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We study the thermoelectric response of a device containing a pair of helical edge states contacted
at the same temperature T and chemical potential µ and connected to an external reservoir, with
different chemical potential and temperature, through a side quantum dot. Different operational
modes can be induced by applying a magnetic field B and a gate voltage Vg at the quantum dot.
At finite B, the quantum dot acts simultaneously as a charge and a spin filter. Charge and spin
currents are induced, not only through the quantum dot, but also along the edge states. We focus
on linear response and analyze the regimes, which we identify as charge heat engines or refrigerator,
spin heat engine and spin refrigerator.

PACS numbers:

I. INTRODUCTION

One of most remarkable properties of topological insu-
lating phases is the existence of conducting edge states.
In two-dimensional systems, such as in the quantum Hall
state or the spin quantum Hall (QSH) state, these edge
states are single or multiple one-dimensional (1D) chan-
nels through which charge and energy propagate only
in one direction. In the case of the quantum Hall, the
edge states are chiral1–5 as a consequence of the bro-
ken time-reversal symmetry. Instead, the QSH hosts
Kramers pairs of helical counter-propagating edge states
with opposite spin orientation.6–11 In situations where
the electron-electron interactions play a role, these sys-
tems exhibit another extraordinary feature: the fraction-
alization of the charge and spin in the low-energy excita-
tions. This has an impact in the unidirectional transport
properties along the edges,1,5,12,13 as well as through tun-
neling contacts to other edge states or to other structures
like quantum dots.14–20 The edge states of the fractional
quantum Hall effect are well described as chiral Luttinger
liquids and the fractional charge is directly related to the
magnetic filling factor.1,5 A pair of edge states of the QSH
is effectively described by a Luttinger liquid of left and
right moving electrons where spin and charge fractional-
ization can take place as a consequence of the Coulomb
interaction represented by a parameter K.5,21

Thermal transport in edge states of the quantum Hall
regime has received a great deal of attention for some
time. Since the pioneer works by Kane y Fisher,12,13

several studies were reported on heat transport in the
integer22–25 and in the fractional regimes.26–35 More re-
cently, thermoelectric effects have also been explored in
the integer,36,37 as well as in the fractional case.20,38

Relatively less is presently known about thermal trans-
port and thermoelectric effects in the quantum spin Hall

regime.39–45
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FIG. 1: Sketch of the setup. A Kramers pair of helical edge
states of the spin Hall effect is ballistically contacted to termi-
nals at temperature T1 and chemical potential µ1, while tun-
neled contacted to an external reservoir at a different temper-
ature T2 and chemical potential µ2 through a quantum dot.
The transport through the quantum dot can be controlled by
means of a gate voltage and a weak magnetic field B.

Tunneling contacts to quantum dots in mesoscopic
structures play a crucial role in the thermoelectric re-
sponse of these systems. This is because they enable
transport with broken particle-hole symmetry, which is
a necessary condition for realizing the charge to en-
ergy conversion characteristic of thermoelectricity.46–50

Charge transport in helical edges of the quantum spin
Hall regime with tunneling contacts between edge states
and quantum dots or antidots is a subject of very active
theoretical investigation.51–67
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The aim of the present work is to analyze the ther-
moelectric response of quantum spin Hall helical edges
realized in the structure sketched in Fig. 1. It consists of
a pair of helical edge states of a quantum spin Hall system
connected to an external reservoir at a different tempera-
ture and chemical potential, through a tunneled-coupled
quantum dot. The transport through the quantum dot
is controlled by means of a gate voltage and a magnetic
field. As we will discuss, the physics of this device is very
rich, allowing for the implementation of a variety of ther-
moelectric regimes, taking advantage of the helical nature
of the edge states. The possibility of the magnetic con-
trol of the charge flow in helical edges was explored in
other setups with magnetic islands in direct contact to
the edge states.68–70 Here we consider the effect of a Zee-
man field on the side-coupled dot of the structure of the
figure, in order to introduce spin filtering of the electrons
injected from the external reservoir. The magnetic field
is localized at the quantum dot and it is weak enough to
leave the helical edge states unaffected. With these in-
gredients we have, not only heat-charge conversion, but
also heat-spin conversion.

Without the ingredient of the magnetic field at the
quantum dot, the setup of the figure may operate as a
charge heat engine, or refrigerator, as is usual in ther-
moelectric devices where heat flows induced by tempera-
ture differences can be used to generate charge currents
against chemical potential differences and vice versa. The
magnetic field at the quantum dot adds the possibility of
inducing spin currents, not only through the quantum
dot, but also through the helical channels between the
left and right terminals of the QSH bar. This comes
along with heat flow between these two terminals, even
when they are assumed to be at the same temperature
and chemical potential. We identify two relevant opera-
tional regimes introduced by the spin filtering, which we
name the spin heat engine and and the spin refrigera-
tor, respectively. We analyze in detail all these regimes.
On the other hand, the fractionalization of charge and
energy in chiral Luttinger liquids has the consequence
of enhancing the thermoelectric performance of the frac-
tional quantum Hall regime, relative to the integer case,
described by non-interacting electrons.20 We show that
the Coulomb repulsion represented by the Luttinger pa-
rameter K has a similar effect in the present case.

The paper is organized as follows. In Section II we
present the theoretical model for the setup of Fig. 1. In
Section III we present the theoretical framework to an-
alyze its thermoelectric response. We present results for
the different operational modes in Section IV. Summary
and conclusions are presented in Section V.

II. MODEL

The theoretical model for the setup of Fig. 1 is defined
by the following Hamiltonian

H = Hedges +Hdot +Htun, (1)

where the first term correspond to the pair of helical
edges. It is modeled as a Luttinger liquid as follows5,21

Hedges =
v

4πK

∫
dx
[(
∂xφ↑(x)

)2
+
(
∂xφ↓(x)

)2]
. (2)

Notice that due to the helical nature of the edge states,
the direction of propagation is determined by the spin
orientation. Hence, the spin labels ↑ and ↓ denote at the
same time left and right moving excitations propagating
with velocity v. The Coulomb electron-electron inter-
action is characterized by the parameter K, such that
K < 1 (K > 1) corresponds to repulsive (attractive) in-
teractions and K = 1 corresponds to the non-interacting
case. The densities ∂xφσ(x), are expressed in terms of
bosonic modes obeying a Kac Moody algebra

[φ↓(x), φ↓(x
′)] = − [φ↑(x), φ↑(x

′)] = iπKsgn(x− x′).
(3)

They are related to fermionic fields through

ψ↓,↑(x) =
F↓,↑√
2πa

ei[K±φ↓(x)+K∓φ↑(x)] (4)

with a being a characteristic length and

K± = (K−1 ± 1)/2. (5)

The Klein factors Fσ ensure
{
ψσ(x), ψ†σ′(x

′)
}

=
δσ,σ′δ(x− x′).

The second term of Eq. (1) describes a quantum dot
side-coupled to the QSH bar. It is controlled by a gate
voltage Vg and a magnetic field B, which has components
B||, parallel, and B⊥, perpendicular, to the direction of
the spin-orbit coupling of the QSH system. We focus on
the situation where the magnetic field is strongly local-
ized at the side-coupled quantum dot and weak enough
to preserve the time-reversal invariance of the QSH bar.
For simplicity, we consider a single-level quantum dot,

Hdot =
∑
σ

εdσd
†
σdσ + ε⊥

(
d†↑d↓ +H.c.

)
, (6)

with εd,σ = eVg + sσµBB||/2, s↑,↓ = ± and ε⊥ =
µBB⊥/2. It is convenient to diagonalize the Hamilto-
nian for the dot as follows

Hdot =
∑
s=±

Esd
†
sds. (7)

The local energies in the diagonal basis read

Es = eVg ± µB
B

2
, B =

√
B2
|| +B2

⊥. (8)

The change of basis is ds =
∑
σ us,σdσ, with

u+,↑ = cos(θ/2), u−,↑ =
√

1− u2
+,↑

u+,↓ = −u−,↑, u−,↓ = u+,↑, (9)

where the angle θ is determined by cos(θ) = B||/B.
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The quantum dot is tunneled coupled to the helical
edges with amplitudes wσ

18 and also to an external reser-
voir of ordinary fermions with amplitude w. The Hamil-
tonian reads

Htun =
∑
σ

wσd
†
σψσ(x = 0) + w

∑
σ,k

d†σckσ + H.c..(10)

III. LINEAR THERMOELECTRIC
DESCRIPTION

A. Spin-dependent fluxes and Onsager matrix

We assume that the quantum dot is strongly coupled
to the external reservoir, so that it has the same chemical
potential µ2 = µ and temperature T2 = T + ∆T of this
system. The edge states are contacted to left and right
reservoirs at chemical potential µ1 = µ+eV and T1 = T .
The charge and heat currents between the quantum dot
and the helical edges is composed of fluxes of ↑ electrons
flowing to the L channel and ↓ electrons flowing to the
R channel. We set µ = 0, and define these components
as follows

JCσ = −2ewσRe
[
G<d,σ(t, t)

]
,

JQσ = −2wσRe
[
i∂t′G

<
d,σ(t, t′)

]
t′=t

, (11)

where we have introduced the lesser Green’s function
G<d,σ(t, t′) = −i〈d†σ(t)ψσ(t′)〉. In the next section we will
explain the method to evaluate these currents. Here, we
focus on small temperature differences ∆T and small bias
voltages eV between the reservoirs contacting the edges
and the reservoir contacting the quantum dot. Under
this condition, these currents will be linear functions of
the affinities X1 = ∆µ/T and X2 = ∆T/kBT

2, with
∆µ = µ2 − µ1 and ∆T = T2 − T1,

JCσ = Lσ11X1 + Lσ12X2,

JQσ = Lσ21X1 + Lσ22X2. (12)

The coefficients Lσij obey Onsager relations L↑ij(B) =

L↓ji(−B). In addition, these coefficients satisfy con-
straints imposed by the second law of thermodynam-
ics, according to which the rate of entropy production
is positive,47,48

Ṡ =
∑
i,j

Xi Lij Xj ≥ 0, (13)

with Lij =
∑
σ L

σ
ij . This implies L11, L22 ≥ 0, det[L] ≥

0.
The diagonal matrix elements define, respectively, the

electrical and thermal conductances per spin channel,
while the off-diagonal matrix elements define the charge
to energy conversion and vice versa. For B 6= 0, the
charge current comes along with a spin current. In turn,

imbalance between the flows with ↑ and ↓ electrons im-
plies a net spin current flowing into the left or right termi-
nal of the QSH bar. Therefore, we can identify different
thermoelectric operational modes for this setup, which
we describe below.

B. Operational modes

The different interesting operational modes are: charge
heat engine or refrigerator, spin heat engine and spin re-
frigerator. They are illustrated in Figs. 2 and 3. While
the charge heat engine or refrigerator mode can be re-
alized with magnetic field as well as without magnetic
field, the spin heat engine and spin refrigerator modes
operate only with a finite magnetic field. The conditions
of operation corresponding to each case are indicated in
section V.

1. Charge heat engine or refrigerator

T, µ + eVT, µ + eV

T + �T, µ

JQ

(a)

T, µ + eV T, µ + eV

T + �T, µ

JC

(b)

FIG. 2: (a) Charge heat engine. The heat current from
the hottest reservoir is converted into charge current flow-
ing through the tunneling contact and equally distributed, in
absence of magnetic field, to the left and right reservoir of
the QSH system. (b) Charge refrigerator. An electric current
flows from the edge states to the quantum dot and is accom-
panied by a heat current that refrigerates the left and right
reservoirs of the QSH system.

We start by considering the cases sketched in Fig. 2.
These are the usual operational modes of a two-terminal
configuration with chemical potential and a temperature
differences in opposition. In our case, the hot terminal
is the quantum dot connected to the reservoir at µ and
T + ∆T , while the cold reservoir is the Luttinger liquid
composed of the two helical edge states. The thermoelec-
tric response can be described by(

JC

JQ

)
=

(
Lc11 Lc12

Lc21 Lc22

)(
X1

X2

)
. (14)
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In terms of the fluxes and Onsager coefficients defined
in Eq. (12) we have JC =

∑
σ J

C
σ , JQ =

∑
σ J

Q
σ and

Lcij =
∑
σ L

σ
ij . The device can operate as a heat engine or

refrigerator. The performance of these operational modes
is qualified by the efficiency (heat engine) or coefficient
of performance (refrigerator) as follows

ηc,he = −J
CX1

JQ
, ηc,fri = − JQ

JCX1
. (15)

In the former case JC flows against the bias voltage X1

and a electrical power −JCX1 is generated at expenses of
the investment of a heat flow JQ, while in the latter case a
heat current −JQ is extracted from the coldest reservoir
by investing an electrical power JCX1. Both coefficients
are bounded by the Carnot limits, ηc,he ≤ ∆T/T and
ηc,fri ≤ T/∆T .

2. Spin heat engine

We now consider the cases sketched in Fig. 3 (a)
and (c). The magnetic field at the quantum dot filters
electrons with a given spin component. The heat cur-
rent flowing from the hot reservoir in strong coupling to
the quantum dot leads to a polarized electron current
through the tunneling contact to the helical edge states
and a spin current is induced at the QSH system. Due
to the helical nature of the edge states, this also implies
a charge current flowing to the left or to the right along
the edge. Hence the direction of the magnetic field dis-
tributes the electron flow towards the left or right termi-
nals of the QSH bar. The thermoelectric description to
characterize the generation of a spin current JS in the
QSH by using the heat current JQ can be formulated in
terms of the linear dependence of these currents with the
affinities,

(
JS

JQ

)
=

(
Ls11 Ls12

Lc21 Lc22

)(
X1

X2

)
, (16)

with JS = ξ
(
JC↑ − JC↓

)
where ξ = sgn

(
L↑11 − L↓11

)
.

The matrix elements of Eq. (16) in terms of the orig-

inal Onsager coefficients read Ls1j = ξ
(
L↑1j − L↓1j

)
and

Lc2j . We have introduced the sign ξ in the definition, in

order to have Ls11 > 0 and JQ is the total heat current
previously defined. In this case, the efficiency is quanti-
fied as the ratio between fraction of the electrical power
flowing against the bias voltage to the left or right termi-
nals (for ξ > 0 or ξ < 0), −JSX1, and the heat current
flowing from the hot reservoir JQ

ηs,he = −J
SX1

JQ
. (17)

Notice that JSX1 has the same units as the electrical
power, since JS is a polarized charge current.

T, µ + eVT, µ + eVT, µ + eVT, µ + eV

T, µ + eVT, µ + eV T, µ + eV T, µ + eV

T + �T, µ

T + �T, µ T + �T, µ

T + �T, µ

JQ

JQ

(a)

(c)

(b)

(d)

JQ

JQ

JS JS

JSJS

JS JS

JS
JS

FIG. 3: (a) and (c) Spin heat engine. The heat current from
the hottest reservoir is converted into a spin current flowing
through the tunneling contact and to the left (for ↑ electrons)
and right (for ↓ electrons) reservoir of the QSH system. (b)
and (d) Spin refrigerator. A polarized (↑ or ↓) electric current
flows from the edge states to the quantum dot and is accom-
panied by a refrigeration of the left or right reservoirs of the
QSH system.

3. Spin refrigerator

Finally we consider the cases sketched Fig. 3 (b) and
(d). They can be regarded as the reversed operational
mode of the spin heat engine. As a consequence of the
spin filtering introduced by the magnetic field, not only
a polarized electron flux but also an associated energy
flux is established between the left and right terminals of
the QSH bar. This can be described by the heat current

JQ,s = ξ
(
JQ↑ − J

Q
↓

)
, with ξ = sgn

(
L↑22 − L↓22

)
. Hence,

a polarized charge flux from the helical edges towards
the quantum dot and the external terminal can be used
to refrigerate the left or the right reservoir contacting
the QSH system. The thermoelectric response can be
described as follows(

JC

JQ,s

)
=

(
Lc11 Lc12

Ls21 Ls22

)(
X1

X2

)
, (18)

The matrix elements of Eq. (18) in terms of the original

Onsager coefficients read Ls2j = ξ
(
L↑2j − L↓2j

)
and the

efficiency can be quantified as the heat current extracted
from the left or the right reservoirs (for ξ > 0 or ξ < 0),
upon investing a total electrical power JCX1,

ηs,fr = − JQ,s

JCX1
. (19)
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IV. CALCULATION OF THE ONSAGER
COEFFICIENTS

The spin-dependent charge and heat currents defined
in Eqs. (11) can be calculated by means of non-
equilibrium Schwinger Keldysh formalism and treating
perturbatively the tunneling couplings between the quan-
tum dot and the helical edges, wσ . Here we summarize
the main steps of this calculation. The charge current
can be expressed as follows

JCσ = −2ew2
σ

∫ +∞

−∞
dt
∑
s=±

Re
[
g<d,s(t)u

2
s,σg

>
σ (−t)

−g>d,s(t)u2
s,σg

<
σ (−t)

]
, (20)

where us,σ are defined in Eq. (9). The lesser and
greater Green’s functions of the quantum dot con-
tacted only to the ordinary reservoir read g>,<ds (t) =∫
dωe−iω/~tλ>,<(ω)ρds(ω). They depend on the den-

sity of states of the quantum dot coupled to the external
reservoir,

ρds(ω) =
1

π

γ

ω − Es + iγ
. (21)

The functions λ<(ω) = ifd(ω) and λ>(ω) =
−i [1− fd(ω)], depend on the chemical potential µ and
temperature T + ∆T of the external reservoir in strong
coupling with the quantum dot through the Fermi func-
tion fd(ω). The functions g>,<σ (t) correspond to the
left moving (for σ =↑) and right moving (for σ =↓)
electrons at the edge states. They can be written as
g>σ (t) = −g<σ (−t), with

g<σ (t) =
i

h

∫
dωe−iω/~tρσ(ω)fσ(ω + eV ), (22)

ρσ(ω) = aK̄−1 (2πT )K̄−1

Γ(K̄)

∣∣∣Γ(K̄/2 + iω/2πT )

Γ(1/2 + iω/2πT )

∣∣∣2.(23)

ρσ(ω) is the density of states of the chiral Luttinger liquid
of left (for ↑) and right (for ↓) movers, Γ(x) is the Gamma
function and

K = (K + 1/K)/2. (24)

More details on this calculation are presented in Ap-
pendix A.

Substituting these Eqs. in Eq. (20) we get the follow-
ing expression for the charge current through the tunnel-
ing contact

JCσ =
e

h

∫ +∞

−∞
dωTσ(ω)

[
fσ(ω + eV )− fd(ω)

]
,

with

Tσ(ω) = 4πw2
σ

∑
s

u2
s,σρd,s(ω)ρσ(ω + eV ). (25)

Similarly, for the heat current we get

JQσ =

∫ +∞

−∞
dω

ω

h
Tσ(ω)

[
fσ(ω + eV )− fd(ω)

]
. (26)

Expanding these expressions up to linear order in eV and
∆T we get the Onsager coefficients of Eq. (12),

L̂σ = −kBT
2h

∫
dω

(
e eω
ω ω2

)
Tσ(ω)

∂f(ω)

∂ω
. (27)

In the limit of low temperature kBT < γ, the density
of states of the Luttinger liquid can be well approximated
by a power law as in Ref. 20. The resulting expressions
for the Onsager coefficients in this limit are

Lσ11 ' T
∑
s

u2
s,σρd,s(0)I0(K),

Lσ12 ' T
∑
s

u2
s,σρ

′
d,s(0)I2(K), Lσ21 ' Lσ12,

Lσ22 ' T
∑
s

u2
s,σρd,s(0)I2(K), (28)

with

In(K) = c(K,T )
(kBT )K−1+n

K − 1 + n
, (29)

where c(K,T ) is a coefficient depending on K and T . In-
terestingly, from the definition of Eq. (24) we see that K
is a function of the Luttinger parameter K obeying the
following symmetry K ↔ 1/K. Hence, K has the same
behavior for repulsive (K < 1) and attractive (K > 1)
interactions. This is because the infinite Luttinger liquid
for the pair of edge states defined in Eq. (2) can be de-
scribed in terms of two Hamiltonians, which are bilinear
in bosonic fields resulting from combinations of the orig-
inal ones φσ. These two Hamiltonians are related by a
duality transformation under the change K ↔ 1/K, be-
ing the non-interacting case, K = 1 self-dual. The local
tunneling density of states depends on the two combina-
tions of bosonic fields, hence, on the parameter K defined
in Eq. (24).71

V. RESULTS

A. Charge heat engine and refrigerator

In the operational modes introduced in Section III B 1
it is possible to proceed as in the usual 2× 2 thermoelec-
tric devices47 and parametrize the efficiency by a figure
of merit

ZT =
(Lc12)2

DetL̂
, (30)

being Lc12 = Lc21. L̂ is the Onsager matrix characterizing
the corresponding operational mode and Lcij the corre-
sponding matrix elements. Following Ref. 47, we can
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choose ∆µ = −eV and ∆T > 0, and derive the maxi-
mum efficiency for a fixed ∆T . It can be expressed as

ηmax = ηC

√
ZT + 1− 1√
ZT + 1 + 1

, (31)

being ηC = ∆T/T the Carnot efficiency for the heat en-
gine regime and ηC = T/∆T the Carnot coefficient of
performance for the refrigerator regimes. This maximum
corresponds to the following relation between ∆µ and
∆T ,

T∆µ = −∆T
L22

L12

1−
√

DetL̂
Lc11Lc22

 . (32)

The device operates as a heat engine within the range of
voltages satisfying

−L
c
12

Lc11

∆T ≤ T∆µ ≤ 0, Lc12 > 0,

0 ≤ T∆µ ≤ −L
c
12

Lc11

∆T, Lc12 < 0, (33)

while it operates as a refrigerator within the range

T∆µ < −L
c
22

Lc21

∆T, Lc21 > 0,

T∆µ > −L
c
22

Lc21

∆T, Lc21 < 0. (34)

In what follows, we show and analyze the Onsager co-
efficients and the figure of merit described in the pre-
vious section. We calculate numerically the coefficients
of Eq. (27) and derive some analytical results based on
Eqs. (28) within the low-temperature regime kBT < γ.
We have verified that the latter are in prefect agreement
with the exact results.

1. B = 0

In Fig. 4, we show the Onsager coefficients for the
charge heat engine or refrigerator described in Section
III B 1, as well as the corresponding figure of merit. We
fix the magnetic field at B = 0 a low temperature T =
0.1γ, and analyze these quantities as functions of the gate
voltage.

The diagonal coefficients Lc11 and Lc22, related, respec-
tively, to the electrical and thermal conductances, have
maxima when the level of the dot is aligned with the
chemical potential µ. The maximum thermoelectric effi-
ciency, corresponding to the maximum ZT , takes place at
the maximum of the absolute value of the off-diagonal co-
efficient |Lc12|. This is achieved by applying gate voltages
leading to configurations with a high density of states of
the quantum dot but with broken particle-hole symme-
try. This condition is satisfied within a window e|Vg| ∼ γ.
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FIG. 4: (Color online) Onsager coefficients (panels (a), (b)
and (c)) and figure of merit ZT (panel (d)) corresponding
at the charge heat engine or refrigerator at the temperature
kBT = 0.1γ and B = 0, as functions of the gate voltage (in
units of γ/e). The unit of Lc

11, Lc
12, Lc

22 are, respectively,
eγ/h, eγ2/h, γ3/h. Solid, dashed and dashed-dotted lines
correspond to K = 1, 2, 3, respectively.

The sign of Lc12 = Lc21 defines the range of voltages for
the operational mode, as discussed in Eqs. (33) and (34).

Comparing to the fractional quantum Hall regime,
modeled by a chiral Luttinger liquid, we notice that the
inverse of the fractional filling factor 1/ν plays a simi-
lar role as the parameter K defined in Eq. (24) in the
present case. Therefore, akin to the fractional quantum
Hall effect analyzed in Ref. 20, the thermoelectric per-
formance is enhanced when the system departs from the
non-interacting limit K = 1. This is true for K > 1 as
well as K < 1.

2. Effect of the magnetic field

Although the magnetic field is not essential for the de-
vice to operate as a charge heat engine or refrigerator, it
is interesting to analyze its effect. Turning on the mag-
netic field, B, the electronic levels of the quantum dot is
split by Zeeman effect into two levels with energies E±
given in Eq. (8). Figure (5) shows the thermoelectric co-
efficients and the figure of merit for a finite magnetic field
aligned with the direction of the spin-orbit coupling of the
QSH bar, θ = 0. We can identify in the behavior of the
diagonal coefficients Lc11 and Lc22 as functions of the gate
voltage (top panels) the two peaks at eVg = ±µBB/2.
These correspond to the values of the gate voltage for
which the levels are aligned with the mean chemical po-
tential µ. Concomitantly, the non diagonal coefficient
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Lc12 also presents more features than in the case of vanish-
ing magnetic field. In particular, this coefficient vanishes
at the two resonant values eVg = ±µBB/2, in addition
to the particle-hole symmetric value eVg = 0 of the zero
magnetic field.

Changing the direction of the applied magnetic field, θ,
has no effect on the Onsager coefficients Lcij . This result
can be understood on the basis of the expressions given
in Eq. (28). Considering, for instance, the case of the
low-temperature expression for the coefficient

Lc11 =
∑
σ

Lσ11 ' T
∑
s,σ

u2
s,σρd,s(0)I0(K)

= T
∑
s

ρd,s(0)I0(K), (35)

and taking into account that from Eq. (9)
∑
σ u

2
s,σ = 1,

we conclude that the component B⊥ of the magnetic field
does not play any role in this regime. This is also true
for the exact coefficients evaluated numerically. Hence,
the perfect alignment of the magnetic field along the di-
rection of the spin-orbit axis of the topological insulator,
is not crucial for the thermoelectric performance of this
operational mode.
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FIG. 5: Onsager coefficients (panels (a), (b) and (c)) and
figure of merit ZT (panel (d)) corresponding at the charge
heat engine or refrigerator at the temperature kBT = 0.1γ
and magnetic field B = 5γ/µB and θ = 0, as functions of the
gate voltage. Other details are the same as in the previous
Fig.

In the top panel of Fig. (6) we show the behavior of
Lc11 for several values of the magnetic field. When the
magnitude of the magnetic field is reduced we observe a
decreasing resolution of the peaks located at the ener-
gies of the dot in the diagonal coefficients. Both peaks
merge into a single peak for values of the applied field
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FIG. 6: (Color online) Top panel: Diagonal coefficient Lc
11 at

the temperature kBT = 0.1γ and θ = 0 and K = 1 for several
values of the magnetic field as a function of the gate voltage.
Lower panel: Figure of merit at zero magnetic field for several
values of temperature and K = 1. The operational mode is
charge heat engine or refrigerator. Other details are the same
as in the previous Fig.

approaching to the intrinsic broadening γ of the quan-
tum dot levels. The effect of the temperature is analyzed
in the lower panel of Fig. (6). As the temperature is in-
creased, large values of the figure of merit are achieved.
This is similar to the results for the fractional quantum
Hall effect presented in Ref. (20). Substituting the low-
temperature behavior for the Onsager coefficients given
by Eqs. (28) we get the following analytical behavior for
the low-temperature regime

ZT ∼
(
ρ′d(0)

ρd(0)

)2
K

2 − 1

(K + 1)2
(kBT )2, K 6= 1,

ZT ∼
(
ρ′d(0)

ρd(0)

)2

(kBT )2, K = 1. (36)

The above expression is in perfect agreement with the
analytical results.

B. Spin heat engine

For the spin heat engine mode described in section
III B 2, we are interested in the conversion of the heat cur-
rent from the external reservoir to a spin current through
the quantum dot and along the edge states of the QSH
bar. This mode can only be implemented by applying a
magnetic field at the quantum dot. To characterize it, we
introduced the coefficients Ls11 and Ls12 in Eq. (16) to de-
scribe the linear dependence of the induced spin current
as a function of the affinities X1, X2.

The efficiency of the device can be quantified by the
ratio between the power developed by the polarized cur-
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rent JS and the heat flux JQ, as defined in Eq. (17). Fol-
lowing the same philosophy as in the usual charge heat
engine and refrigerator, we focus on fixed ∆T and ana-
lyze the conditions for the maximum possible efficiency
within the linear response regime. To this end, we max-
imize Eq. (17) for fixed ∆T . The maximum value is

ηs,he,max = ηc
χhe
√

1 + (ZT )s,he − 1√
1 + (ZT )s,he + 1

. (37)

We have used the following definitions

χhe =
Ls12

Lc21

, (ZT )s,he =
Ls12Lc21

DetL̂s,he
, (38)

being DetL̂s,he the determinant of the matrix of Eq. (16).
The maximum is found to take place at the value of the
voltage bias

T∆µ = −∆T
Ls12

Ls11R
he

(
1−

√
1−Rhe

)
, (39)

being Rhe =
Ls

12L
c
21

Ls
11Lc

22
. The maximum efficiency at fixed

∆T is parametrized by a figure of merit (ZT )s,he, which
has the same formal expression as for the charge heat en-
gine. The maximum is achieved for parameters satisfying
(ZT )s,he → ∞ and it is bounded by χhe ηc. Notice that
χhe ≤ 1, and the limit χhe = 1 corresponds to a fully
polarized current. In addition to the definitions of Eqs.
(37), (38) and (39), it is important to take into account
that for the spin heat engine operational mode to take
place, it is necessary to satisfy the following conditions

−L
s
12

Lc11

∆T ≤ T∆µ ≤ 0, Ls12 > 0,

0 ≤ T∆µ ≤ −L
s
12

Lc11

∆T, Ls12 < 0, (40)

From figures (5) and (7) we can observe that Lc21 has
the same sign of Ls12 and therefore the ratio Rhe is a
positive magnitude which is bounded by 0 < Rhe < 1

due to the constraints imposed by DetL̂s,he > 0. This
determines the selected sign for the root in Eq. (39). In
addition, we recall that the coefficients Lσij should satisfy
the conditions leading to a positive rate of the entropy
production given by Eq. (13).

Fig. (7) shows the transport coefficients for a finite
magnetic field aligned along the direction of the spin-
orbit direction in the bar, θ = 0. The overall behavior
of these coefficients and their dependence with the in-
teractions K, are similar to the charge heat engine (re-
frigerator) mode. From the definition of the sign ξ in
Eq. (16), the coefficient Ls11 has non negative values and
the peaks are at the energies eVg = ±B/2. The differ-
ent signs of ξ imply different polarizations of the spin
current, hence, different directions of the current along
the QSH edge. The coefficient Ls12 does not continuously
cross zero as the gate voltage pass from negative to posi-
tive values. This is explicitly seen in the discontinuity of
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FIG. 7: (Color online) Onsager coefficients Ls
11 and Ls

12

corresponding at the spin heat engine at the temperature
kBT = 0.1γ and magnetic field µBB = 5γ, as functions of the
gate voltage. Top panels show the K dependence for θ = 0.
Lower panels show the θ dependence for K = 1. Other details
are the same as in the previous Fig.
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FIG. 8: (Color online) Figure of merit ZT s,he corresponding
at the spin heat engine. Other details are the same as in Fig.
7. Other details are the same as in the previous Fig.

Ls12 at eVg = 0, as a consequence of the sign ξ imposed
by Ls11.

In the lower panels of figure (7), we show the behavior
of these coefficients when the direction of the magnetic
field is tilted in an angle θ with respect to the direction
of the spin orbit of the QSH. In contrast to the charge
regime, the factors u2

s,σ enter the coefficients in combina-

tions like u2
s,↑−u2

s,↓ = ±(cos2(θ/2)−sin2(θ/2)) leading to
a dependence with θ. Explicitly, within the low-T limit,
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we have for Ls11

Ls11 = L↑11 − L↓11 ' T
∑
s,σ

(u2
s,↑ − u2

s,↓)ρd,s(0)I0(K)

= T (cos2(θ/2)− sin2(θ/2))
∑
s

ρd,s(0)I0(K).(41)

A similar expression is found for Ls12. An interference
between the two spin channels is clearly seen as a function
of θ. In particular, when the field is perpendicular to the
direction of the spin-orbit of the bar, the two coefficients
vanish.

The efficiency of the device in this regime is analyzed
in figure (8), where the figure of merit (ZT )s,he defined
in Eq. (38), is shown for the same parameters of Fig.
7. For this mode, the performance is also enhanced for
interacting systems with K 6= 1. Interestingly, the effect
of the alignment of the magnetic field affects identically
Ls11 and Ls12. Hence, the vale of ZT is not affected by
the tilt angle θ of the magnetic field, as can be seen in
the bottom panel of Fig. (8).

C. Spin refrigerator

Finally, we discuss the spin refrigerator mode intro-
duced in Section III B 3. As in the heat engine, this
regime operates only at finite magnetic field B 6= 0.

The coefficient of performance of the device in this case
can be quantified by the ratio between the power devel-
oped by the polarized heat flux flowing along the helical
edge states JQ,s and the charge flux JC , between the ex-
ternal reservoir and the TI bar, as defined in Eq. (19).
Following the same procedure as in the case of the spin
heat engine, we fix ∆T and maximize Eq. (19). The
maximum value is

ηs,fri,max = ηc
χfr
√

1 + (ZT )s,fr − 1√
1 + (ZT )s,fr + 1

. (42)

We have used the following definitions

χfr =
Ls21

Lc12

, (ZT )s,fr =
Ls21Lc12

DetL̂s,fr
, (43)

being DetL̂s,fr the determinant of the matrix of Eq. (18).
The voltage bias corresponding to the maximum is

T∆µ = −∆T
Ls22

Ls21

(
1−

√
1−Rfr

)
, (44)

where Rfr =
Lc

12L
s
21

Lc
11Ls

22
. In this mode the maximum coeffi-

cient of performance at fixed ∆T is also parametrized by
a figure of merit (ZT )s,fr, which has the same formal ex-
pression as for the modes previously analyzed. As in the
other cases, the maximum is achieved for (ZT )s,fr →∞.
It is bounded by χfr ηc and χfr ≤ 1, with the maximum
corresponding to a fully polarized current. In addition to
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FIG. 9: (Color online) Onsager coefficients Ls
22 (top panels)

and figure of merit ZT s,fr (lower panel) corresponding to the
spin refrigerator. Other details are the same as in Fig. 7.
Other details are the same as in the previous Fig.

the definitions of Eqs. (42), (43) and (44), the following
conditions must be satisfied

T∆µ < −L
c
22

Ls21

∆T, Ls21 > 0,

T∆µ > −L
c
22

Ls21

∆T, Ls21 < 0. (45)

In this case, the regime is characterized by the coef-
ficients Ls22, plotted in the top panels of figure (9), and
Ls21. As in the spin heat operational mode, this regime
implies a proper definition of in the sign ξ, such that

Ls22 = ξ(L↑22 − L↓22) ≥ 0 to characterize the thermoelec-
tric response. The dependence of the coefficients with
the gate voltage and magnetic field is similar to that ob-
served for the spin heat engine. We have verified that the
sign ξ, as a function of the gate voltages and magnetic
field, is exactly the same within the spin heat and refrig-
erator regimes. This can be easily verified from the low-
temperature expressions of the coefficients in Eq. (28),
by noticing that the only difference between Lσ11 and Lσ22

is given by the amplitude introduced by the factor In(K)
in Eq. (29). As a consequence, the coefficient Ls21 is equal
to Ls12 shown in Figure (7). The coefficient Ls22 and the
figure of merit are shown in Fig. 9.

VI. SUMMARY AND DISCUSSION

We have analyzed the thermoelectric response of a pair
of helical edge states of a topological insulator coupled
to an extra reservoir through a side quantum dot. By
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applying a gate voltage as well as a magnetic field at the
quantum dot, different thermoelectric operational modes
can be induced in this device. These include usual charge
heat engine and refrigerator, as well as spin heat engine
and refrigerator. The latter modes imply the conversion
between heat and spin currents and are of interest in
spintronics.

In this work we introduced a linear response descrip-
tion, relevant for small bias voltages and temperature
differences and characterize the different regimes by ef-
ficiencies or coefficients of performance parametrized by
figures of merit. Considering a typical value for the pa-
rameter γ ∼ 1µeV ,20 the spin heat engine and spin re-
frigerator regimes can be achieved with magnetic fields
B ∼ 0.1T , which are of the order of magnitude of the
ones implemented in laboratory to study quantum dots
in the Kondo regime.72 Given the additional fact that
our setup is based on a quantum dot coupled albeit not
hosted by the topological insulator in the QSH state,
the application of a magnetic field is not expected to
affect the nature of the helical edge states. For these es-
timates, the temperatures indicated in Fig. 6 range from
T = 5mK to T = 40mK and we see that values of fig-
ure of merit as large as ZT = 5 can be achieved in the
case of non-interacting helical edges. As in the case of
the fractional quantum Hall effect studied in Ref. 20, the
thermoelectric performance is improved when the many-
body interactions are relevant. Hence , for the cases with
K 6= 1, the above estimates can be improved in a factor
depending on K, as shown in Eq. (36), and Figs 4,7,8
and 9.
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Appendix A: Density of states of the helical edges

The derivation of the density of states of the chiral
Luttinger liquid ρσ(ω) entering in Eq. (22) follows from
the Hamiltonian in Eq. (2) and can be obtained by us-
ing standard bosonization technique as presented in Ref.

(21). Here we summarize the main steps.
Starting from the definition of the greater Green func-

tion ig>↓ (t− t′) and the expression of the fermionic fields
in terms of the bosonic ones in Eq. (4) one arrives at

ig>↓ (t− t′) =
〈
ψ↓(t)ψ

†
↓(t
′)
〉

=
1

2πa

〈
eiK+φ↓(t)eiK−φ↑(t)e−iK+φ↓(t

′)e−iK−φ↑(t
′)
〉

=
1

2πa
eK

2
+D

>
↓ (t−t′)eK

2
−D

>
↑ (t−t′), (A1)

where D>
σ (t − t′) = D<

σ (t′ − t) =< φσ(t)φσ(t′) > − 1
2 <

φ2
σ(t) > − 1

2 < φ2
σ(t′) >, for t > t′ is the bosonic propa-

gator associated at the σ channel in Eq. (2). The latter
is given by the following expression

D>
σ (t− t′) = Kln

[ sinh(iaπT )

sinh
[
πT (t′ − t+ ia)

]]. (A2)

Inserting Eq. (A2) into Eq. (A1) the greater Green
function can be simple written as

g>↓ (t− t′) =
−i
2πa

[ sinh(iaπT )

sinh
[
πT (t′ − t+ ia)

]](K2
++K2

−)K

g>↓ (t− t′) =
−i
2πa

[ sinh(iaπT )

sinh
[
πT (t′ − t+ ia)

]]K̄ , (A3)

where K̄ ≡ (K2
+ +K2

−)K = 1
2 ( 1
K +K).

The lesser Green function is obtained through the re-
lation g<σ (t− t′) = −g>σ (t′ − t),

g<↓ (t− t′) =
i

2πa

[ sinh(iaπT )

sinh
[
πT (t− t′ + ia)

]]K̄ , (A4)

Note that the left and right movers share the same tem-
perature and, as a consequence, there is no spin depen-
dence in the explicit expressions of the above Green func-
tions.

Transforming Fourier to the frequency domain we have

g<σ (ω) = iaK̄−1 (2πT )K̄−1

2πΓ(K̄)
e−ω/2T

∣∣∣Γ(K̄/2 + iω/2πT )
∣∣∣2.

(A5)

Finally, the density of states ρσ(ω) can be introduced
through the identity g<σ (ω) = 2πiρσ(ω)f(ω), where f(ω)
is the Fermi distribution and Γ(z) is the Gamma function.
The final expression for the densities of states, Eq. (22)
reads

ρσ(ω) = aK̄−1 (2πT )K̄−1

Γ(K̄)

∣∣∣Γ(K̄/2 + iω/2πT )

Γ(1/2 + iω/2πT )

∣∣∣2.(A6)

1 X. G. Wen, Topological orders and Edge excitations in
FQH states, Adv. Phys. 44, 405 (1995).

2 B. I. Halperin, Quantized Hall conductance, current-



11

carrying edge states, and the existence of extended states
in a two- dimensional disordered potential, Phys. Rev. B
25, 2185 (1982).

3 R. B. Laughlin, Quantized Hall conductivity in two dimen-
sions, Phys. Rev. B 23, 5632 (1981).
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