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Topological semimetals (TSMs) in which conduction and valence bands cross at zero-dimensional
(0D) Dirac nodal points (DNPs) or 1D Dirac nodal lines (DNLs), in 3D momentum space, have
recently drawn much attention due to their exotic electronic properties. Here we generalize the TSM
state further to a higher-dimensional Dirac nodal sphere (DNS) or pseudo DNS (PDNS) state, with
the band crossings forming a 2D closed or approximate sphere at the Fermi level. This new TSM
state can exhibit unique electronic properties, making DNS/PDNS a new type of fermion beyond
DNP/DNL paradigm. In the realistic crystals, we demonstrate two possible types of PDNS states
underlied by different crystalline symmetries, which are characterized with a spherical backbone
consisting of multiple DNLs and approximate band degeneracy in between the DNLs. We identify
all the possible band crossings with pairs of 1D irreducible representations to form the PDNS states
in 32 point groups. Importantly, we discover that strained MH3 (M= Y, Ho, Tb, Nd) and Si3N2 are
materials candidates to realize these two types of PDNS states, respectively. As a high-symmetry-
required state, the PDNS semimetal can be regarded as the “parent phase” for other topological
gapped and gapless states.

The rise of topological insulator1,2 has brought the
field of topological state to the center stage of con-
densed matter physics. Recent attentions have been fo-
cused on topological semimetals (TSMs), which can sup-
port quasiparticles either analogous to elementary parti-
cles in high-energy physics or unknown before3–7. To
date, the well-known TSMs include Dirac, Weyl, and
nodal-line semimetals5–14. The Dirac semimetals5–7 have
zero-dimensional (0D) band crossings, i.e., the Dirac
nodal points (DNPs), whose Fermi surface consists of
isolated points in the Brillouin zone (BZ) [upper panel,
Fig. 1(a)]. The low-energy excitations (LEEs) of DNP
semimetals have some unique properties such as chiral
anomaly and surface states with Fermi arcs. The nodal-
line semimetals6–14 feature 1D band crossings at Fermi
surface with closed Dirac nodal lines (DNLs) in the BZ
[upper panel, Fig. 1(b)]. The DNL semimetals host spe-
cial drumhead surface states, which provide an impor-
tant platform to realize strong electron correlation effect.
Very recently, a nodal surface is also proposed, with the
band crossing points forming a 2D plane15,16.

Unlike DNPs and DNLs, conceptually it is also possi-
ble that the linear band crossing occurs on a 2D closed
surface17,18, forming a Dirac nodal sphere (DNS) or
pseudo DNS (PDNS, an approximate DNS with the same
LEE, see details below) at Fermi energy, as shown in the
upper panel of Fig. 1(c). On a DNS/PDNS, each point
is a crossing point between two bands with linear dis-
persion along the surface normal direction, which can be
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FIG. 1: Comparison between (a) Dirac nodal point (DNP),
(b) Dirac nodal line (DNL) and (c) Dirac nodal sphere (DNS)
or pseudo DNS (PDNS) for their distinct Fermi surface ge-
ometries (upper panels) and density of states (lower panels)
around the Fermi level. An arbitrary point (loop) on DNS
can be regarded as a “constrained” DNP (DNL).

expressed as

H(k′) = ~vF k′σz, (1)

where k′ = k−k0 is the component of wave vector normal
to the Fermi surface, k0 is the radius of DNS, vF is the
Fermi velocity, and σz is Pauli matrice denoting the two
crossing bands.

Since the LEE dimensionality of DNS is fundamentally
different from that of DNP (DNL), the DNS semimetal
can possess very unique electronic properties. For ex-
ample, it has a significantly different density of states
(DOS): DOS ∝ (E − EF )2 for a DNP [lower panel,
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Fig. 1(a)], DOS ∝ |E − EF | for a DNL [lower panel,
Fig. 1(b)], and DOS ∝ constant19 for a DNS [lower
panel, Fig. 1(c)]. The constant DOS may make the DNS
semimetals exhibit some unusual field responses and ap-
plications, e.g., a significantly stronger quantum oscilla-
tion and peculiar plasmon excitations. Thus, the DNS
fermion can be recognized as a new type of fermion be-
yond the DNP/DNL paradigm.

One intriguing question is how to realize this novel
DNS state in realistic materials. Although the (Weyl)
nodal sphere state has been theoretically proposed based
on global symmetries17,18, it is too difficult, if not im-
possible, to be realized in real crystals having discrete
point group symmetries. Here, we present an effective
approach to generate PDNS state in accessible crystalline
symmetries. In general, a band crossing located on high-
symmetry lines/planes is stable against band repulsion
only when the wavefunctions belong to different eigen-
states of some crystalline symmetry operation. For an
ideal DNS, the band degeneracy should occur at an arbi-
trary momentum point (say P point) on the sphere. But
generally the coupling between two crossing bands at P
cannot be strictly avoided. Interestingly, near some high-
symmetry k points, we discover that under some appro-
priate conditions the special crystalline symmetries will
only allow for the high-order interaction terms (HITs) of
k between two crossing bands, which can be sufficiently
weak and hence negligible. In this case, a PDNS state
forms. As illustrated in Fig. 2, the PDNS state is char-
acterized with a spherical backbone consisting of multi-
ple crossing DNLs while band degeneracy in between the
DNLs is approximately maintained by weak interactions.
It is emphasized that the LEE of a PDNS is same as an
ideal DNS, albeit only a key subset of crossing points
(DNLs) formed as the spherical backbone of the PDNS
are topologically protected.
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FIG. 2: Illustration of pseudo DNS (PDNS) state. The
band crossing on multiple DNLs formed as the spherical back-
bone of PDNS (green points) is topologically protected, while
band degeneracy in between the DNLs (cyan points) is ap-
proximately maintained by weak interactions which is called
pseudo band crossing.

We identify two sets of crystalline symmetries un-
der time-reversal symmetry (TRS) to realize the desired
PDNS states: type-I for inversion plus at least two mir-
ror (P̂ + 2M̂) symmetries and type-II for at least three

mirror (3M̂) symmetries. Importantly, we identify all
the possible band crossings with pairs of 1D irreducible
representations (IRRs) to form these two types of PDNS
states in 32 point groups. Employing first-principles cal-
culations, we further show that MH3 (M= Y, Ho, Tb,
Nd) and Si3N2 are type-I and type-II PDNS semimet-
als under certain strains, respectively. They both have
drumhead surface states independent of surface orienta-
tions.

We consider a two-band model in a system with TRS
and ignore the spin degree of freedom19. The type-I
PDNS has P̂ + 2M̂ symmetries. At a high-symmetry
point, e.g., Γ point, if the two bands have opposite pari-
ties for P̂ and opposite mirror eigenvalues for two differ-
ent mirror operators (M̂x and M̂y), the Hamiltonian can
be written as19:

H(k) = (M −Bk2)σz + δkxkykzσy, (2)

where k2 = k2x + k2y + k2z , and σy,z are Pauli matrices
for the two bands. Under the band inversion condition
(MB > 0), P̂ + 2M̂ will strictly create three crossing
nodal lines in kx,y,z = 0 planes11,12. Away from the three
planes, there would be a gap induced by HIT of g2(k),
but it can be sufficiently tiny and negligible for small k
near the high-symmetry point. Consequently, the band
crossings can extend to form a PDNS. Around a crossing
point, the LEE quasiparticles can be described by Eq.
(1) with k0 =

√
M/B and vF = −2

√
MB.

The minimum symmetries required for the type-I
PDNS are P̂ + 2M̂ plus TRS. Meanwhile, the two in-
verted bands at the high-symmetry point should belong
to two different 1D IRRs, i.e., R1 and R2, which have
the opposite parities and mirror eigenvalues. It is em-
phasized that the required symmetric mirror planes for
PDNS can be more than 2, e.g., 3, 4 or even 6. Apply-
ing theses criteria to 32 point groups, we identify that 6
point groups can host type-I PDNS, and all the associ-
ated possible pairs of 1D IRRs are listed in Table I.

The type-II PDNS has 3M̂ symmetries. One may take
three mirrors as 3σ̂v of C3v point group. If the two cross-
ing bands have opposite eigenvalues for 3σ̂v, the Hamil-
tonian can be written as19:

H(k) = (M −Bk2)σz + δ(k3x − 3kxk
2
y)σy. (3)

Once again, strictly speaking, it creates three crossing
DNLs, which are related with each other by C3 rotational
symmetry. However, away from the three planes, the
small gap induced by HIT of g2(k) can be neglected near
the high-symmetry point. Thus, we obtain the PDNS
under the type-II symmetry constraints.

The minimum symmetries required for the type-II
PDNS are 3M̂ plus TRS. At the high-symmetry point,
the two inverted bands with two different 1D IRRs should
have opposite mirror eigenvalues. Also, the required sym-
metric mirror planes for the type-II PDNS can be more
than 3, e.g., 4 or 6. Applying this criterion to 32 point
groups, we determine that 9 point groups can potentially
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TABLE I: Two different types of PDNS realized by different
point groups with all the possible 1D IRRs, and the proposed
materials (without SOC effect), where MH3 (M= Y, Ho, Tb,
Nd), Tl5Se2Br, Tl4PbTe3, Tl4SnTe3 and Si3N2 require strains
to realize PDNS states.

PDNS Point 1D IRRs of two Materials
type group bands {R1, R2}

Type-I

D2h {Ag, Au}, {Big, Biu};
i=1,2,3

D4h {Aig, Aiu}, {Big, Biu}, LaN,
{Aig(u), Bju(g)}; i, j=1,2 CaTe

D3d {Aig, Aiu}; i=1,2 YH3, HoH3,
TbH3, NdH3

D6h {Aig, Aiu}, {Big, Biu},
{Aig(u), Bju(g)}; i, j=1,2

Th {Ag, Au};
Oh {Aig, Aju}; i, j=1,2

Type-II

C4v {A1, A2}, {B1, B2};
D4h {A1g(u), A2g(u)}, Tl5Se2Br,

{B1g(u), B2g(u)}; Tl4PbTe3,
Tl4SnTe3

C3v {A1, A2};
D3d {A1g(u), A2g(u)};
C6v {A1, A2}, {B1, B2},

{Ai, Bj}; i, j=1,2

D3h {A
′
1, A

′
2}, {A

′′
1 , A

′′
2 },

{A
′
1, A

′′
1 }, {A

′
2, A

′′
2 };

D6h {A1g(u), A2g(u)}, {B1g(u), B2g(u)},
{Aig(u), Bjg(u)}; i, j=1,2

Td {A1, A2}; β-Si3N2

Oh {A1g(u), A2g(u)}; α-Si3N2

host type-II PDNS, and all the associated pairs of 1D
IRRs are listed in Table I.

Next, we discuss the topological properties of PDNS.
For an ideal DNS semimetal, its topological invariant can
be defined on a 0D point enclosing manifold16–18,37. Con-
sidering two momentum points kin and kout located any-
where inside and outside the ideal DNS, its topological in-
variant can be defined as ∆c = [c(kin)−c(kout)]/2, where

c(k) =
∑

n∈occ〈un(k)|X̂|un(k)〉 is a quantum number of

symmetry operator X̂ for all the occupied bands. How-
ever, our PDNS is not an ideal one so that c cannot be
well defined at arbitrary k point; instead it needs to be
defined within a plane that contains the loop formed by
DNLs. Since the DNLs are underlied by the crystal sym-
metries as we discussed above, one can selectively choose
those high-symmetry k points accordingly. For type-I
PDNS that has inversion symmetry, c can be defined as
the sum of parity for every occupied band at the time-
reversal invariant point (X̂ = P̂ ); for type-II PDNS, c
can be defined as the sum of mirror eigenvalues at the
mirror-invariant plane (X̂ = M̂).

We emphasize that the nontrivial (nonzero) ∆c de-
fined here cannot protect the whole PDNS against be-
ing gapped under a symmetry preserving perturbation,
but it can protect the existence of multiple crossing NLs
(a necessary condition for achieving the PDNS state).

Furthermore, if a perturbation preserves all the required
symmetries and maintains the weak band inversion, the
band degeneracy of the whole PDNS will be kept. In
addition, the zero codimensionality of PDNS cannot, in
principle, guarantee any boundary state16. The surface
states if generated will interact with the bulk states not
to be localized on the boundary. However, the drumhead
surface states arising from the multiple crossing DNLs
are protected on the boundary, except they may appear
somewhat fuzzy due to overlapping with the bulk states.

It is noted that we did not include the spin degree of
freedom in our PDNS model discussions. All the pre-
dicted materials listed in Table I are strictly crossing-
nodal-line semimetals with an extremely tiny energy gap
(< 2 meV) at a general band crossing point P (induced
by HITs of k)19,38. Without SOC effect, all the candi-
dates listed in Table I can be treated as PDNS semimet-
als in terms of their LEE properties. For LaN, CaTe,
Tl5Se2Br, Tl4PbTe3, Tl4SnTe3 (Table I), however, the
SOC effects are sufficiently strong to reduce the PDNS
phase to DNP (or topological insulator) phase19. Inter-
estingly, for MH3 (M= Y, Ho, Tb, Nd) and α-/β-Si3N2,
their PDNS phases (under certain strains) are robust
against the SOC effect19, as demonstrated in the follow-
ing discussions.
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FIG. 3: (a) Crystal structure of YH3. (b) Band structure
of YH3 under εc = −6% (without SOC) using HSE06 calcu-
lations. (c) Left panel: magnified band structure along two
arbitrary directions around Γ (P1 and P2 are two arbitrary k
points in BZ), where the opposite eigenvalues of parity and
glide planes for two crossing bands are labelled. Right panel:
DOS, where the dashed line denotes a constant DOS. (d) The
Fermi surface of YH3 in BZ. Cyan (yellow) surface denotes
hole (electron) pockets at the Fermi level. (e) and (f) Surface
projected bands and Fermi surfaces for (001) surface of YH3.

Metal hydrides have been studied extensively for su-
perconductivity and metal-insulator transition under
pressure39–41. YH3 adopts the HoD3 structure42 hav-
ing the space group P 3̄c1 (No. 165), as shown in Fig.
3(a). It has inversion symmetry, threefold rotation sym-
metry, and three glide planes related by C3 rotation. It
is a normal semiconductor whose conduction band mini-



4

mum (CBM) and valence band maximum (VBM) at the
Γ point belong to the A2g and A2u representations of
D3d (without SOC effect)19, respectively. Based on our
PDNS model (Table I), it is expected to have a type-I
PDNS when its A2g and A2u bands are weakly crossed.
Indeed, we found that YH3 can be transformed into a
gapless PDNS semimetal when a compressive uniaxial
strain (εc < −3.8%) is applied along c axis19, as shown in
Fig. 3(b). As shown in Fig. 3(c), the gapless band cross-
ing maintains along any arbitrary k direction around Γ,
with a negligible gap (< 0.5 meV) induced by HITs. We
note that the HITs between the two crossing bands are
related with the band inversion strength. The condition
for the HITs to be negligibly small can always be guaran-
teed by an appropriate εc

19. Given the opposite parities
of P̂ and M̂ eigenvalues of three glide planes [labelled in
Fig. 3(c)], the band crossing for type-I PDNS is approx-
imately protected by D3d symmetry with a calculated
∆c = 1. The calculated constant DOS in the energy
range of nearly linear dispersion [Fig. 3(c)] agrees well
with that in Fig. 1(c). The spherical Fermi surface of
strained YH3 formed by the band crossing is shown in
Fig. 3(d), and its size k0 can be tuned by εc

19. Since
the band crossing is not exactly located at the Fermi en-
ergy, the Fermi surface presents hole (electron) pockets
near (away from) ΓMK plane. These results are not af-
fected by the SOC effect19, as reflected by a tiny SOC
gap (< 1.5 meV).

Drumhead surface states arising from the crossing
nodal lines are shown in Figs. 3(e) and (f). Due to
the interaction with the projected bulk states, the drum-
head surface states appear a little fuzzy. Different from
the usual DNL semimetal, the drumhead surface states
of YH3 are independent of its surface orientations, i.e.,
the [001]- and [010]-orientated surface states are almost
the same19, because of its near spherical band crossing.

As a candidate material for type-II PDNS semimetal,
α-Si3N2

43 adopts the cubic structure having the space
group Pm3̄m (No. 221), as shown in Fig. 4(a). α-Si3N2

is a normal semiconductor19, whose VBM and CBM be-
long to the A2g and A1g representations of Oh point
group, respectively. Based on our analysis (Table I), a
type-II PDNS phase can be achieved when these two
bands are crossed. We found that a sufficiently large
triaxial compressive strain of ε < −5% (corresponds to
a hydrostatic pressure of ∼ 30 GPa) can induce this de-
sired phase19, as shown in Fig. 4(b). Near the Fermi
level, band crossing persists along any arbitrary direc-
tion around Γ [Fig. 4(c)]. Importantly, although the two
crossing bands have the same parities, the eigenvalues of
six mirror planes for these two bands are of opposite sign

[labelled in Fig. 4(c)]. Thus, α-Si3N2 is a type-II PDNS
with multiple DNLs protected by the mirror symmetries
(the calculated ∆c = 1). As expected, it has a constant
DOS in the energy range of nearly linear dispersion [Fig.
4(c)], a spherical Fermi surface [Fig. 4(d)], and surface-
independent drumhead surface states [Figs. 4(e) and (f)].
The PDNS phase in α-Si3N2 is robust with a very small
SOC gap (< 0.1 meV)19.
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FIG. 4: (a)-(f) Same as Fig. 3 but for type-II α-Si3N2.

As a high-symmetry-required state, the PDNS
semimetal can be considered as the “parent phase” for
other gapped and gapless topological states. For in-
stance, certain perturbations may tune the HIT trans-
forming a PDNS semimetal into a nodal-line semimetal19;
a sufficiently large SOC may convert a PDNS semimetal
into a DNP semimetal or a topological insulator19. More-
over, because of the finite DOS in the linear band cross-
ing region [Fig. 1(c)], Coulomb repulsion might drive the
PDNS phase to induce various quantum orders44. Espe-
cially, the existence of superconductivity in MH3 under
pressure (strain)39,40 may provide a unique platform to
study the interplay between the PDNS fermions and su-
perconductivity.
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