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We study the two-dimensional t-J model with second neighbor hopping parameter t′ and in a broad
range of doping δ using a closed set of equations from the Extremely Correlated Fermi Liquid (ECFL)
theory. We obtain asymmetric energy distribution curves and symmetric momentum distribution
curves of the spectral function, consistent with experimental data. We further explore the Fermi
surface and local density of states for different parameter sets. Using the spectral function, we
calculate the resistivity, Hall number and spin susceptibility. The curvature change in the resistivity
curves with varying δ is presented and connected to intensity loss in Angle Resolved Photoemission
Spectroscopy (ARPES) experiments. We also discuss the role of the super-exchange J in the spectral
function and the resistivity in the optimal to overdoped density regimes.

I. INTRODUCTION

The t-J model where extreme correlations are manifest, plays a fundamentally important role in understanding
the physics of correlated matter, including high Tc superconductors1,2. Despite the large progress3–10 made in
numerically solving t-J model and the related Hubbard model, very few analytical techniques are reliable to obtain
the low temperature physics in this model for a broad range of dopings due to its inherent difficulties including
non-canonical algebra for Gutzwiller projected fermions and the lack of an obvious small parameter for perturbation
expansion.

To tackle this challenge, we have recently developed the extremely correlated Fermi liquid (ECFL) theory11,12. It
is a non-perturbative analytical theory employing Schwinger’s functional differential equations of motion to deal with
lattice fermions under extreme correlation U → ∞. The ECFL theory uses a systematic expansion of a bounded
parameter λ ∈ [0, 1], analogous to the expansion parameter 1

2S in the Dyson-Maleev representation of spins13 via

canonical Bosons, and therefore provides a controlled calculation for t-J model. With recent advances in the theory14,
it is possible to represent the ECFL equations to any order in λ in terms of diagrams which are generalizations of the
Feynman graphs, without having to consider previous orders.

The second order O(λ2) ECFL theory gives a closed set of equations for the Green’s function and has been described
in detail in Ref. (15). It has been benchmarked successfully16,17 against the exact results from the single impurity
Anderson model and the dynamical mean field theory (DMFT)3,18–20, in the case of the infinite dimensional large-U
Hubbard model. The benchmarking has also been carried out in one dimensional t-J model, where k-dependent
behavior is inevitable, against the density matrix renormalization group (DMRG) technique. ECFL and DMRG
compare well21 in describing the spin-charge separation in Tomonaga-Luttinger liquid and the relevant strongly k-
dependent self-energy.

Recently in Ref. (15), we have applied the second order ECFL theory into studying the 2-d t-J model with a
second neighbor hopping parameter t′. We calculated the spectral function peak, quasi-particle weight, resistivity
from hole-doping (t′ ≤ 0) to electron-doping (t′ > 0). The high thermal sensitivity in spectral function and small
quasiparticle weight indicate a suppression of an effective Fermi-liquid temperature scale. The curvature of resistivity
vs T changes between concave and convex upon a sign change in t′, implying a change of the effective Fermi-liquid
temperature17. We also compute the optical conductivity and the non-resonant Raman susceptibilities in Ref. (22).

In the present work, we perform a more detailed study in 2-d t-J model. Apart from the spectral function peak
height, we compute the energy distribution curves (EDC) and momentum distribution curves (MDC) which are mea-
sured in the Angle-resolved photoemission spectroscopy (ARPES)23. For the first time from a microscopic theory, we
obtain an asymmetric EDC line shape and a rather symmetric MDC line shape, which are consistent with experimen-
tal observation23. The self-energy is also calculated. It is independent of k in the infinite-d limit16 and has strong
k-dependence in 1-d21. In 2-d our calculation gives a weakly k-dependent self-energy in the normal (metallic) state.
For this reason, we expect the vertex correction to be modest. Then we compute the resistivity within the bubble
scheme neglecting the vertex corrections. Unlike Ref. (15), here we focus on the doping dependence of resistivity vs
T curves at different t′, corresponding to experimental observation24. Spin susceptibility and the NMR spin-lattice
relaxation rate are also calculated with the ECFL Green’s function and related to experiment25,26. At the end, we
discuss the effect of the super-exchange interaction and justify our choice of J .

This work is organized as follows: First we summarize the ECFL formalism to calculate electron Green’s function
and introduce parameter region in Section II. In Section III, we discuss the ECFL spectral properties, resistivity, Hall
response and spin susceptiblity at a fixed typical superexchange J , as well as the effect of changing J . Section IV
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includes a conclusion and some remarks.

II. METHOD AND PARAMETERS

A. Summary of second-order ECFL theory

In the ECFL theory11 the one-electron Greens function in momentum space is expressed as the product of an
auxiliary Greens function g and a caparison function µ̃:

G(k) = g(k)× µ̃(k), (1)

where k ≡ (~k, iωn) and ωn = (2n+1)πkBT is the Matsubara frequencies. Here g(k) is a canonical Fermion propagator
vanishing as 1/ω as ω →∞, and µ̃(k) plays a role of adaptive spectral weight due to the non-canonical nature of the
problem. In the minimal version of second order theory16 including superexchange J , they can be written explicitly
as

µ̃(k) = 1− λn
2

+ λΨ(k) (2)

g−1(k) = iωn + µ− u0

2
+
λ

4
nJ0 − µ̃(k)ε′k − λχ(k), (3)

where µ is the chemical potential, and ε′k = εk−u0

2 . Here u0 is a Lagrange multiplier27 guaranteeing the shift invariance
of t-J model at every order of λ. To elaborate, u0 absorbs any arbitrary uniform shift of the band εk → εk + c, a
constant shift which should not change the results. The band dispersion includes next nearest neighbor hopping is
εk = −2t(cos(kxa0) + cos(kya0)) − 4t′ cos(kxa0) cos(kya0), and Ψ and χ are two self energy parts. These are given
by16

Ψ(k) = −
∑
pq

(ε′p + ε′q + Jk−p)g(p)g(q)g(p+ q − k), (4)

χ = χ0 + λχ1 with χ0 = −
∑
p g(p)(ε′p + 1

2Jk−p), and

χ1(k) = −
∑
pq

(ε′p + ε′q +
1

2
(Jk−p + Jk−q))

×(ε′p+q−k + Jk−q)g(p)g(q)g(p+ q − k). (5)

where
∑
k ≡

kBT
Ns

∑
kx,ky,ωn

, Ns is the number of sites and Jk = 2J(cos kxa0 + cos kya0) is the nearest neighbor

exchange.
Denoting the particle and hole density per-site by n and δ = 1− n respectively, the two chemical potentials µ and

u0 are determined through the number sum rules∑
k

g(k) eiωn0+

=
n

2
=
∑
k

G(k) eiωn0+

. (6)

After analytically continuing iωn → ω + i0+ we determine the interacting electron spectral function ρG(~k, ω) =

− 1
π=mG(~k, ω). The set of Equations (1-6) was solved iteratively on L × L lattices with L = 61, 131, 181 and a

frequency grid with Nω = 214 points. L > 61 is usually for t′ ≥ 0 at low temperatures where the spectral function
peak is higher and sharper than the negative t′ cases; therefore it requires better k resolution.

B. Parameters in the programs

In this calculation, we set t = 1 as the energy scale and t′ is varied between −0.4 and 0.4. We fix the superexchange
to J = 0.17 unless otherwise specified because J , usually is estimated to be in the region from 0 to 0.4, and has a
small effect on the k-dependent behavior and barely influences the averaged physical quantities like resistivity, since
the calculation includes a summation in k space. This argument will be further justified in the last part of Section III.
Besides, we also explore a large region of doping δ from 0.11 to 0.3, where the second order ECFL theory is reliable16,
and present the δ-dependent behavior at different t′. If not specified, ω is in units of t. According to Ref. (2), we
assume t = 0.45 eV when using the absolute temperature scale.
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C. The sign of t′

The significance of the sign of t′ should be kept in mind, and the case t′ > 0 is believed to correspond to electron-
doped cuprate superconductors whereas t′ < 0 is the hole-doped cuprates. The hole-doped case appears highly
non-Fermi liquid like as compared to the electron-doped case in experiments, and our earlier calculations as well as
the present ones give a microscopic understanding of this important basic fact. We emphasize that, despite this, the
t′ > 0 case is also strongly correlated, when we view the T-dependence of the spectral features, where the effective
Fermi scale is much reduced from the bare (band structure) value.

III. RESULTS

A. Spectral properties

1. Spectral Function and Self-energy

In earlier studies23, the ECFL spectral function obtained phenomenologically11,23,28 has been compared with exper-
imental data measured by the angle-resolved photoemission spectroscopy (ARPES) at optimal doping, leading to very
good fits. Later we calculated the spectral function from the raw second order ECFL equations in the symmetrized
model29 but it is only valid for doping δ >∼ 0.25. Here we present the result at optimal doping δ = 0.15 from a
microscopic calculation of ECFL by numerically solving the improved set of second order equations15,16.

We display the energy distribution curves (EDCs) in Fig. (1) and Fig. (2), obtained by fixing k and scanning ω at
optimal doping and various t′. These quantities can be measured in ARPES experiment. Fig. (1) shows the EDCs for
several constant k along nodal (Γ → X) and Fig. (2) for the antinodal direction (Γ → M for t′ > 0). Note that the
value of kF depends on t′ and direction in k space. The fixed value of k is given in terms of kF based on the specific
t′ and direction. The antinodal (M → X) kF for t′ ≤ −0.2 is close to zero. The corresponding EDCs are too close to
resolve clearly; hence those ones are not presented.

We observe that at low temperatures the EDC peak gets sharper as k approaches the Fermi surface.The insets
show that a small heating (∆T ∼ 0.06t) strongly suppresses the region around the Fermi surface k ∼ kF while it
leaves the region away from Fermi surface almost unchanged. As a result, a weaker k-dependence of peak height can
be viewed in the higher temperature. It also shows that the EDC line shape is asymmetric for k < kF , consistent to
ARPES experiment. As t′ decreases from positive (electron doped) to negative (hole doped), the correlation becomes
stronger, and therefore the spectral peak gets lower. Slight anisotropy is found for t′ ≤ 0.2 in that the peak at the
Fermi surface is a bit higher in the nodal direction than in the antinodal direction, indicating a weak k-dependence
of self-energy.

The spectral function of the Dyson self-energy is defined as

ρΣ(~k, ω) = − 1

π
=mΣ(~k, ω). (7)

It is calculated from the spectral function obtained from solving the set of ECFL equations (1-6).

ρΣ(~k, ω) =
ρG(~k, ω)

π2ρ2
G(~k, ω) + {<eG(~k, ω)}2

. (8)

where <eG is calculated through Hilbert transform of ρG. As observed in Fig. (3) (a-e), the self-energy shows
asymmetry from intermediate frequencies at essentially all values of t′ and k, which is consistent with previous
studies16,29, unlike the symmetric curves in standard Fermi liquid theory. Further they all appear to depend weakly
on k. This is qualitatively different from the strong k-dependence of the low energy behaviors of the self-energy in one
dimension21. This weak k-dependence supports our approximation of resistivity formula ignoring vertex correction in
the next section. The inset indicates that the heating makes the most difference in the low energy region by lifting
the bottom. In Fig. (3) (f), ρΣ at kF for different t′ are put together. As t′ increase from negative to positive, its
minimum goes down, indicating a lower decay rate, and the bottom region becomes rounded and more Fermi-liquid
like.

We also study the temperature-dependent ρG(kF ) and ρΣ(kF ) at ω = 0 for kF in the nodal and antinodal direction
in Fig. (4). Also, (a) and (b) shows that the spectral function peak is very sensitive to temperature changes. A sharp
drop happens over a small temperature region (< 1% bare bandwidth), wiping out the quasiparticle peak for T > 400K
in either direction. Another angle to observe this phenomenon is through the self-energy, ρΣ(kF ) = 1/(π2ρG(kF )),
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(d) t′ = −0.2
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(e) t′ = −0.4

FIG. 1: (Color online) EDC line shapes at different fixed values of momentum k in nodal direction (Γ → X). All figures
including insets share the same legend. The parameters are set as δ = 0.15, T = 105K or 400K (inset) and t′ as specified. The
line peak and width in the vicinity of the Fermi surface depends strongly on temperature. The peak magnitude at ω = 0 goes
down as t′ decreases due to stronger correlation.
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(b) t′ = 0.2
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(c) t′ = 0

FIG. 2: (Color online) EDC line shapes at different fixed values of momentum k in antinodal direction (Γ → M). All figures
including insets share the same legend. The parameters are set as δ = 0.15, T = 105K or 400K (inset), and t′ as specified.
The line peak and width in the vicinity of the Fermi surface depends strongly on temperature. The peak magnitude at ω = 0
goes down as t′ decreases due to stronger correlation.

describing the decay rate of a quasiparticle. The huge increase of ρΣ(kF ) upon small warming shows a rapid drop in
the lifetime of a quasiparticle. Note that the ρΣ curvature dependence on t′ is similar to that of the plane resistivity
in Fig. (4) of Ref. (15).

The momentum distribution curves (MDCs) are plotted in Fig. (5) and Fig. (6), obtained by fixing ω and scanning
k in nodal and antinodal directions respectively, at optimal doping and various t′. As expected from the EDC case, the
MDC peak is highest at the Fermi surface ω = 0, which gets broadened the most upon warming. However, unlike the
EDC case, the MDC peaks that are far away from k = 0 or π look more symmetric. This difference is consistent with
experimental findings. The spectral function in the early phenomenological versions of ECFL Ref. (23,28) lead to a
somewhat exaggerated asymmetry in MDC curves, and has been the subject of further phenomenological adjustments
in Ref. (30), to reconcile with experiments. The present microscopic results show that the greater symmetry of the
MDC spectral lines comes about naturally, without the need for any adjustment of the parameters.

2. Fermi Surface

The Fermi surface (FS) structure can be observed in the momentum distribution of spectral function peak height.
We present the case for t′ = −0.2, which is roughly the parameter describing the LSCO cuprate material31, and
vary the doping δ in Fig. (7). The FS is hole-like (open) for low doping (a and b) and becomes electron-like (closed)
for high doping in (d and e). The transition point δ ≈ 0.17 can be explicitly seen in Fig. (8)a which is close to the
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(d) t′ = −0.2
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(e) t′ = −0.4
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(f) varying t′

FIG. 3: (Color online) (a)-(e): The negative imaginary part of self energy ρΣ at different k in nodal (Γ → X) direction with
several t′. Here δ = 0.15, T = 105K and 400K (inset). In all cases, ρΣ has a weak k-dependence and differs mostly at high
energy on the unoccupied side. Increasing temperature raises the bottom of self-energy while leaving its high energy part
almost unchanged. (f): ρΣ at fixed k = kF in nodal direction varying t′. Increasing t′ lowers the bottom of ρΣ and makes its
low energy part more rounded (Fermi-liquid like).
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FIG. 4: The spectral functions at ω = 0: ρG and ρΣ at kF (in nodal and antinodal directions) vs T with varying t′ at δ = 0.15:
legend is the same for each figure.

non-interacting case with tight-binding model in Fig. (8)e, consistent to experimental findings31–33. At higher (hole)
doping which leads to a weaker effective correlation15, the quasiparticle peak height increases and becomes more
Fermi-liquid like.

The FS is only well-defined at zero temperature. Following Ref. (34) we can define a pseudo-FS at finite temperature,
by examining a specifically weighted first moment of the energy:

γkσ(µ, T ) = −
∫
ρG(k, ω)

dω ω

cosh(βω/2)

/∫
ρG(k, ω)

dω

cosh(βω/2)
(9)

We define a pseudo-FS as the surface in ~k space where γkσ changes sign from positive to negative. Shastry has recently
shown34 that at T = 0, the pseudo-FS becomes the exact Luttinger-Ward FS. It is further suggested that it is useful
to study a T dependent effective carrier density

Neff =
∑
kσ

Θ(γkσ(µ, T )), (10)

where Θ is the Heaviside step function, such that Neff = N at zero temperature. At finite temperatures we expect
that Neff 6= N , and the difference between the two gives insights into the different T scales at play. This is especially
applicable in strongly correlated materials, where it is well known17–19 that Gutzwiller correlations result in the Fermi
liquid regime, the strange metal regime and the bad metal regime, followed by a high T regime, with three crossover
temperatures. In Fig. (9), we show how Neff/N changes with temperature for different t′. For t′ ≥ 0, Neff increases
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(d) t′ = −0.2, nodal (Γ→ X)
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FIG. 5: (Color online) MDC line shapes at different fixed values of frequency ω in each curve. All figures including insets share
the legend. Here the parameters are set as δ = 0.15, T = 105K and 400K (inset). k is scanned along the nodal (Γ → X)
direction. In all cases, they have a highest peak with a symmetric shape at ω = 0. Consistently, the peak height decreases with
smaller t′, or stronger correlation.
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(d) t′ = −0.2, antinodal (M → X)
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(e) t′ = −0.4, antinodal (M → X)

FIG. 6: (Color online) MDC line shapes at different fixed values of frequency ω in each curve. All figures including insets share
the same legend. Here the parameters are set as δ = 0.15, T = 105K and 400K (inset). k is scanned along the antinodal
(Γ→M for t′ ≥ 0 or M → X for t′ < 0) directions.
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(a) δ = 0.11 (b) δ = 0.14 (c) δ = 0.17

(d) δ = 0.2 (e) δ = 0.23

FIG. 7: (Color online) The 3D plot of The spectral function peak height at several dopings at t′ = −0.2, T = 63K. The
ridge in the spectral function peak tracks the Fermi surface. As δ increases, we find that the Fermi surface changes from
open (hole-like) to close (electron-like), with the critical δ ≈ 0.17. The ridge height increases generally as δ goes up, showing
decreasing correlation strength.

monotonically toward N as T goes down. And for t′ < 0, Neff decreases from larger to smaller than N upon cooling.
With further lowering T one expects that Neff equals N .

At low temperatures (T � t), we find that the roots of γk are close to the location of the ridge of spectral peak
height shown in Fig. (11), and hence it can be taken as an approximate or a pseudo finite-temperature FS. Fig. (10)
shows that the pseudo-FS is getting close to the true FS at zero temperature as T goes down for both electron-doped
and hole-doped systems.

To understand better the deviations at finite T seen in Fig. (9), Fig. (10) and Fig. (11), it is helpful to recall
a phenomenological spectral-function48 (see Eq. (9) and Eq. (SI-20,21) in Ref. (48)). This function is obtained by
expanding the two self energies in Eq. (2) and Eq. (3) at low energies in a power series. It captures many features of
the ECFL calculations in terms of a few parameters, and is given as

A(k̂, ω) =
z0

π

Γ(ω)

Γ(ω)2 + (ω − VLk̂)2
× (1− ξ√

1 + cαξ2
), (11)

where k̂ is the component of ~k normal to the FS; ξ = 1
∆0

(ω − r VLk̂); Γ(ω) = η + π
ΩΦ

(ω2 + π2k2
BT

2); ∆0 and ΩΦ are
the low and high energy scales; VL is the Fermi velocity, z0, r and cα are numerical constants. The important variable
r ∈ [0, 2] determines the location of a feature in the dispersion known as the “kink”. It is analyzed using this model
spectral function in Ref. (48). Here r = 1 is at the border of two regimes r < 1 with kinks in the unoccupied side,
and r > 1 with kinks in the occupied side of the distribution. In Fig. (12) we plot the location of the peak in the
spectral function Eq. (11) against T, for three values r = 0.5, 1 and 1.5. From this we see that these regimes display
either a shrinking or an enlargement of the FS with increasing T . This corresponds to the types of behavior seen in
the Fig. (10) and Fig. (11).
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(e) Tight-binding model

FIG. 8: (Color online) The spectral function peak height in typical directions of momentum space at several dopings at t′ = −0.2
and T = 63K. All panels share the same legend. Panel (a) shows evidence of Lifshitz transition (Fermi surface changed from
opened to closed) at δ ≈ 0.17, similar to the tight binding model case shown in panel (e). Panel (b), (c), (d) provide other
angles to observe this transition, in complimentary with the 3D plots in Fig. (7).

3. Local density of states

The local density of states (LDOS) is calculated by
∑
~k(1/Ns)ρG(~k, ω) and plotted in Fig. (13) and (14), varying

t′ with fixed δ = 0.15 and varying δ with fixed t′ = 0,−0.4 respectively. This quantity can be measured by Scanning
Tunneling Microscopy35–39.

In Fig. (13), comparing panel (a) and (c), we observe that the LDOS peak gets smoothened and also broadened by
the electron-electron interaction. Although the relative position for different t′ remains unchanged after turning on
interaction, the strong correlation brings them closer by renormalizing the bare band into the effective one, as shown
in the inset of Fig. (22). From panel (a) to (b), raising temperature tends to have a stronger suppression on the peak
with lower t′. It means the system with higher t′ has a higher Fermi-liquid temperature scale, and therefore it is more
robust to heating, which is consistent to the previous findings of the spectral function.

In Fig. (14), from the electron-like panels (a, c, e) to the strongly hole-like panels (b, d, f), the LDOS peaks shifts
from ω > 0 to ω < 0. In contrast to the noninteracting tight binding model in (e) and (f) where the peak height is
independent of doping, (a) - (d) have smaller peaks in general and show that the height decreases at smaller doping
with more weight in the lower Hubbard band (insets). This is again a feature of strong correlation. As the system
approaches the half-filling limit (δ → 0), the correlation enhances and further suppresses the quasiparticle peak,
which contributes to the central peak of LDOS. We also observe that (a) is similar to the density-dependence of the
location of Kondo or Abrikosov-Suhl resonance in Anderson impurity problem16. It can be understood as a generic
characteristic in strongly correlated matter given the relation between density and the effective interaction.
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FIG. 9: (Color online) Neff/N vs T at δ = 0.15 and various t′. For electron-doped (t′ ≥ 0) case, Neff increases as one lowers
the temperature, while in the hole-doped (t′ = −0.2) case, Neff decreases upon cooling down. At lower temperature, one
expects that Neff equals N .
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FIG. 10: (Color online) Comparison between the non-interacting FS and pseudo-FS at low and high temperature. Here we fix
δ = 0.15 and vary t′. Generally, as we cool down the system, the pseudo-FS approaches the non-interacting system or FS from
the right (t′ = −0.2) or left (t′ = 0, 0.2) side. The exception is that at T = 105K and t′ = −0.2 the pseudo-FS turns out to
be closed (electron-like). This delicate effect is a consequence of the redistribution of weight in the spectral function, and its
thermal sensitivity is presumably related to the nearby Lifshitz transition point for the choice of t′ = −.2. We cannot access
very low T for our system sizes, but it is expected that the pseudo-FS flips back to being hole like at a low T .

B. Resistivity

We next present the resistivity under strong electron-electron interaction. The popular bubble approximation is
used and the current correlator is writen as 〈J(t)J(0)〉 ∼

∑
k v

2
kG2(k). Here the velocity ~vαk = ∂εk

∂kα
represents the bare

current vertex. In tight binding theory the sign oscillation in vαk leads to a reduction in the average over the Brillouin
zone and therefore diminishes the magnitude of the vertex corrections. Also the weak k-dependence of self-energy in
Fig. (3) reduces the importance of vertex corrections.

In our picture of quasi-two dimensional metal, there are 2-d well separated sheets, by a distance c0 in the c direction.
Thus each sheet can be effectively characterized by the 2-d t-J model. Its DC resistivity ρxx can be written as follows:

ρxx = ρ0 × ρ̄xx =
ρ0

σ̄xx
, (12)

σ̄xx = (2π)2

∫ ∞
−∞

dω (−∂f
∂ω

) 〈ρ2
G(~k, ω)

(~vxk)2

a2
0

〉k, (13)
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(e) t′ = 0.2, T = 105K
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(g) t′ = −0.2, T = 270K
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(h) t′ = −0.4, T = 105K

FIG. 11: (Color online) Comparison between the pseudo-FS from γk (blue), the spectral peak (red) and the non-interacting FS
(dashed) at various t′ and fixed δ = 0.15. Note that the spectral peak (location) curve and the pseudo-FS are not exactly the
same, but deviate from the non-interacting FS in the same direction. As T decreases, the difference between them gets smaller.
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FIG. 12: The location of the peak of the spectral function A(k̂, ω) in Eq. (11) in units of k̂PVL versus T, at three values of
r. The model spectral function, Eq. (11), is from Ref. (48). It is obtained by a low energy expansion of the two ECFL self

energies Ψ and Φ (equivalently χ) in Eq. (2) and Eq. (3). As T → 0 all the curves move towards k̂ = 0 as one expects, but the
approach from finite T display significant differences depending on the value of r. The values of the parameters used here are
η = .01,∆0 = 50,ΩΦ = 5000 (in meV), and cα = 10. An estimated48 VL ∼ 2 eVA0 gives the shift in wavevector ∆k̂ ∼ .05A0,
at 500K for r = 1.5.

where ρ̄xx and σ̄xx represents dimensionless resistivity and conductivity respectively; ρ0 ≡ c0h/e
2 (∼ 1.718mΩ cm)

serves as the scale of resistivity; 〈A〉k ≡ 1
Ns

∑
~k A(~k); f is the Fermi distribution function. We present our results

in absolute units in Fig. (15) by putting the measured values of lattice constant into the formula and converting the
energy unit using t = 0.45 ev ≈ 5220K. The scale of ECFL resistivity is consistent with the experimental findings in
cuprates24.
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(c) Tight-binding model for reference, T = 0

FIG. 13: (Color online) Local density of states with varying t′ while fixing δ = 0.15, at T = 105K and 400K from ECFL and
at T = 0 from the bare case. All figures share the same legend.

In our previous study15, a significant finding was that the curvature of resistivity changes when t′ varies. Here we
focus more on the δ-dependent behavior of resistivity as shown in Fig. (15). For a given t′, decreasing the hole doping
changes the curves from concave to linear then to convex and varying t′ shifts the crossover doping region. This
phenomenon signals a change of the effective Fermi temperature scale. In higher hole doping (lower electron density),
there is less influence of the Gutzwiller projection. Hence the system has less correlation effectively and displays more
Fermi-liquid-like behavior, namely, T 2-dependence, and hence positive curvature. In the case with low hole doping,
i.e. closer to the Mott insulating limit, the correlation is relatively stronger and suppresses the Fermi liquid state into
a much lower temperature region, which is usually masked by superconductivity. In the displayed temperature range
of Fig. (15), the system shows strange metal or even bad metal behaviors17 instead, and hence negative curvature.
The curvature can be explicitly calculated as the second derivative of ρxx with respect to T shown in Fig. (16), which
displays features qualitatively similar to the experiments24,40–43.

To explore the crossover from the Fermi liquid (ρxx ∝ T 2) at low T to the strange metal (ρxx ∝ T ) at higher T , we
define a simple fitting model:

ρapprox = const× T 2

TFL + T
. (14)

This fit gives Fermi liquid behavior for T . TFL and then crosses over to strange metal linear behavior at T & TFL.
Thus, TFL serves as a crossover scale describing the boundary of Fermi liquid region as well as estimating the strength
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(e) t′ = 0, Tight-binding model for reference, T = 0
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(f) t′ = −0.4, Tight-binding model for reference, T = 0

FIG. 14: (Color online) Local density of states with varying δ while fixing t′ = 0 and −0.4, at T = 105K and 400K from ECFL
and at T = 0 from the bare case. All figures share the same legend.
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FIG. 15: (Color online) Resistivity versus T for varying hole doping δ and t′ = −0.2,−0.1, 0, 0.2 (some data in (a) (b) and (d)
can be found in Ref. (15)). The curvature tends to change from negative (convex) to positive (concave) with increasing doping.

of correlation. We find our data fits into this model well up to intermediate temperature with fitted coefficient and
TFL.

Table. I shows the value of TFL in various sets of δ and t′. In all cases, the TFL is considerably smaller than the
Fermi temperature in non-interacting case at the order of bandwidth, as a result of strong correlation. In experiment,
a small enough TFL prevents the observation of Fermi liquid because at low enough temperature the superconducting
state shows up instead24. Relatively, TFL is further suppressed by smaller second neighbor hopping t′ or smaller
doping δ, either of which strengthens the effective correlation. Negative t′ increases the resistivity and shrinks the
temperature region for Fermi liquid. In this sense, decreasing t′ turns up the effective correlation by depressing the
hopping process. On the other hand, decreasing doping leaves less space for electron movement, which also effectively
increases the correlation and suppresses TFL. δ and t′ both control the effective correlation strength and hence TFL,
as shown in Table. I. Their similar role can also be understood in the fact that they both change the geometry of the
Fermi surface which determines the conductivity at T �W , where W = 8t is the bare bandwidth. In general, either
increasing δ with fixed t′ or increasing t′ with fixed δ changes the Fermi surface from hole-like to electron-like.
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FIG. 16: (Color online) Curvature of resistivity versus T for a range of doping δ and t′ = −0.2,−0.1, 0 and 0.2. For most
values of t′, there is a blue area towards the right-bottom representing positive (concave) curvature akin to a Fermi liquid.
Towards the left-top we find a a red area with negative (convex) curvature resembling a strange (or bad) metal17. This trend
is consistent with experimental results24.

C. Hall number

Within the bubble scheme, we also calculate the Hall conductivity19,44–46 as σxy = −2π2/ρ0 × ( Φ
Φ0

) × σ̄xy. The
dimensionless conductivity can be written as:

σ̄xy =
4π2

3

∫ ∞
−∞

dω (−∂f/∂ω)〈ρ3
G(k, ω)η(k)〉k, (15)

where η(k) = ~2

a4
0
{(vxk)2 ∂

2εk
∂k2
y
− (vxkv

y
k) ∂2εk
∂kx∂ky

}; Φ = Ba2
0 is the flux47, and Φ0 = hc/(2|e|) is the flux quantum. In these

terms, we can compute the Hall number as

nH = − 1

4π2

σ̄2
xx

σ̄xy
. (16)
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Fermi liquid temperature TFL (K)

↓ δ → t′ −0.2 −0.1 0 0.1 0.2

0.12 10.0 18.4 33.1 68.2 117.6

0.15 15.8 31.1 66.3 135.4 218.0

0.18 24.4 53.7 117.4 245.2 420.9

0.21 37.3 78.8 189.5 360.3 618.4

0.24 56.8 145.2 274.4 569.5 820.5

TABLE I: The Fermi liquid temperature TFL obtained from fitting the data with Eq. 14. Increasing either t′ (horizontally) or
doping δ (vertically) increases TFL, signaling weaker correlations.
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FIG. 17: (Color online) Hall number vs doping at different t′ and T = 105K, where t′ controls the scale of nH .

Note that in this definition, the sign of the Hall number is opposite to that in Ref. (15). In this definition, nH shares
the same sign with Hall coefficient RH , consistent to the experimental convention24,40–43,49–53. We present the ECFL
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Hall number nH in Fig. (17) together with the non-interacting one nH0 for comparison. In all cases of different t′,
nH is around 60% of nH0 and decreasing t′ suppresses the scale of nH . It indicates the reduction of effective charge
carrier due to strong correlation. Therefore, the Hall number increases when the effective correlation turns down
either by increasing t′ or increasing δ, as shown in Fig. (17). In Panel d, nH remains smooth when crossing the
Lifshitz transition δ ≈ 0.17, where the Fermi surface changes from opened to closed as presented in Section. III A,
while nH0 shows a crossover to a steeper region.

D. Spin susceptibility and the NMR relaxation rate

The imaginary part of spin susceptibility can also be calculated in the Bubble approximation:

χ′′(k, ω) =

∫ ∞
−∞

dy〈ρG(p, y)ρG(p+ k, y + ω)〉p

(f(y)− f(y + ω))

(17)

while the real part χ′ can be obtained from calculating the Hilbert transform of χ′′. χ′′ is shown in Fig. (18) for
hole-doped (t′ = −0.2) and electron-doped (t′ = 0.2) cases at various fixed k. In both cases, we see the quasi-elastic
peaks in the occupied region for small k which disappears gradually as k increases.

Fig. (19) presents the k-dependent χ′ at zero frequency, in comparison with the non-interacting χ′0 in the inset.
We observe that χ′ is much smaller than χ′0 due to the broadening in the spectral function as a result of strong
interaction. Despite the scale difference, the k-dependent χ seems closer to χ0 in the electron-doped case (t′ = 0.2)
than the hold-doped case (t′ = −0.2), consistent to the previous discussion that the system is more Fermi-liquid-like
for positive t′. The knight shift χ′(k = 0, ω = 0) of the system is almost independent of temperature and therefore
not shown specifically in figure.
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FIG. 18: χ′′ at different k for δ = 0.15, T = 63K and t′ = ±0.2.

The relaxation rates for cuprates are given by25,26,56

1

T1
=
γ2kBT

µ2
B

∑
q

A2
q

χ′′(q, ω0)

ω0
(18)

where Aq is a form factor that is determined by the local geometry of the nucleus25,26,56, and ω0 is nuclear frequency
which is assumed to be very small. Our scheme of calculation is not yet refined enough to capture the detailed difference
between the Copper and Oxygen relaxation rates in cuprates. Hence, we will content ourselves by presenting the case
with Aq = 1, which should correspond to the inelastic neutron scattering (INS) derived relaxation rate in Ref. (25)
from Walstedt et. al.. We plot 1/T1 vs T at δ = 0.15 and various t′ in Fig. (20). For t′ = −0.2, 1/T1 increases sub-
linearly with temperature. It shows roughly the same trend as the Copper rates shown in Ref. (25), but is somewhat
steeper than the derived INS rate therein.
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FIG. 19: χ′ at ω = 0 for δ = 0.15, T = 63K and t′ = ±0.2. Inset shows the corresponding non-interacting χ′
0. χ′ is largely

suppressed from the bare case due to strong interaction.
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FIG. 20: Relaxation rate from Eq. (18) (arb units) at δ = 0.15 and different t′. The curve becomes more sublinear as t′

decreases from positive to negative. The sub-linear curve at t′ = −0.2 looks similar to the Copper relaxation rate in Ref. (25).

E. J variation

Above we have discussed the ECFL results at J = 0.17. We next address the question of variation with J . Fig. (21)
shows the EDCs and MDCs at different J fixing t′ = 0. Turning on J raises the peak in EDC (a→c→e) and MDC
(b→d→f) slightly. Also, increasing J separates the other EDC lines further away from k = kF while brings the other
MDC lines closer to ω = 0.

We find that J has an effect on the effective bandwidth. This can be seen in the EDC and MDC dispersion relation
in Fig. (22). As J increases, the EDC and MDC band separate out more widely, though they are still very narrow
(due to strong correlations) compared to the bare bandwidth. The MDC dispersion shows a high energy feature,
namely the kink (or waterfall). Due to the finite lattice size and to second order approximation made in the present
work, the low energy kink discussed in Ref. (48) cannot be resolved clearly. Another angle to view the effect of J is
through the 3D-plot of the nodal direction spectral function ρG(k, k, ω) in Fig. (23). It appears that turning on J
rotates the spectral function counterclockwise with respect to the z axis with k = kF and ω = 0 if viewed from above.
In other words, increasing J extended the renormalized bandwidth with no effect on the Fermi surface location since
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FIG. 21: (Color online) EDC and MDC line shapes at different values of superexchange J . All EDC figures (a, c, e) or MDC (b,
d, f) figures share the same legend respectively. Here the parameters are set as δ = 0.15, t′ = 0, T = 105K and J = 0, 0.17, 0.4,
in the nodal (Γ → X) direction. Increasing J the peak at the chemical potential becomes somewhat higher, but it remains
qualitatively similar at all J . Besides, increasing J separates the EDC lines further away from k = kF and brings the MDC
lines closer to ω = 0.

all curves cross at the same kF . That said, small variation of J does not change the system behavior qualitatively,
and only slightly in quantitative detail. Therefore it is reasonable to set J = 0.17 from experiment as a representative
number and to explore the k, ω, t′ and δ-dependence of the system.

From the discussion above, we expect the k-average physical quantity like resistivity with significant contribution
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FIG. 22: (Color online) EDC and MDC dispersion relation at different values of superexchange J . In both cases, increasing J
expands the renormalized bandwidth, consistent to Fig. (21) of EDC and MDC lines. Both insets show that the renormalized
band is strongly suppressed by correlation compared with the bare one. The energy and k resolution in the present study is
not fine enough to deduce the detailed properties of the low energy kinks (for ω ∼ .07 eV) discussed phenomenologically within
ECFL in Ref. (48).

from the area around the Fermi surface to be insensitive to J variation. Fig. (24) shows the resistivity at different
J for fixed t′. As expected, varying J from 0 to 0.4 does not make a qualitative difference in the resistivity of the
normal state, although it has a relatively stronger effect on the case with larger |t′|.

IV. CONCLUSION

We apply the recently developed second order ECFL scheme15,16 into studying the 2-d t-J model with second
nearest neighbor hopping t′. We have presented the spectral function, self-energy, LDOS, resistivity, Hall number and
dynamical susceptibility at low and intermediate temperatures, with t′ varying from −0.4 to 0.4 and within a large
density region around optimal doping.

The spectral properties are shown to be consistent with ARPES experiment57–61 on correlated material. The asym-
metric EDCs and more symmetric MDCs are observed as expected from the previous study on the phenomenological
model of simplified ECFL theory23. The weak k-dependence of self-energy indicates the relative unimportance of ver-
tex corrections at the densities considered, and gives credence to the use of the bubble approximation for transport.

The curvature change on the resistivity ρ − T curve arises from varying t′ and δ, signaling different strength of
effective correlation. Both t′ and δ affect the effective electron-electron correlation because t′ controls second neighbor
hopping process and δ leaves more or less space for electron movement. As a feature in 2-d, the combination of them
determines the geometry of the Fermi surface and therefore the low energy behaviors.
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(a) J = 0, T = 105K (b) J = 0, T = 400K

(c) J = 0.4, T = 105K (d) J = 0.4, T = 400K

FIG. 23: (Color online) 3-d plot of the nodal direction spectral function ρG(k, k, ω). Consistent with Fig. (21), turning on J
increases the peak height and rotates ρG counterclockwise with respect to the z axis with k = kF and ω = 0 if viewed from
above. This is another facet of the steeper dispersion with J noted in Fig. (22).
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FIG. 24: (Color online) Resistivity at δ = 0.15 versus T for various J and t′ (same legend for all panels). In all t′, we observe
J variation of the resistivity is small. As |t′| becomes large J has a somewhat larger influence on the resistivity.
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J. Mravlje, A. Georges and B. S. Shastry, arXiv:1309.5284 (2013), Phys. Rev. B 88, 235132 (2013); B. S. Shastry, E.
Perepelitsky and A. C. Hewson, arXiv:1307.3492, Phys. Rev. B 88, 205108 (2013).
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