h2g

∫
ε


1

∆−1
0 (k,−ω)−

[
Σl,u;u,l

dia (0) +
∫
ξ

Σl,u;u,l
off (ξ)

] +
1

∆−1
0 (k, ω)−

[
Σu,l;l,udia (0) +

∫
ξ

Σu,l;l,uoff (ξ)

]
 . (72)

V. GROWTH EXPONENT FOR THE UNREGULARIZED AND REGULARIZED CORRELATORS

A. One-loop result

Using the result obtained in the previous section, we find the correlation function takes the form

f(k, ω) = 2πν

∫
ε

[
1

Dk2 − iω − λ +
1

Dk2 + iω − λ

]
, (73)

whose Fourier transform is

f(r, t) ∝
(

1

4πDt

)
exp

(
− r2

4Dt

)
eλt, t > 0. (74)

Here, to the leading order in small parameter g, λ is given by the following equations :

λ =λdia + λoff ,

λdia =
1

hg
Σa,b;b,adia (0) = − i

4
πγg

∫
ddl

(2π)d

∫ τ−1
el

0

dξ

2π
[∆0(l, ξ) + ∆0(l,−ξ)]

[
∆u(l, ξ)

∆0(l, ξ)
− ∆u(l,−ξ)

∆0(l,−ξ)

](
−2F

(B)
ξ + 2Fξ

)
,

λoff =
1

hg

∫
ξ

Σa,b;b,aoff (ξ) = − i
4
πγg

∫
ddl

(2π)d

∫ τ−1
el

0

dξ

2π
[∆0(l, ξ) + ∆0(l,−ξ)]

[
∆u(l, ξ)

∆0(l, ξ)
− ∆u(l,−ξ)

∆0(l,−ξ)

](
Γ

(B)
ξ + Γ̄

(B)
ξ

)
,

(75)

where a 6= b.
As shown by Eq. 55, the “mass” of the inter-world diffuson propagator is responsible for the exponent λ of the

correlation function f(r, t). This should be compared with the intra-world diffuson propagator whose “mass” gives rise
to the dephasing rate of diffuson, as studied by Castellani et al. in Ref.57. A similar discussion applies to the Altshuler-
Aronov-Khmelnitskii dephasing rate51–53 of Cooperon which serves as the infrared cutoff of the weak localization
correction58. We emphasize that the inter-world (intra-world) diffuson propagator describes a joint propagation of a
particle and a hole in different worlds (the same world). The “mass” of intra-world diffuson propagator is associated
with the phase relaxation of the single-particle states, while that of inter-world propagator is also related to the
propagation of the decoherence between two worlds.

We note that the two contributions to λ, i.e. λdia and λoff , are given by expressions that are almost identical to each
other except for the distribution function term. Among them, λdia arises from the self energy’s diagonal component

in the frequency space Σa,b;b,adia [see Eq. 63] which, as mentioned earlier, is due to diagrams appearing in Figs. 7(a)-
(d). It is apparent that each of these diagrams acquires an amplitude that is independent of whether or not a = b.
The calculation of the intra-world element Σa,a;a,a

dia has also been performed within the framework of conventional
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Keldysh NLσM in Ref.50. There it has been pointed out that the one-loop result for Σa,a;a,a
dia is responsible for the

“outscattering rate52,59 which is the “out” term of the collision integral in the Boltzmann equation. This “out” term
is infrared divergent in 2D and needs to be considered together with the “in” term to have a physical meaning59,
i.e., their sum determines the energy relaxation rate. Since the intra-world component Σa,a;a,a

dia is equivalent to the

inter-world component Σa,b;b,adia (a 6= b), we conclude that λdia given by Eq. 75 is infrared divergent in 2D and describes
the “out-scattering rate” which differs from the dephasing rate. Moreover, the dephasing rate requires the inclusion
of higher-loop terms. For diagrams shown in Figs. 7(a)-(d), one of the key features is that the interaction lines (i.e.
the dressed HS propagator represented by red wavy line with a centered solid dot) do not connect particle and hole
propagation lines (two black solid lines). Therefore, these diagrams are responsible for the phase relaxation of the
single-particle states. By contrast, diagrams in Figs. 7(e)-(f) contribute to the off-diagonal self energy component

Σa,b;b,aoff (a 6= b) which then determines λoff [Eq. 75]. In these diagrams, we see that the particle and hole propagation
lines in worlds a and b are connected by an interaction line. Therefore, unlike λdia, this term measures the decoherence
between the two worlds. As will be shown in the following, to one-loop order, λoff also diverges logarithmically in the
infrared limit and yields a positive contribution to the exponent λ. λdia and λoff are of opposite signs, but the latter
dominates, leading to an overall growth exponent. In addition, for both the regularized and unregularized correlation
functions, the infrared divergences from λdia and λoff cancel out.

Performing the momentum integration in Eq. 75 over the whole space, one obtains

λ =
π

8
g
γ2

2− γ

∫ τ−1
el

0

dξ

2π

[(
Γ

(B)
ξ + Γ̄

(B)
ξ

)
− 2

(
F

(B)
ξ − Fξ

)]
. (76)

We then insert the explicit expression for the generalized distribution functions given in Eqs. 19 and 47. For the
regularized correlator, this leads to

λ(r) =
π

8
g
γ2

2− γ

∫ τ−1
el

0

dξ

2π

[
2 csch

(
βξ

2

)
− 4 csch(βξ)

]
=

T

2πν0D

γ2

2− γ

{
ln 2− ln

[
1 + sech

(
βτ−1

el

2

)]}
, (77)

where τ−1
el enters as the ultraviolet cutoff for the energy integration, and the interaction strength γ is defined in

Eq. 33. On the other hand, the growth exponent for the unregularized correlator takes the form

λ(u) =
π

8
g
γ2

2− γ

∫ τ−1
el

0

dξ

2π

[
2 coth

(
βξ

2

)
− 4 csch(βξ)

]
=

T

2πν0D

γ2

2− γ ln

[
cosh

(
βτ−1

el

2

)]
, (78)

which differs from its regularized counterpart.
For both the regularized and unregularized correlators, the infrared divergence of λdia is canceled by that of λoff .

In addition, the unregularized exponent exhibits an ultraviolet divergence which is then removed by imposing the
energy cutoff τ−1

el . The NLσM used here to derive the result is an effective low energy field theory that is applicable

to energy smaller than the elastic scattering rate τ−1
el .

The derivation above is carried out for short-range interactions. The result for long-range Coulomb interactions
can be found through a similar procedure. In both cases, we have

λ = i

∫
ddl

(2π)d

∫ τ−1
el

0

dξ

2π

[
1

Dl2 + iξ
+

1

Dl2 − iξ

] [
G

(R)
φ (l, ξ)−G(A)

φ (l, ξ)
] [(

Γ
(B)
ξ + Γ̄

(B)
ξ

)
−
(

2F
(B)
ξ − 2Fξ

)]
, (79)

where G
(R/A)
φ is the retarded/advanced dressed Green’s function for the HS field that decouples the interactions. For

short-range interactions, the expression of G
(R/A)
φ is given by Eq. 52, reducing Eq. 79 into Eq. 75. In contrast, for

long-range Coulomb interactions, G
(R/A)
φ can be approximated by59,60

G
(R)
φ (l, ξ) =

[
G

(A)
φ (l, ξ)

]∗
=

1

2ν0

Dl2 − iξ
Dl2

. (80)

Here the overall factor 1/2 comes from the fact that the HS field has been rescaled by φ→
√

2φ. Substituting Eq. 80
into Eq. 79, we arrive at

λ(r) =
T

2πν0D

{
ln 2− ln

[
1 + sech

(
βτ−1

el

2

)]}
, (81a)

λ(u) =
T

2πν0D
ln

[
cosh

(
βτ−1

el

2

)]
, (81b)

which is identical to the result of short-range interactions up to an overall factor. In the limit of low temperature
T � τ−1

el , the regularized version of growth exponent λ(r) equals T ln 2/2πν0D, agreeing with the result in Ref.14.
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B. Two Lyapunov exponents: discussion

In the previous subsection, we find that the regularized and unregularized correlators f(r, t) grow exponentially
at rates λ(r) and λ(u), respectively. The regularized exponent λ(r) obeys the Maldacena-Shenker-Stanford bound
λ(r) ≤ 2πkBT/~ which is proved in Ref.11 by considering another type of regularized correlator (see also Ref.61).
By contrast, the unregularized version λ(u) is parametrically larger than the bound λ(u) � 2πkBT/~. Here we have
restored the units of ~ and kB.

We believe λ(u) can not serve as an indicator of many-body quantum chaos for the following reasons. In Eq. 79, we
express the growth exponent as an integral weighted by the distribution function

F̃ (ξ) ≡
(

Γ
(B)
ξ + Γ̄

(B)
ξ

)
−
(

2F
(B)
ξ − 2Fξ

)
, (82)

which is responsible for the difference between the regularized and unregularized correlation functions. Here ξ denotes
the energy transferred by the HS propagator. For small energy transfer, ξ � T , F̃ (ξ) takes approximately the same

value for both correlators. On the other hand, when ξ � T , F̃ (ξ) vanishes for the regularized correlator but remains
finite for the unregularized one. As a result, both exponents λ(r) and λ(u) take into account processes with small
energy transfer ξ � T with approximately the same weight. These processes are associated with real inelastic collisions
between electrons and therefore can be attributed to many-body quantum chaos, if we define it as a phenomenon driven
by interactions and not connected to the underlying classical chaos, if any. In the Larkin-Ovchinnikov model, classical
chaos (which the quantum model “inherits”) is due to single-particle elastic scatterings off of finite-size impurities.
In our model with delta-impurities, classical chaos arises due to electron scattering off of disorder-induced density
oscillations. Even though, this phenomenon does require interactions, it hinges on elastic collisions, survives down
to zero temperature, and is conceptually similar to classical chaos in disordered media. This phenomenon is to be
contrasted with “hydrodynamic,” interaction-driven energy-exchanging collisions. In conventional theory dealing with
observable, time-ordered objects, these processes give rise to Altshuler-Aronov-Khmelnitskii dephasing rate, which
enters weak localization correction to conductivity and determines a temperature scale, where the system undergoes
a transition into Anderson insulator. In the context of out-of-time-ordered four-point correlators, these processes give
rise to inter-“world” dephasing, or many-body quantum chaos. Note that in contrast to the regularized Lyapunov
exponent λ(r), which contains subtle cancellations that extract the inelastic inter-world dephasing, the unregularized
growth exponent λ(u) contains extra contributions arising from processes with large energy transfer ξ � T . These are
precisely the virtual processes that correspond to elastic scattering of particles off the imhomogeneous particle density,
which exhibits disorder-induced Friedel oscillations53,55. Similar to elastic scattering off static impurity potential, these
processes are unrelated to many-body quantum chaos. Consequently, the unregularized exponent λ(u) which includes
virtual elastic scattering is not a reliable measure for the growth of many-body quantum chaos.

C. Higher-loop contributions

As mentioned above, the one-loop intra-world diffuson propagator’s “mass” term leads to the infrared divergent
“outscattering rate” but not the dephasing rate. The exact cacluation of dephasing rate requires inclusion of higher
order diagrams, for which two different approaches have been employed. In one of them, the self-consistent Born
approximation (SCBA) is applied where all diagrams with crossed interaction lines (HS propagator lines) are excluded.
It replaces the lower energy cutoff with the dephasing rate itself and therefore eliminates the infrared divergence62,63.
However, for short-range interactions, there might exist corrections beyond the SCBA64,65. A different method that
takes into account diagrams with both non-crossing and crossed interaction lines has been developed in Ref.51. They
express the Cooperon as a Feynman path integral and calculate the exact dephasing rate for long-range Coulomb
interactions (see also Ref.64 for the case of short-range interactions). Since λ can be considered as an inter-world
counterpart of the dephasing rate, we postulate that both treatments might also be applicable to the evaluation of
growth exponent of the correlation function f(r, t). Here we discuss briefly the application of the second method.

Fourier transforming Eq. 55 gives

f(r, t) = 4h2g

∫
t′,r′

[
Gu,l;l,ut′,t′;t′+t,t′+t(r

′, r′ + r) + Gl,u;u,l
t′,t′;t′−t,t′−t(r

′, r′ − r)
]
, (83)

where Ĝ is the diffuson propagator [Eq. 66] in the space-time representation. Similar to the Cooperon in the dephasing
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rate problem, the inter-world diffuson can be expressed as a path integral50–52,59

Ga,b;b,at′,t′;t′±t,t′±t(r
′, r′ ± r) = D

∫ y(t′±t)=r′±r

y(t′)=r′
Dy(τ)e−S[y(τ)],

S[y(τ)] =

∫ t′±t

t′
dτ

1

4D
ẏ2(τ) +

1

2

∫ t′±t

t′
dτ1

∫ t′±t

t′
dτ2iḠφ (y(τ1)− y(τ2), τ1 − τ2) .

(84)

Here a and b are arbitrary but different augmented space (world) indices, and Ḡφ(r, t) is the Fourier transform of

Ḡφ(k, ω) =
[
G

(R)
φ (k, ω)−G(A)

φ (k, ω)
] [(

2F (B)
ω − 2Fω

)
−
(

Γ(B)
ω + Γ̄(B)

ω

)]
. (85)

Through a straightforward calculation, one can show that the first-order cumulant expansion gives rise to the one-
loop result stated in Eq. 79, while higher-order terms correspond to higher-loop diagrams that also attribute to the
correlation function f(r, t). As explained in Ref.64, Eq. 84 can be interpreted as a path integral for a self-interacting
polymer loop subject to the boundary condition: y(t′ ± t) = r′ ± r, y(t′) = r′. The first term in the action S[y(τ)]
describes the normal random walk, while the second term gives an interaction between points y(τ1) and y(τ2). This
problem can now be investigated through a lattice polymer simulation which may serve as a direction for future work.

.

VI. CLASS AII: COOPERON’S CONTRIBUTION

In previous sections, we considered a system which has neither time reversal symmetry nor spin-rotational invariance,
i.e., it is in the unitary (A) Wigner-Dyson class66–68. In this section, we turn to the symplectic metal class69 with
perserved time-reversal invariance but broken spin-rotational invariance. The time-reversal symmetry is restored to
investigate the Cooperon’s contribution to the correlation function f(r, t).

For this symmetry class, the augmented Keldysh FNLσM can be obtained following a procedure similar to the one
outlined in Sec. II for unitary metal class. It acquires the form

Z[V̂] =

∫
DQ̂Dφ exp {iSQ + iSc + iSφ + iSV } ,

iSQ = − 1

4g

∫
r

Tr

[(
∇Q̂(r)

)2
]
− ih

∫
r

Tr
[(

1̂aK ⊗ 1̂ω ⊗ σ̂3
)
ω̂Q̂(r)

]
,

iSc = ih

∫
Tr
{[(

Û†K

(
V̂ + P̂

)
τ̂3ÛK

)
⊗ 1̂ω ⊗ 1̂σ

] [
M̂F (ω̂)M̂Γ(ω̂)Q̂M̂Γ(ω̂)M̂F (ω̂)

]}
,

(86)

where Sφ and SV are given, respectively, by Eqs. 32 (d) and (e). Parameters g, h and γ are defined in Eq. 33. Here

1̂σ stands for the identity matrix in the particle-hole space, while 1̂aK denotes the one in the augmented and Keldysh
spaces. For simplicity, we have disregarded the BCS interaction channel. In this model, the matrix field Q̂ carries
indices in Keldysh, augmented, frequency as well as the particle-hole spaces, and obeys the constraints

Q̂2 = 1, Tr Q̂ = 0,
(
σ̂1 ⊗ τ̂1 ⊗ Σ̂1 ⊗ 1̂|ω|

)
Q̂T
(
σ̂1 ⊗ τ̂1 ⊗ Σ̂1 ⊗ 1̂|ω|

)
= Q̂. (87)

Here σ̂ indicates the Pauli matrix in the particle-hole space, while Σ̂ is the Pauli matrix acting on the sign of frequency
space, Σ1

ω1,ω2
= δω1,−ω2

. The saddle point of this NLσM is given by

Q̂SP = τ̂3 ⊗ σ̂3 ⊗ 1̂ω. (88)

A. Parametrization for class AII

Following Ref.50, we first perform a rotation

Q̂→ R̂Q̂R̂†, R̂ ≡
[

1̂ + σ̂3

2
⊗ 1̂aK +

1̂− σ̂3

2
⊗ τ̂1

]
⊗ 1̂ω, (89)



20

that transforms the saddle point to Q̂sp = τ̂3 ⊗ 1̂σ ⊗ 1̂ω. It also changes the last constraint in Eq. (87) to(
σ̂1 ⊗ 1̂aK ⊗ Σ̂1 ⊗ 1̂|ω|

)
Q̂T
(
σ̂1 ⊗ 1̂aK ⊗ Σ̂1 ⊗ 1̂|ω|

)
= Q̂. (90)

and leaves the first two conditions unchanged. After this transformation, Sc becomes

iSc = ih

∫
Tr

{[(
1̂ + σ̂3

2

)
⊗
(
Û†K

(
V̂ + V̂T + 2P̂

)
τ̂3ÛK

)
⊗ 1̂ω

] [
M̂F (ω̂)M̂Γ(ω̂)Q̂M̂Γ(ω̂)M̂F (ω̂)

]}
, (91)

while SQ remains invariant.

We then employ the parametrization Eq. 37 in the Keldysh space. In this case, Ŵ is a matrix carrying indices in
the particle-hole, frequency as well as augmented spaces, and is subject to the condition

Ŵ =
(
σ̂1 ⊗ Σ̂1 ⊗ 1̂a ⊗ 1̂|ω|

)
(Ŵ †)T

(
σ̂1 ⊗ Σ̂1 ⊗ 1̂a ⊗ 1̂|ω|

)
. (92)

We further parametrize Ŵ in the particle-hole space as

Ŵ a,b
1,2 =

[
Xa,b

1,2 Y a,b1,2

Y † b,a−2,−1 X† b,a−2,−1

]
σ

, (93)

where the unconstrained matrix X̂ and Ŷ are in the agumented and frequency spaces. As before, the superscripts
a and b are augmented space indices, while the numeric subscript i (−i) stands for frequency ωi (−ωi). It is easy

to verify that the constraint in Eq. 92 is satisfied with this parametrization. We emphasis that, for matrix field Ŵ ,
the component diagonal in the particle-hole space, i.e. X̂ encodes the diffuson mode, while the off-diagonal one Ŷ
represents the Cooperon mode50.

One may now substitute Eqs. 37 and 93 into the action, and expand in powers of X̂, Ŷ up to quartic order. We
find the action is

SQ + Sc[V̂ = 0] = S
(2)
X + S

(2)
Y + S

(4)
W , (94a)

iS
(2)
X = −

∫ [
X† a,b1,2(k1)Mba,dc

2,1;4,3(k1,k2)Xc,d
3,4(k2) + J̄ a,b

2,1(k)Xb,a
1,2 (k) +X† a,b1,2(k)J b,a2,1 (k)

]
, (94b)

iS
(2)
Y = −

∫
Y † a,b1,2(k1)N ba,dc

2,1;4,3(k1,k2)Y c,d3,4 (k2), (94c)

iS
(4)
W = −g

8

∫
δk1+k3,k2+k4

[
−2(k1 · k3 + k2 · k4) + (k1 + k3) · (k2 + k4) + ihg(ω1 − ω2 + ω3 − ω4)

]

×



X† a,b1,2(k1)Xb,c
2,3(k2)X† c,d3,4(k3)Xd,a

4,1 (k4)

+Y † a,b−1,2(k1)Y b,c2,−3(k2)Y † c,d−3,4(k3)Y d,a4,−1(k4)

+2X† a,b1,2(k1)Y b,c2,−3(k2)Y † c,d−3,4(k3)Xd,a
4,1 (k4)

+2X† a,b1,2(k1)Y b,c2,−3(k2)Xd,c
4,3(−k3)Y † a,d−1,4(−k4)

+2X† a,b1,2(k1)Xb,c
2,3(k2)Y d,c4,−3(−k3)Y † a,d−1,4(−k4)


,

(94d)

whereM, J , and J̄ are given by Eq. A1. Ignoring the interaction term which couples the matrix field Ŷ and the HS
field φ, N takes the form

N ba,dc
2,1;4,3(k1,k2) =

[
k2

1 − ihg(ω1 + ω2)
]
δa,dδb,cδ1,4δ2,3 +O(g). (95)

As will become apparent later, the explicit form of higher order term in N enters the calculation of correlation function
f(r, t) through the dephasing time of the Cooperon and is therefore not given here.

B. Feynman rules for class AII

In Fig. 10, we show the Feynman rules for the class AII NLσM. In the absence of interactions, the bare propagators
for diffuson and Cooperon are given by, respectively,〈

Xa,b
1,2(k)X† c,d3,4(k)

〉
0

= ∆0(k, ω2 − ω1)δ1,4δ2,3δa,dδb,c,〈
Y a,b1,2 (k)Y † c,d3,4(k)

〉
0

= ∆0(k,−ω2 − ω1)δ1,4δ2,3δa,dδb,c.
(96)
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FIG. 10: Feynman rules for class AII NLσM: Diagrams in (a) and (b) represent the the bare propagators for diffuson and
Cooperon, respectively. (c)-(g) illustrate the 4-point diffusion vertices which share the same amplitudes stated in Eq. 97. In

this section, the solid black lines represent the diffuson mode X̂, while the dashed blue ones correspond to the Cooperon mode
Ŷ .

They are represented by diagrams in Figs. 10(a) and 10(b) where the solid black (dashed blue) lines correspond to

the diffuson mode X̂ (Cooperon mode Ŷ ).

Figs. 10(c)-(g) illustrate the the 4-point diffusion vertices arising from the action S
(4)
W [Eq. 94(d)]. These diffusion

vertices describe the non-linear interactions between the diffuson and Cooperon modes, and share the same amplitude,

(c) = (d) = (e) = (f) = (g) = −g
4

[−2(k1 · k3 + k2 · k4) + (k1 + k3) · (k2 + k4) + ihg(ω1 − ω2 + ω3 − ω4)] , (97)

where we have multiplied the amplitudes of diagrams (c) and (b) by a factor of 2 to account for the vertex symmetry.
Here we do not show the interaction vertices coupling between the HS filed φ and the diffuson (Cooperon) mode

X̂ (Ŷ ). However, notice that S
(2)
X [Eq. 94(b)] takes the same form as the action S

(2)
W [Eq. 94(b)] for the unitary

NLσM considered in previous sections. Therefore, the vertices coupling between X̂ and φ can also be represented
diagrammatically by diagrams in Fig. 3, with amplitudes given by Eq. A2.

C. The calculation of the growth exponent for class AII

As mentioned earlier, the correlation function can be extracted by differentiating the generating functional Z[V̂]

with respect to the source field V̂ [Eq. 12]. Using the explicit expression for the action Sc[V̂] in Eq. 91 and the
parameterization given by Eqs. 37 and 93, one obtains

f(k, ω) =h2g

∫
ε1,ε2



〈
X l,u

ε+1 ,ε
−
1

(k)X† u,l
ε−2 ,ε

+
2

(k)
〉

+
〈
X† l,u

ε+1 ,ε
−
1

(−k)X u,l

ε−2 ,ε
+
2

(−k)
〉

+
〈
Xu,l

ε+1 ,ε
−
1

(k)X† l,u
ε−2 ,ε

+
2

(k)
〉

+
〈
X† u,l

ε+1 ,ε
−
1

(−k)X l,u

ε−2 ,ε
+
2

(−k)
〉

+
〈
Xu,l

ε+1 ,ε
−
1

(k)X† u,l
ε−2 ,ε

+
2

(k)
〉

+
〈
X† u,l

ε+1 ,ε
−
1

(−k)X u,l

ε−2 ,ε
+
2

(−k)
〉

+
〈
X l,u

ε+1 ,ε
−
1

(k)X† l,u
ε−2 ,ε

+
2

(k)
〉

+
〈
X† l,u

ε+1 ,ε
−
1

(−k)X l,u

ε−2 ,ε
+
2

(−k)
〉


, (98)

which shows that the correlation function f(k, ω) is determined entirely by the full diffuson (X̂) propagator. The

Cooperon mode Ŷ enters the evaluation of f(k, ω) through the self energy for X̂.

In Eq. 86, the part of the action that depends only on X̂ and φ [i.e. S
(2)
X and the 1st term in S

(4)
W ] assumes the

same form as the action for the class A NLσM [Eq. 39]. For this reason, the bare and dressed propagators for X̂

matrix field are also given by Eq. 59. Furthermore, the self energy for X̂ is almost identical to that for Ŵ discussed in
Sec. IV, except for one additional diagram illustrated in Fig. 11. It gives the following contribution to the self energy

ΣWAL
b,a;a,b
ε−,ε+;ε+,ε−(k) =− g

2

∫
l

[
k2∆0(l,−ω) + 1

]
= − g

8π
k2 ln(

τ−1
el

ω
). (99)

Here in the first equality, the second term cancels with a contribution from the Jacobian70 and is therefore discarded.
ΣWAL corresponds to the weak antilocalization (WAL) correction and attributes to the renormalization of parameter
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g. In the limit of zero external frequency ω = 0, the infrared cutoff ω should be replaced with the Cooperon dephasing
rate τ−1

φ . This can be obtained by taking into account the higher order diagrams and replacing the bare Cooperon
propagator in Fig. 11 with the full one.

a, ε+ b,−ε−

b,−ε− a, ε+

k k

l

l

a, ε+

b, ε−

b, ε− a, ε+

b, ε−a, ε+

FIG. 11: The WAL self energy diagram for the class AII NLσM.

Application of the Dyson equation shows that last 4 terms in Eq. 98 vanish

f(k, ω) =h2g

∫
e1,ε2


〈
X l,u

ε+1 ,ε
−
1

(k)X† u,l
ε−2 ,ε

+
2

(k)
〉

+
〈
X† l,u

ε+1 ,ε
−
1

(−k)Xu,l

ε−2 ,ε
+
2

(−k)
〉

+
〈
Xu,l

ε+1 ,ε
−
1

(k)X† l,u
ε−2 ,ε

+
2

(k)
〉

+
〈
X† u,l

ε+1 ,ε
−
1

(−k)X l,u

ε−2 ,ε
+
2

(−k)
〉
 . (100)

Comparing this equation with Eq. 55, we draw the conclusion that the correlation function f(k, ω) for the symplectic
metal class is also given by Eq. 56 with the same growth exponent λ. The Cooperon provides contribution of the
order O(g) to the diffusion constant D in the denominator.

VII. CONCLUSION

In this paper, we study many-body quantum chaos, defined via the notion of Lyapunov growth of the out-of-time-
ordered correlator, in a 2D interacting system of fermions subject to quenched disorder, using the non-linear sigma
model approach. We derive an augmented Keldysh version of Finkel’stein’s non-linear sigma model, which can be
used for the evaluation of the out-of-time-ordered correlation functions. In this approach, the diffuson and Cooperon
modes are treated as fundamental low-energy degrees of freedom. We find that the growth exponent is dominated by
the diffuson modes and is not attributed to the Cooperons at the leading order in inverse dimensionless conductance,
g � 1. By computing the growth exponent to the lowest order in perturbation parameter g, we show that the
regularized and unregularized correlators grow exponentially in time at different rates.

This result may seem disconcerting, as it is often assumed in the literature that the two correlators grow at the same
rate. Oftentimes, the unregularized contour is introduced as a “natural” definition of scrambling and is regularized
merely for the sake of technical convenience, in particular to achieve a convenient analytic structure that simplifies
calculations and proofs, such as the proof of the bound11. We do find that the regularized correlator is special, as
opposed to any other arrangement of the thermal factors, in that it gives rise to an exact cancellation of both infrared
and ultraviolet divergencies and the bound does hold at least in the leading order in g. But the Lyapunov exponent
appears to be contour- and operator-dependent quantity.

Furthermore, the regularized correlator is most certainly not an observable, as it is difficult to imagine an experiment,
which would realize the splitting of the thermal averaging and reverse real time. This concern however applies to the
more “natural” definition of the unregularized OTOC just as well (some proposals to measure OTOCs by effectively
performing time reversal do exist34–38, but it may be difficult to accomplish this by keeping the thermal bath intact).
As pointed out by Aleiner et al.15, OTOCs generally are not “observables” but can be dubbed “computables.” This
brings up the question of the physical meaning behind these interesting quantities. The OTOCs are indeed extremely
appealing from the intuitive standpoint as a definition of many-body quantum scrambling, but the issue of their
physical meaning can only be fully clarified by connecting the OTOC definition of many-body chaos and quantum
Lyapunov exponents to observables.

Previous work on single-particle quantum chaos suggests appealing possibilities. Of particular interest here is the
early work of Aleiner and Larkin on quantum chaos in disordered metals (with finite-size impurities that enable
classical chaos to exist in the corresponding classical model). In Ref.71, they showed that the classical Lyapunov
exponent is measurable through quantum interference corrections. It is widely known that the diffusion coefficient
in low-dimensional disordered systems is suppressed at low temperatures – the weak localization effect, which hinges
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on interference of self-crossing trajectories. However, it takes time to develop the first loop and this delay in self-
intersection depends on the Lyapunov exponent (which can be calculated via OTOC if desired). As Aleiner and
Larkin showed, this phenomenon manifests itself in the frequency-dependence of the weak localization conductivity.
It is conceivable that in the presence of interactions, generalized Lyapunov exponents, extractable from OTOCs, would
enter the quantum interference terms instead.

Another important conjecture to consider is a generalization of the Bohigas-Giannoni-Schmit conjecture72,73 to
many-body quantum chaos11. Its standard version states roughly that quantum systems whose classical limit is
classically chaotic (specifically, K-systems) exhibit Wigner-Dyson level statistics. In most cases studied so far, the
presence of many-body quantum chaos (OTOC’s Lyapunov growth) can be reformulated in classical terms. In the
case of billiards and the Larkin-Ovchinnikov model, OTOC’s growth is due to bouncing of the minimal uncertainty
wave packets off of the billiard’s walls or impurities. In the case of SYK models, a classical description does seem
to exist but is hidden in the dual variables. It is conceivable that many-body Lyapunov growth is always indicative
of the existence of a classically chaotic description at least at the pre-Ehrenfest time. In such cases, the many-body
chaotic analogue of the Bohigas-Giannoni-Schmit conjecture should apply and imply universal level statistics.
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Appendix A: Interaction action and vertices coupling the matrix field Ŵ and HS field φ

In Sec. III, we expand the action SQ + Sc[V̂ = 0] (Eq. 32) in powers of Ŵ , and express it in terms of matrices M,
J and J̄ (see Eq. 39). Here we give the definition of these matrices:

Mba,dc
21,43(k1,k2) ≡

[
k2

1 + ihg(ω1 − ω2)
]
δa,dδb,cδ1,4δ2,3δk1,k2

+ ihg [φu,cl(k1 − k2, ω2 − ω3) + F2φu,q(k1 − k2, ω2 − ω3)] δa,dδb,uδc,uδ1,4

+ ihg [−φu,cl(k1 − k2, ω4 − ω1) + F1φu,q(k1 − k2, ω4 − ω1)] δb,cδa,uδd,uδ2,3

+ ihg [φl,cl(k1 − k2, ω2 − ω3) + F2φl,q(k1 − k2, ω2 − ω3)] δa,dδb,lδc,lδ1,4

+ ihg [−φl,cl(k1 − k2, ω4 − ω1) + F1φl,q(k1 − k2, ω4 − ω1)] δb,cδa,lδd,lδ2,3

+ ihgΓ2φu,q(k1 − k2, ω2 − ω3)δa,dδb,lδc,uδ1,4 + ihgΓ̄1φu,q(k1 − k2, ω4 − ω1)δb,cδa,lδd,uδ2,3

+ ihgΓ̄2φl,q(k1 − k2, ω2 − ω3)δa,dδb,uδc,lδ1,4 + ihgΓ1φl,q(k1 − k2, ω4 − ω1)δb,cδa,uδd,lδ2,3,

J b,a2,1 (k) ≡− 2ih
√
g
[
(F2 − F1)φu,cl(k, ω2 − ω1) + (1− F1F2)φu,q(k, ω2 − ω1)− Γ1Γ̄2φl,q(k, ω2 − ω1)

]
δb,uδa,u

− 2ih
√
g
[
(F2 − F1)φl,cl(k, ω2 − ω1) + (1− F1F2)φl,q(k, ω2 − ω1)− Γ2Γ̄1φu,q(k, ω2 − ω1)

]
δb,lδa,l

− 2ih
√
g
[
−Γ̄1φu,cl(k, ω2 − ω1)− F2Γ̄1φu,q(k, ω2 − ω1) + Γ̄2φl,cl(k, ω2 − ω1)− F1Γ̄2φl,q(k, ω2 − ω1)

]
δb,uδa,l

− 2ih
√
g [+Γ2φu,cl(k, ω2 − ω1)− F1Γ2φu,q(k, ω2 − ω1)− Γ1φl,cl(k, ω2 − ω1)− F2Γ1φl,q(k, ω2 − ω1)] δb,lδa,u,

J̄ a,b
1,2(k) ≡− 2ih

√
gφu,q(−k, ω1 − ω2)δa,uδb,u − 2ih

√
gφl,q(−k, ω1 − ω2)δa,lδb,l.

(A1)

As mentioned earlier, up to quadratic order in Ŵ , the action SQ + Sc[V̂ = 0] is given by S
(2)
W (Eq. 39) which is

responsible for interaction vertices depicted in Fig. 3. The amplitudes of these vertices which couples the matrix field
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Ŵ and HS field Φ are

(a) = − ihg [φu,cl(k1 − k2, ω2 − ω1) + F2φu,q(k1 − k2, ω2 − ω1)] ,

(b) = − ihg [−φu,cl(k1 − k2, ω2 − ω1) + F1φu,q(k1 − k2, ω2 − ω1)] ,

(c) = − ihg [φl,cl(k1 − k2, ω2 − ω1) + F2φl,q(k1 − k2, ω2 − ω1)] ,

(d) = − ihg [−φl,cl(k1 − k2, ω2 − ω1) + F1φl,q(k1 − k2, ω2 − ω1)] ,

(e) = − ihgΓ2φu,q(k1 − k2, ω2 − ω1),

(f) = − ihgΓ̄1φu,q(k1 − k2, ω2 − ω1),

(g) = − ihgΓ̄2φl,q(k1 − k2, ω2 − ω1),

(h) = − ihgΓ1φl,q(k1 − k2, ω2 − ω1),

(i) = 2ih
√
gφu,q(−k, ω2 − ω1),

(j) = 2ih
√
g
[
(F2 − F1)φu,cl(k, ω2 − ω1) + (1− F1F2)φu,q(k, ω2 − ω1)− Γ1Γ̄2φl,q(k, ω2 − ω1)

]
,

(k) = 2ih
√
gφl,q(−k, ω2 − ω1),

(l) = 2ih
√
g
[
(F2 − F1)φl,cl(k, ω2 − ω1) + (1− F1F2)φl,q(k, ω2 − ω1)− Γ2Γ̄1φu,q(k, ω2 − ω1)

]
,

(m) = 2ih
√
g
[
−Γ̄1φu,cl(k, ω2 − ω1)− F2Γ̄1φu,q(k, ω2 − ω1) + Γ̄2φl,cl(k, ω2 − ω1)− F1Γ̄2φl,q(k, ω2 − ω1)

]
,

(n) = 2ih
√
g [Γ2φu,cl(k, ω2 − ω1)− F1Γ2φu,q(k, ω2 − ω1)− Γ1φl,cl(k, ω2 − ω1)− F2Γ1φl,q(k, ω2 − ω1)] .

(A2)

Appendix B: One-loop self energy

In this Appendix, we give the explicit expression for the one-loop self energy of matrix field Ŵ . As mentioned above,
the Σa,a;b,b and Σa,b;a,b components vanish, where a, b stand for different augmented space indices. Furthermore, we
have

(Σ)
u,u;u,u

ε−1 ,ε
+
1 ;ε+2 ,ε

−
2

(k) = +
i

4
πhγg2

∫
l,ξ

∆0(k− l,−ω + ξ)

{
∆u(l, ξ)

∆0(l, ξ)

[
F

(B)
ξ − Fε+1

]
+

∆u(l,−ξ)
∆0(l,−ξ)

[
−F (B)

ξ − Fε+1 −ξ
]}

δε1,ε2

+
i

4
πhγg2

∫
l,ξ

∆0(k− l,−ω + ξ)

{
∆u(l, ξ)

∆0(l, ξ)

[
F

(B)
ξ + Fε−1

]
+

∆u(l,−ξ)
∆0(l,−ξ)

[
−F (B)

ξ + Fε−1 +ξ

]}
δε1,ε2

+
i

4
πhγg2

∫
l,ξ

[
∆−1

0 (k,−ω)∆0(l, ξ)∆u(l, ξ) + ∆u(l, ξ)
] [
Fε+1
− Fε+1 +ξ

]
δε1,ε2

+
i

4
πhγg2

∫
l,ξ

[
∆−1

0 (k,−ω)∆0(l, ξ)∆u(l, ξ) + ∆u(l, ξ)
] [
Fε−1 −ξ

− Fε−1
]
δε1,ε2

+
i

4
πhγg2

∫
l

∆0(k− l,−ω + ε1 − ε2)

{
∆u(l, ε1 − ε2)

∆0(l, ε1 − ε2)

[
−F (B)

ε1−ε2 + Fε+1

]
+

∆u(l, ε2 − ε1)

∆0(l, ε2 − ε1)

[
F

(B)
ε1−ε2 − Fε−1

]}
+
i

4
πhγg2

∫
l

∆0(k− l,−ω + ε2 − ε1)

{
∆u(l, ε1 − ε2)

∆0(l, ε1 − ε2)

[
−F (B)

ε1−ε2 + Fε+1

]
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∆u(l, ε2 − ε1)

∆0(l, ε2 − ε1)

[
F

(B)
ε1−ε2 − Fε−1

]}
(B1a)
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(Σ)
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∫
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(Σ)
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4
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4
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(B1f)

The remaining components can also be obtained from the above expressions by interchanging the augmented space
indices u↔ l, and at the same time replacing the generalized bosonic (fermionic) distribution function Γ(B) (Γ) with
Γ̄(B) (Γ̄).
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