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When two 2D electron gas layers, each at Landau level filling factor ν = 1/2, are sufficiently close
together a condensate of interlayer excitons emerges at low temperature. Although the excitonic
phase is qualitatively well understood, the incoherent phase just above the critical layer separation
is not. Using a combination of tunneling spectroscopy and conventional transport, we explore the
incoherent phase in samples both near the phase boundary and further from it. In the more closely
spaced bilayers we find the electronic spectral functions narrower and the Fermi energy of the ν = 1/2
composite fermion metal smaller than in the more widely separated bilayers. We attribute these
effects to a softening of the intralayer Coulomb interaction due to interlayer screening.

I. INTRODUCTION

At high magnetic field B double layer two-dimensional
electron systems (2DESs) can exhibit strongly corre-
lated electronic phases which depend fundamentally on
Coulomb interactions between electrons in opposite lay-
ers. For example, in a bilayer 2DES in which the car-
rier density in each layer equals one-half the degeneracy
of the lowest spin-resolved Landau level created by the
magnetic field, the system will condense into an excitonic
phase in which electrons in one layer are bound to holes in
the other, provided that the layer separation and temper-
ature are sufficiently small1. Conversely, if the separation
between the layers is large, interlayer Coulomb interac-
tions are weak and exciton condensation does not occur.
Nevertheless, Coulomb interactions between electrons in
the same layer render the individual 2DESs very strongly
correlated. In the limit of very large layer separation
each 2DES, in this half filling state, is well described as
metallic phase2 of composite fermions (CFs)3, electrons
to which two fictitious flux quanta are attached.
Of interest here is the degree to which interlayer in-

teractions at intermediate layer separations modify the
compressible 2DES states in each layer. This question is
important since the precise nature of the phase transition
to the excitonic phase remains poorly understood. While
this transition appears to be first-order (at least in some
situations)4–6, the precise nature of the competing phase
remains unclear.
We report here a set of experiments, comprising inter-

layer tunneling spectroscopy and conventional magneto-
transport, on two types of bilayer 2DES samples which
differ dimensionally in only one way: the thickness of the
barrier separating the two layers. The samples with the
narrower barrier allow for studies relatively close to the
excitonic phase boundary, while the wider barrier sam-
ples provide access to the weakly coupled regime. The
direct comparison of tunneling and resisitivity data on
these two classes of samples demonstrates that interlayer
interactions (screening) soften the Coulomb repulsion be-

tween electrons within each layer. This softening mani-
fests as a narrowing of the electronic spectral functions
of each layer, which are directly detected via the tunnel-
ing measurements, and a reduction in the Zeeman en-
ergy required to fully spin polarize the 2DES as observed
in tilted field magneto-transport measurements. Thus,
while our measurements do not reveal qualitatively new
2DES phases at layer separations near the excitonic phase
boundary, they do demonstrate that the energetics of
each 2DES in the bilayer is significantly renormalized by
interlayer interactions. A simple model, based on dipolar
interactions between electrons, is roughly consistent with
the observed magnitude of this renormalization.

II. EXPERIMENTAL

The samples employed in this work are modulation-
doped GaAs/AlGaAs heterostructures consisting of two
GaAs quantum wells separated by a barrier layer of
AlxGa1−xAs. Two classes of such double quantum well
(DQW) samples were grown and studied. In one, the
barrier separating the GaAs quantum wells is relatively
narrow (db = 10 nm) while in the other it is wide (db = 38
nm)7. In both cases, the GaAs quantum wells are of
width w = 18 nm and are flanked by thick Al0.32Ga0.68As
cladding layers. Si delta-doping sheets are positioned in
these cladding layers roughly 22 nm above and below
the DQW. These dopants populate the lowest subband
in each quantum well with a 2DES of nominal density
n = 5.5 × 1010 cm−2. As grown, the low temperature
mobility of the 2DESs ranged from ∼ 1 × 106 cm2/Vs
in the db = 10 nm samples to ∼ 2.5 × 106 cm2/Vs in
the db = 38 nm samples. The samples are patterned so
that the 2DESs are confined to a 250 µm square region,
with arms extending to ohmic contacts to the individ-
ual 2D layers8. These contacts enable both conventional
magneto-transport measurements on the individual lay-
ers as well as direct measurements of the tunneling cur-
rent I flowing between the layers in response to an ap-
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FIG. 1. (color online) Tunneling current-voltage character-
istics at ν = 1/2 (per layer) and T = 50 mK in the nar-
row (blue, dashed) and wide (red, solid) barrier samples, at
B = 4.13 T and B = 4.24 T, respectively. The tunnel current
has been normalized by its peak value at positive interlayer
bias (Ipeak = 85 pA and 1.04 nA for the narrow and wide
barrier data, respectively.)

plied interlayer voltage V . Independent control over the
electron density in each layer is enabled by electrostatic
gates on the top and back sides of the samples.
For most of the data presented here, the 2D layer den-

sities are tuned into equality9 and range from n ≈ 3.9
to 7.3 × 1010 cm−2. Over this range, the ratio of the
center-to-center quantum well separation d = db + w to
the magnetic length ℓ = (~/eB)1/2 at half-filling of the
lowest Landau level is 2 . d/ℓ . 2.6 for the narrow bar-
rier sample and 3.9 . d/ℓ . 5.4 for the wider barrier
sample. For comparison, the transition to the excitonic
phase, observable in the narrow barrier samples at still
lower densities1, occurs near d/ℓ =1.8.

III. RESULTS

Figure 1 displays typical interlayer tunneling current-
voltage (IV ) characteristics for both the narrow barrier
(dashed blue trace) and the wide barrier samples (solid
red trace) at high magnetic field and low temperature.
In both cases the Landau level filling fraction of the in-
dividual 2D layers is ν = nh/eB = 1/2 (at zero inter-
layer bias9). The applied magnetic field B (and hence
the per layer electron density) is very nearly the same
in the two cases (B = 4.13 vs. 4.24 T). Both traces ex-
hibit well-known features of lowest Landau level inter-
layer tunneling: A substantial suppression of the tunnel-
ing current around zero bias and a broad peak in the
current at finite voltage10–12. The suppression around
zero bias is a Coulomb pseudogap arising from the inabil-
ity of the interacting 2DES to rapidly accommodate the
near-instantaneous injection (or withdrawal) of a tunnel-
ing electron at low energies, while the width of the peak
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FIG. 2. (color online) a) Voltage location of the peak tunnel

current vs. n1/2 in the narrow (open blue dots) and wide
(solid red dots) barrier samples at T = 50 mK. Dashed lines
are linear least-squares fits, extrapolated to zero density. b)
Full width at half-maximum (FWHM) of tunneling peaks vs.

n1/2.

at finite voltage reflects the interaction-driven broaden-
ing of the otherwise massively degenerate single-particle
Landau level13–22.

In spite of these common features, interlayer tunneling
in the wide and narrow barrier samples differs in ways
both obvious and subtle. For example, as Fig. 1 makes
clear, the pseudogap region of suppressed tunnel current
around zero bias is broader, and the voltage location of
the peak in the tunnel current is greater in the wide bar-
rier sample than in the narrow barrier one. Less obvious
from the figure are systematic differences in the width of
the tunneling peaks and in the nature of collapse of the
tunnel current in the pseudogap region. For our present
purposes we focus on the width and voltage location of
the tunneling peak.

Figure 2a displays the voltage location Vmax of the
peak in the tunneling current at ν = 1/2 versus the
square root of the per layer electron density, n1/2, for
both the wide (red) and narrow (blue) barrier samples.
In both cases, the dependence is linear over the avail-
able data range, but extrapolates to a significant negative
voltage, Vex, in the zero density limit. As reported and
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discussed previously, Vex is interpreted as arising from
the final state excitonic attraction between a tunneled
electron and the hole it leaves behind in the source 2D
layer23. In a simple model, one expects Vex = −αe2/ǫd,
with ǫ ≈ 13ǫ0 the dielectric constant of the GaAs host
and α a numerical factor dependent on the ratio d/ℓ of
the layer separation d and the magnetic length ℓ. For
the data in Fig. 2a, we find α ≈ 0.5 and α ≈ 0.7 for
the narrow and wide barrier samples, respectively24. (As
mentioned above, d = db+w, is the center-to-center sep-
aration between the quantum wells.) That α is nearer to
unity in the wider barrier samples makes sense since the
charge defects become, in relative terms, more and more
point-like as d/ℓ is increases.

At ν = 1/2 the mean intralayer Coulomb energy is
of order Ec = e2/ǫℓ = (e2/ǫ)(4πn)1/2, ignoring small
corrections arising from the finite thickness w of the 2D
layers and possible mixing with higher Landau levels.
Hence, if such interactions dominate the tunneling spec-
trum, it is not surprising that Vmax exhibits a linear de-
pendence on n1/2. Interestingly, however, the different
slopes of the data sets in Fig. 2a reveals that this scaling
of Vmax with n1/2 is sensitive to the separation d between
the quantum wells. This is not expected in a model of the
tunneling process based upon independent 2D electron
systems, modified only by a simple final state excitonic
correction. Writing eVmax = eVex + β(e2/ǫℓ), the fits to
the data in Fig. 2a reveal β = 0.52 and β = 0.46 for
the wide and narrow barrier samples, respectively. The
coefficient β reflects the strength of intralayer Coulomb
interactions and its observed dependence on the layer
separation d indicates that those interactions are weaker
in the narrow barrier sample than in the wider barrier
one. We attribute this weakening to enhanced screen-
ing arising from interlayer Coulomb interactions in the
narrow barrier sample.

Additional evidence for reduced intralayer Coulomb in-
teractions in the narrow barrier tunnel junctions is illus-
trated in Fig. 2b, where the full width at half maximum
(FWHM) of the tunneling peak is plotted vs. n1/2. In
the independent layer approximation, the tunneling peak
represents a convolution of the Coulomb-broadened elec-
tronic spectral functions of the two 2D layers. That the
tunneling peak widths in the narrow barrier sample are
15 - 25% smaller than those in the wide barrier sample in-
dicates a failure of this approximation and again suggests
that interlayer screening softens the Coulomb repulsion
between electrons in the same 2D layer.

To complement the preceding tunneling spectroscopic
evidence that Coulomb interactions in a single 2DES are
softened by the nearby presence of a second 2D layer, we
turn to tilted field measurements of the ordinary longi-
tudinal resistance Rxx. It is well known that the spin
polarization of a 2DES at ν = 1/2 is incomplete at low
electron density25–29. Moreover, a transition from partial
to complete spin polarization can be driven by adding an
in-plane magnetic field B|| to the perpendicular field B⊥

which establishes ν = 1/2. The added in-plane mag-

netic field increases the spin Zeeman energy relative to
the Coulomb energy e2/ǫℓ since the former depends on
the total magnetic field Btot but the latter only on the
fixed perpendicular field component, B⊥. Ignoring addi-
tional effects of the in-plane field arising from the finite
thickness of the 2D system30, this increase of the Zeeman
energy obviously favors maximal spin polarization.

In the Chern-Simons theory2 of the half-filled lowest
Landau level, the strongly interacting electron system
is approximated by a weakly interacting Fermi sea of
composite fermions3. At low electron density two such
Fermi seas are present, one for “up” spin CFs and one for
“down” spins. The difference in the depths of these Fermi
seas (i.e. their Fermi energies) is just the Zeeman energy
EZ = |g|µBBtot. (Here g ≈ −0.44 is the conduction
band g-factor of GaAs and µB is the Bohr magneton.)
As EZ is increased, via tilting at fixed B⊥, relative to the
Fermi energies, the minority spin band depopulates and
the 2DES becomes fully polarized. This transition occurs
when the Zeeman energy EZ matches the Fermi energy
EF of the majority spin CFs31,32. In a clean 2DES the
Fermi energy of CFs at ν = 1/2 is determined entirely by
Coulomb interactions: EF = γe2/ǫℓ, with γ a numerical
factor of order unity33. Conveniently, experiments have
shown that Rxx at ν = 1/2 increases steadily as B|| is
applied, but then saturates when the spin polarization is
complete34. Hence, the total magnetic field B∗

tot at which
saturation sets in provides a transport determination of
the CF Fermi energy: EF = |g|µBB

∗
tot.

Figure 3a compares tilted field measurements of Rxx

at ν = 1/2 for the narrow and wide barrier samples. The
samples are density balanced, ν = 1/2 in both 2D layers,
but Rxx is measured with current (typically 1 nA) flow-
ing in only one of the two layers. In order to fairly com-
pare the samples, their carrier densities were adjusted to
near equality: n = 4.25 vs. 4.35× 1010 cm−2, per layer,
for the narrow and wide barrier samples, respectively.
Both samples show Rxx rising steadily with Btot (with
B⊥ fixed) before saturating at a resistance roughly twice
that observed at B||=0. Interestingly, the “knee” in the
resistance occurs near B∗

tot ≈ 4.8 T in the narrow barrier
data but at about B∗

tot ≈ 6 T in the wide barrier case.
This implies that the CF Fermi energy in the narrow
barrier sample is roughly 20% smaller than in the wide
barrier sample.

As a check on the above conclusions, the top and back-
side gates on the narrow barrier sample were adjusted
so that only one of its two quantum wells contained a
2DES and the density of that 2DES was set to the same
value (n = 4.25× 1010 cm−2) as in the density balanced
situation just discussed. Once again, the tilted field de-
pendence of Rxx at ν = 1/2 was measured. As Fig.
3b demonstrates, this arrangement led to essentially the
same total magnetic field B∗

tot needed to fully polarize the
electron spins in the 2DES as found in the wide barrier,
density balanced, bilayer sample. Moreover, the general
shape of the Rxx vs. Btot dependence more closely re-
sembles that found in the wide barrier sample than in the
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FIG. 3. (color online) Tilted field response of the longitudi-
nal resistance Rxx at ν = 1/2 and T = 50 mK. Perpendicular
magnetic field fixed at B⊥ ≈ 3.56 T. a) Comparison between
narrow barrier (open blue dots) and wide barrier (solid red
dots) samples. Both 2D layers at ν = 1/2 with the resistance
measured in one of the layers. b) Comparison of narrow bar-
rier sample with both layers at ν = 1/2 (open blue dots) vs.
situation with one layer at ν = 1/2 and the other fully de-
pleted (solid black dots). Upward arrows suggest transition
points, B∗

tot, to full spin polarization.

same narrow barrier sample with both layers at ν = 1/2.
These observations strongly support our conclusion that
the different spin polarization fields B∗

tot found in the nar-
row and wide barrier bilayer samples is a genuine inter-
layer interaction effect, and not an artifact arising from
the comparison of distinct heterostructure samples. Fi-
nally, these results indicate that the effectiveness of inter-
layer screening attenuates quickly with increasing layer
separation.

IV. SUMMARY AND CONCLUSIONS

The tunneling spectroscopy and magneto-resistance
measurements described here are mutually consistent and

support our conclusion that interlayer screening substan-
tially softens intralayer Coulomb interactions and reduces
the CF Fermi energy in closely spaced bilayer 2D systems.
The magnitude and character of such softening is deter-
mined both by the distance between the layers and the
physical properties (compressibility, conductivity, etc.)
of the screening layer. In the present instance, with both
layers at ν = 1/2, each 2DES is a compressible, conduct-
ing quantum fluid. Hence, interlayer screening at some
level should be present. If, in considering the electron-
electron interactions in one of the layers, the other is
simply treated as a perfectly conducting plane, then the
elementary concept of image charges suggests that those
interactions become dipole-like, thus strongly suppress-
ing the long range coulombic repulsion between electrons.
In this highly over-simplified model the magnitude of this
suppression is quite substantial. For example, the repul-
sive force between two point-like electrons separated by
r = n−1/2 = 2

√
πℓ (at ν = 1/2) is reduced by almost

30% if a perfectly conducting parallel metallic plane is
positioned a distance d = 2ℓ away. Of course, the 2DES
at ν = 1/2, while compressible, is not a perfect metal
and the resulting screening may be less. Our tunneling
and tilted field resistivity data suggest that in the narrow
barrier sample, where 2 . d/ℓ . 2.6, the mean intralayer
Coulomb energy is suppressed by 15-30%, relative to its
value in the wide barrier sample, where 3.9 . d/ℓ . 5.4.
This is roughly consistent with the naive dipolar model
mentioned above.
In conclusion, tunneling spectroscopy and magne-

toresistance measurements provide quantitative evidence
that interlayer Coulomb interactions can effectively
screen intralayer interactions in closely spaced bilayer
2D electron systems. While we find that down to ef-
fective layer separations d/ℓ ≈ 2, the bilayer system at
total filling factor νT = 1/2 + 1/2 = 1 appears to re-
main well described as two parallel composite fermion
metals, the energetic parameters (e.g. the Fermi energy)
of these metallic states are significantly renormalized by
interlayer Coulomb interactions.
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