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Electric circuits are known to realize topological quadrupole insulators. We explore electric circuits made
of capacitors and inductors forming the breathing Kagome and pyrochlore lattices. They are known to possess
three phases (trivial insulator, higher-order topological insulator and metallic phases) in the tight-binding model,
where the topological phase is characterized by the emergence of zero-energy corner states. A topological phase
transition is induced by tuning continuously the capacitance, which is possible by using variable capacitors. It
is found that the two-point impedance yields huge resonance peaks when one node is taken at a corner in the
topological phase. It is a good signal to detect a topological phase transition. We also show that the topological
corner resonance is robust against randomness of capacitance and inductance. Furthermore, the size of electric
circuits can be quite small to realize the topological phase together with topological phase transitions.

Introduction: Topological insulators and its generalization
to higher-order topological insulators1–12 are fascinating top-
ics in condensed-matter physics (CMP). They are character-
ized by the bulk symmetry and the bulk topological num-
bers, and observed by the emergence of topological zero-
energy boundary states. Especially, topological zero-energy
corner states emerge for the second-order topological insu-
lators (SOTI) in two dimensions and for the third-order topo-
logical insulators in three dimensions. They are robust against
impurities. They are studied mainly in fermionic systems in
materials13–15. Actually, it is quite difficult to make experi-
mental observation of topological corner states in CMP. Fur-
thermore, although topological phase transitions have been
extensively studied, the experimental observation is also very
difficult in CMP. On the other hand, these topological corner
states have already been observed experimentally in phononic
system16–18, microwave system19, photonic system20 and elec-
tric circuits21.

Topological corner states in square lattice are experi-
mentally realized in electric circuits21,22. Indeed, the Su-
Schrieffer-Heeger model23,24, the honeycomb lattice23,24 and
Weyl semimetals23,25 have already been implemented in elec-
tric circuits. The impedance is a measurable quantity deter-
mining whether the system is topological or not, where topo-
logical boundary resonance effects occur in the topological
phases. Here we note that the emergence of topological cor-
ner states has been predicted10 also in the breathing Kagome
and pyrochlore lattices in the context of CMP. Thus, it is an
interesting problem to study measurable quantities in topolog-
ical electric circuits corresponding to these lattices.

Let us explain how to construct a topological electric cir-
cuit by taking an instance of the breathing Kagome lattice.
The breathing Kagome lattice consists of lattice sites and two
types of links indicated in red and cyan as in Fig.1(c). We
insert capacitors with capacitance CA and CB to links in red
and cyan, respectively, as in Fig.1(a). Then, we connect each
lattice site to the ground via an inductor with inductance L, as
illustrated in Fig.1(b). A lattice site is called a node in electric
circuit. It is clear that this method is applicable to any lattices
we encounter in CMP.

In this paper, we study electric circuits corresponding to the
breathing Kagome and pyrochlore lattices. Topological phase
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FIG. 1: Illustration of the breathing Kagome circuit composed of
two types of capacitors (with capacitance CA and CB) and inductors
(with inductance L). Adjacent nodes are connected by capacitors
and each node is grounded by an inductor. The size of the triangle is
` = 6.

transitions in electric circuits are well signaled by measuring
the impedance, where huge resonance peaks emerge at corners
in the topological phase. We find the topological robustness,
that is, this resonance is robust against randomness of capac-
itance and inductance. We explicitly investigate a triangular
geometry made of the breathing Kagome circuit, where we
define its size ` by the number of small upper triangles along
one edge: See Fig.1. We also study a tetrahedron geometry
made of the breathing pyrochlore circuit.

Topological electric circuits: Electric circuits are character-
ized by the Kirchhoff’s current law21,23,24,

d

dt
Ia =

∑
b

Cab
d2

dt2
(Va − Vb) +

1

La
Va, (1)

where Ia is the current between node a and the ground, Va is
the voltage at node a, Cab is the capacitance between nodes
a and b, 1/La is the inverse of the inductance at node a, and
the sum is taken over all adjacent nodes b. See an example of
the breathing Kagome circuit in Fig.1. When we apply an AC
field V (t) = V (0) eiωt, the Kirchhoff’s law is rewritten as

Ia (ω) =
∑
b

Jab (ω)Vb (ω) (2)
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with

Jab (ω) = iω

[
Cab + δab

(∑
c

Cac −
1

ω2La

)]
, (3)

where the matrix J (ω) = {Jab (ω)} is called the circuit
Laplacian. It is a linear operator and corresponds to a tight-
binding Hamiltonian H in CMP via the relation Jab (ω) =
iωHab (ω) with the Hamiltonian being21,23

Hab (ω) = Cab + δab

(∑
c

Cac −
1

ω2La

)
. (4)

The capacitor between adjacent nodes a and b corresponds
to the transfer integral tab ↔ Cab between adjacent sites a
and b, while the inductor attached to node a corresponds to
the on-site potential Ua ↔

∑
b Cab − (1/ω2La) at the site a.

Later we present an explicit correspondence in the case of the
breathing Kagome lattice.

By diagonalizing the matrix J (ω) we obtain the eigen-
value jn and the associated eigenmode |ψn〉. Then, we have
J (ω) =

∑
n jn |ψn〉 〈ψn|. The eigenmode |ψn〉 is a vector

whose components are labelled by node a; |ψn〉 = {ψn,a}.
The admittance eigenvalue jn is a measurable quantity24.

The two-point impedance is given by21,23

Zab =
Va − Vb
Iab

=
∑
n

|ψn,a − ψn,b|2

jn
, (5)

and determined by measuring the voltage response by run-
ning a current between two nodes a and b. The key prop-
erty is that Zab diverges in the presence of zero-admittance
modes (jn = 0) provided ψn,a 6= ψn,b. Hence, the emergence
of zero-admittance modes may be detected by measuring the
two-point impedance.

Breathing Kagome circuit: The electric circuits cor-
responding to the honeycomb lattice have already been
studied23,24. Here we investigate them for the breathing
Kagome lattice, which is known to realize a SOTI in CMP.
We consider an infinite circuit which is periodic with a unit
cell. It corresponds to a bulk system in CMP.

The circuit Laplacian (3) for an infinite circuit reads

J = iω

[
2 (CA + CB)− 1

ω2L

]
I− iωHKagome, (6)

where I is the unit matrix and

HKagome =

 0 h12 h13
h∗12 0 h23
h∗13 h∗23 0

 , (7)

with

h12 = CA + CBe
−i(kx/2+

√
3ky/2),

h13 = CA + CBe
−ikx ,

h23 = CA + CBe
i(−kx/2+

√
3ky/2). (8)

FIG. 2: Two-point impedance for the breathing Kagome circuit. (a)
The maximum value of the two-point impedance as a function of
CA/CB . (b) The admittance spectrum at the resonant frequency ω =
ωc as a function of CA/CB . (c) The numerator of the impedance∑3

n=1 |ψn,a − ψn,b|2. Spatial distribution of two-point impedance
(d) in the trivial phase, (e) in the topological phase, and (f) in the
metallic phase. One node is fixed in the vicinity of the triangle center.
Absolute value of the impedance is represented by the length of the
tubes. We have taken CB = 1µF and L = 1µH. We use a triangle
with ` = 6.

Here,CA andCB are capacitances shown in Fig.1(a). We note
that the Hamiltonian HKagome is precisely the same one that
describes the tight-binding model for the breathing Kagome
lattice by replacing CA and CB with the hopping parameters
ta and tb, respectively: See Eq.(1) of Ref.10. Consequently,
the system (7) for the breathing Kagome circuit is topologi-
cal for −1 < CA/CB < 1/2, trivial for CA/CB < −1 and
metallic for CA/CB > 1/2. Consequently, the system under-
goes topological phase transitions at CA/CB = −1 between
the trivial and topological phases, and at CA/CB = 1/2 be-
tween the topological and metallic phases. In contrast to the
case of CMP, it will be rather easy to make experimental ob-
servation of these phase transitions by tuning the capacitance
continuously. We note that negative capacitance is possible21

with the use of inductors by identifying C ≡ −1/ω2L.

We investigate the topological phase in triangular geome-
try [Fig.1(a)], where topological zero-admittance modes are
present at the corners. Due to the presence of zero-admittance
modes, the second term in the right-hand side of Eq.(6) van-
ishes. The resultant equation is a standard formula for the
LC circuit with capacitance CA + CB . The resonant fre-
quency is given by the zero of the identity matrix and given
by ωc = 1/

√
2L (CA + CB).
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FIG. 3: Corner impedance |Z| as a function of ω/ωc of the triangle made of the breathing Kagome circuit (a) in the trivial phase (CA/CB =
−1.5), (b) in the topological phase (CA/CB = 0.25) and (c) in the metallic phase (CA/CB = 1.5). Red circles indicate the resonance peak
arizing from topological corner modes. The height of the peak is as huge as 109 Ω in the case of ` = 9. The size ` is shown in the figure.
(a1)–(c1’) Corner impedance |Z| without randomness; (a2)–(c2’) Corresponding impedance |Z| in the presence of 5% randomness. The inset
of (c1’) illustrates the breathing Kagome circuit with the size ` = 2.

The behavior of the impedance around ωc is expressed as

|Z| ∝ 1/
(
ω2 − ω2

c

)
, (9)

which yields a huge resonance peak at the frequency ωc. There
is no divergence because of the finite-size effect. On the
other hand, when there are no zero-admittance modes, the
impedance is finite. The metallic phase is intriguing due to
the presence of the sea of zero-admittance modes. As we shall
see soon, there is no resonance enhancement in |Z|. We ex-
pect that the emergence of the resonant modes is a signal that
the electric circuit is in a topological phase.

When we use the capacitor of the order of 1µF and the in-
ductor of the order 1µH, the resonance occurs around 1MHz
and the impedance is of the order of 1Ω, while the resonant
impedance becomes to the order of 109Ω.

Corner impedance: We consider a triangle structure made
of the breathing Kagome circuit [Fig.1]. We first show the ad-
mittance spectrum in Fig.2(b), where zero-admittance corner
modes emerge only in the topological phase.

We next investigate the two-point impedance. We fix one
node a arbitrarily, and measure the impedance Zab between
node a and another node b. By moving b over all nodes, we ob-
tain a space distribution of the two-point impedance. We show
the results in the three phases in Fig.2(d)–(f), where node a is
taken around the center of the triangle. The essential feature is
a strong enhancement of the two-point impedance in the topo-
logical phase when node b is taken at three corners. We have
found that this essential feature does not depend on the posi-
tion of the fixed node a provided it is not taken on the corners.
When node a is taken on a corner, the strong enhancement
appears only when node b is taken at the other two corners
because Zaa = 0. The huge peak in Zab is easily understood
in the topological phase due to zero-admittance corner modes
as we have discussed below Eq.(9). We find that the strongest
resonance occurs when two nodes a and b are taken at two
different corners.

We show the two-point impedance in Fig.3, where the
two nodes are fixed at two different corners. We show the

impedance as a function of ω/ωc. The impedance displays
a huge peak at ω = ωc in the topological phase, while there
are no such peaks in the trivial phase and the metallic phase.
We also show the impedance at the resonant frequency ωc as
a function of CA/CB in Fig.2(a). It becomes huge rapidly in
the topological phase, which implies that it is a good indica-
tor to observe topological phases. Remarkably, the resonance
peak signaling the topological phase is clearly present in such
a small triangle that has the size ` = 2: See Fig.3(a’)–(c’).

Naively, we expect that the impedance takes a large value
also for metallic phase since there are many zero-admittance
modes although they are not topological. However, this is not
the case. We show the numerator |ψn,a − ψn,b|2 as a function
of CA/CB , where the sum of n is taken only for the three
zero-admittance modes in Fig.2(c). It takes value around 2
only for the topological phase representing the two localiza-
tion of the corner modes. On the other hand, in the metallic
phase, it is very small, |ψn,a − ψn,b|2 ∝ 1/N , where N is the
number of nodes. Accordingly, the impedance is small in the
metallic phase although there are plenty of zero-admittance
modes.

Effects of randomness: We next study the effects of ran-
domness in capacitors and inductors. For this purpose, we
make substitution Ci 7→ Ci (1 + ηi) and Li 7→ Li (1 + ξi),
where ηi and ξi are uniformly distributed random variables
ranging from −δ to δ. We have calculated the impedance by
choosing δ = 0.05.

We show the ω dependence of the impedance in Fig.3. The
prominent peak signaling the topological resonance remains
as it is. On the other hand, all other peaks are reduced. The
results indicate the topological robustness of the topological
corner resonance.

Breathing pyrochlore circuit: A natural extension of the
breathing Kagome circuit to three dimensions is the breathing
pyrochlore circuit, where a third-order topological insulator is
realized10. The circuit Laplacian is given by

L = iω

[
3 (CA + CB)− 1

ω2L

]
I− iωHpyro, (10)
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FIG. 4: Two-point impedance for the breathing pyrochlore circuit.
(a) The maximum value of the two-point impedance as a function of
CA/CB . (b) The admittance structure at the resonant frequency ω =
ωc as a function of CA/CB . (c) The numerator of the impedance∑4

n=1 |ψn,a − ψn,b|2. Spatial distribution of two-point impedance
(d) in the trivial phase, (e) in the topological phase, and (f) in the
metallic phase. One node is fixed in the vicinity of the tetrahedron
center. Absolute value of the impedance is represented by the size of
a ball. Huge balls are found at four corners in the topological phase.
We have taken CB = 1µF and L = 1µH.

where

Hpyro =

 0 h12 h13 h14
h∗12 0 h23 h24
h∗13 h∗23 0 h34
h∗14 h∗24 h∗34 0

 , (11)

with

h12 = CA + CBe
−i(kx+ky)/2,

h13 = CA + CBe
−i(ky+kz)/2,

h14 = CA + CBe
−i(kz+kx)/2,

h23 = CA + CBe
−i(kz−kx)/2,

h24 = CA + CBe
−i(−ky+kz)/2,

h34 = CA + CBe
−i(kx−ky)/2. (12)

The resonant frequency is ωc = 1/
√

3L (CA + CB). Topo-
logical phase diagram of the breathing pyrochlore circuit is
the same as that of the breathing Kagome circuit. We show
the admittance spectrum of the tetrahedron in Fig.4(b), where
the four topological corner modes appear in the topologi-
cal phase. We show the two-point impedance between two
nodes as a function of CA/CB in Fig.4(a), which becomes
huge in the topological phase. We also show the numerator
|ψn,a − ψn,b|2, where the sum of n is taken only for the four
zero-admittance modes in Fig.4(c). A space distribution of the
two-point impedance is shown in the three phases in Fig.4(d)–
(f).

Discussion: We have shown that the topological corner
impedance is a good signal to detect a topological phase
transition in electric circuits corresponding to the breathing
Kagome and pyrochlore lattices, where the huge resonance
peak emerges only in the topological phase. The topological
phase transition is controlled by tuning variable capacitors.
It is not necessary to tune the capacitance so precisely be-
cause of the topological robustness. Furthermore, to realize
the topological phase together with topological phase transi-
tions, the size of the electric circuit can be quite small.

The author is very much grateful to N. Nagaosa for help-
ful discussions on the subject. This work is supported by
the Grants-in-Aid for Scientific Research from MEXT KAK-
ENHI (Grants No. JP17K05490, No. JP15H05854 and No.
JP18H03676). This work is also supported by CREST, JST
(JPMJCR16F1).

1 F. Zhang, C.L. Kane and E.J. Mele, Phys. Rev. Lett. 110, 046404
(2013).

2 W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, 10.1126/sci-
ence.aah6442.

3 F. Schindler, A. Cook, M. G. Vergniory, and T. Neupert, in APS
March Meeting (2017).

4 Y. Peng, Y. Bao, and F. von Oppen, Phys. Rev. B 95, 235143
(2017).

5 J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Phys. Rev. Lett. 119, 246401 (2017).

6 Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402
(2017).

7 W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.

B 96, 245115 (2017).
8 F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.

Parkin, B. A. Bernevig, and T. Neupert, Science Advances 4,
eaat0346 (2018).

9 C. Fang, L. Fu, arXiv:1709.01929.
10 M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).
11 E. Khalaf, H. C. Po, A. Vishwanath and H. Watanabe, Phys. Rev.

X 8, 031070 (2018).
12 M. Ezawa, Phys. Rev. Lett. 121, 116801 (2018).
13 F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani,

S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H.
Bouchiat, S. Gueron, A. Yazdani, B. A. Bernevig, and T. Neupert,
Nature Physics 14, 918 (2018)



5

14 M. Ezawa, Phys. Rev. B 98, 045125 (2018).
15 Z. Wang, B. J. Wieder, J. Li, B. Yan, and B. A. Bernevig,

arXiv:1806.11116.
16 M. S.-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G.

Villanueva, S. D. Huber, Nature 555, 342 (2018).
17 H. Xue, Y. Yang, F. Gao, Y. Chong and B. Zhang, cond-

mat/arXiv:1806.09418.
18 X. Ni, M. Weiner, A. Alu, and A. B. Khanikaev, cond-

mat/arXiv:1807.00896.
19 C. W. Peterson, W. A. Benalcazar, T. L. hughes and G. Bahl, Na-

ture 555, 346 (2018).
20 B. Y. Xie, H. F. Wang, H.-X. Wang, X. Y. Zhu, J.-H. Jiang, M. H.

Lu, Y. F. Chen, cond-mat/arXiv:1805.07555.

21 S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp, T.
Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, R.
Thomale, Nat. Phys. 14, 925 (2018).

22 M. S.-Garcia, R. Susstrunk and S. D. Huber, cond-
mat/arXiv:1806.07367.

23 C. H. Lee , S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
Molenkamp, T. Kiessling and R. Thomale, Communications
Physics, 1, 39 (2018).

24 T. Helbig, T. Hofmann, C. H. Lee, R. Thomale, S. Imhof, L. W.
Molenkamp and T. Kiessling, cond-mat/arXiv:1807.09555.

25 Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeliunas, D. I. Schuster and
J. Simon, cond-mat/arXiv:1807.05243.


