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We present a linear response calculation for twisted bilayer graphene. The calculation is performed
for both the continuum and tight-binding models, with the aim of assessing the validity of the
former. All qualitatively important features previously reported by us [T. Stauber et al. Phys.
Rev. Lett. 120, 046801 (2018)] for the Drude matrix in the continuum model are also present
in the tight-binding calculation, with increasing quantitative agreement for decreasing twist angle.
These features include the chiral longitudinal magnetic moment associated with plasmonic modes,
and the anomalous counterflow around the neutrality point, better interpreted as a paramagnetic
response. We have addressed the differences between Drude and equilibrium response, and shown
that orbital paramagnetism is the equilibrium response to a parallel magnetic field over a substantial
doping region around the neutrality point. Chirality also makes the equilibrium response to exhibit
a non trivial current structure associated with the non-vertical character of interlayer bonds in the
tight-binding calculation.

I. INTRODUCTION

Chiral molecules, ubiquitous in natural and syn-
thetic organic chemistry, have long been the subject of
much attention and used in many applications.1 More
recently, plasmonic metamaterials and other artificial
nanostructures with chiral capabilities have also been
implemented.2–6 The design of atomically thin two di-
mensional van der Waals materials7 has enlarged the
list of artificial optically active material significantly, i.e.,
any combination of misaligned van der Waals materials
should lead to circular dichroism which can further be
enhanced by increasing the number of twisted layers.8

Twisted bilayer graphene is the most widely stud-
ied system among misaligned van der Waals structures.
It is made of two graphene layers rotated by an ar-
bitrary angle with respect to each other.9–15 Its non-
interacting electronic structure mimics its geometry, with
two Dirac cones displaced in the Brillouin zone by the
twist angle.16,17 But correlation effects become important
for filling factors close to the neutrality point,18 leading
to the opening of a Mott gap19 and to a superconduct-
ing phase20 that turns out to be tuneable.21 Also twisted
structures consisting of other van der Waals materials
such as MoS2 have been investigated showing a mod-
ulated red shift of the excitonic gap.22 Also in hetero-
bilayers, interlayer excitons are long-lived23,24 and can
be confined by the moiré lattice, potentially leading to
quantum information applications.25

Twisted bilayer graphene (TBG) is a chiral material
because its geometry is not parity invariant, with left-
and right-handed copies corresponding to opposite twist
angles. Indeed, TBG experimentally exhibits signifi-
cant optical activity at finite frequencies corresponding

to transitions with strong interlayer hybridization around
the K and the M -point,8 without the need of a magnetic
field.26

The theoretical explanation of TBG optical activity
has been considered in Refs.8,27. Motivated by the ever
increasing sophistication of experimental transport re-
sults, we have recently extended the calculation of TBG
response to zero frequencies28, obtaining the Drude ma-
trix where the excitation and response of each layer can
be discriminated. Such a calculation, performed within
the framework of the continuum model, has unveiled po-
tentially relevant results. These include, for instance,
the emergence of a longitudinal magnetic moment ac-
companying currents, such as those of intrinsic plasmons,
endowing them with a chiral character. Also, we ob-
tained counter intuitive behavior in a counterflow con-
figuration, where opposing currents in each layer seem
to flow opposite to their respective electric field even at
zero doping. All this might be interesting in view of ma-
nipulating the electronic properties of two-dimensional
layered structures through their twist angle - so-called
”twisttronics”.29

This work is largely devoted to an assessment of the
linear response validity of the continuum model of TBG.
For this, the Drude weight, which is the key quantity in
the dynamics of plasmons30,31 and which can also be ob-
tained from transport meaurements,32 is calculated and
shown that it needs to be extended to a Drude matrix.
We then compare the predictions of a tight-binding model
with those of its continuum counterpart. This analysis is
important because the continuum model or some variant
of it will be needed if we ever want to address the small-
est angles within Bloch theory. For non-commensurate
structures, novel techniques are needed.33,34

A further motivation for this study comes from the
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observation made in Ref.27 that, in explaining the ex-
perimentally observed circular dichroism, the continuum
model is vulnerable to otherwise accepted approxima-
tions. The peculiar effects obtained by us in the contin-
uum model and, particularly those associated with chi-
rality, are typically small. Given the possibility, however
remote, that such behavior could be an artifact of the
continuum model, we consider its assessment against a
tight-binding calculation as imperative.
Although the numerical effort limits the tight-binding

calculation to rather large angles, as argued in ref.35, the
continuum model by its very construction should become
a better description of TBG for decreasing angles. There-
fore, agreement in the nominally worst case of large an-
gles becomes more relevant. The results to be presented
later confirm that all qualitative features of the contin-
uum calculation are indeed present in the tight-binding
results, with quantitative agreement increasing with de-
creasing twist angle, as expected. The comparison will
not be limited to the Drude matrix, but also the equilib-
rium response in the presence of a parallel magnetic field
will be presented, where similar degree of agreement is
found.
The paper is organized as follows. Section II present

the tight-binding model, its linear response formalism,
and a physical discussion of the response terms, largely
valid also for the continuum case. Section III con-
tains a brief account of the continuum model and its
response, already presented in Ref.28, to make the work
self-contained. Section IV presents the main results of
this work together with their physical discussion, both
for the Drude and equilibrium cases. Section V summa-
rizes the main findings. Three appendices are included
with details of the tight-binding Hamiltonian and the lin-
ear response calculation.

II. TIGHT-BINDING MODEL

A. Geometry and Hamiltonian

We consider two parallel graphene layers with lattice
constant ag = 2.46 Å, separated along the z axis by a

distance a = 3.5 Å, with the second layer rotated with
respect to a A1B2 stacking point by an angle θi, with
cos(θi) = 1− 1

2(3i2+3i+1) for integer i, so that a commen-

surate superstructure results. The Hamiltonian can be
written as

H0 = H1 +H2 +Hinter, (1)

where H1(2) corresponds to the intralayer Hamiltonian,
described by a single nearest-neighbor tight-binding hop-
ping integral t, with t = 3 eV. Hinter describes the inter-
layer hopping, and it is given by

Hinter =
∑

i∈1,j∈2

V (dij) c
†
i cj +H. c., (2)

where V (dij) only depends on the distance between or-
bitals, so that the analysis of ref.17 applies. The details
of V (dij) are provided in the appendix A, suffice it to say
here that the largest interlayer hopping integral is taken
to be around 16 percent9,36 of the intralayer t.

B. Linear Response

We will only consider fields and currents parallel to
the planes. Furthermore, we will temporarily restrict our
attention to horizontally homogeneous fields while allow-
ing spatial variation along the stacking direction, so that
only the q = 0 Fourier component survives. Under these
conditions, the linearly perturbed Hamiltonian is

H = H0 + V , (3)

with

V = −S [j(1)p ·A(1) + j(2)p ·A(2) + j(inter)p ·A(inter)], (4)

with layer surface S. A(1,2) are the vector potentials
at the graphene layers 1 and 2 , and Ainter is that at

the mid-point between graphene layers. j
(1,2,inter)
p are

the corresponding paramagnetic current operators, given
explicitly in the appendix B. Notice that j(inter) ac-
counts for the fact that, in the tight-binding model, a
non-vertical interlayer bond can carry a parallel current.
We will use the ordering

A =





A(1)

A(2)

A(inter)



 , (5)

and

j =





j(1)

j(2)

j(inter)



 , (6)

where j stands for the physical current, which includes a
diamagnetic contribution, jd, so that

j = jp + jd. (7)

The induced paramagnetic currents can then be writ-
ten as

jp = −χpA, (8)

where a ground state average is implicit for the left-hand-
side of Eq. 8. The 6 × 6 (3 currents × 2 components)
tensor χp is forced by the symmetries of the problem to
have the form:

χp =

















χ0 0 χ1 χxy χ2 χ′
xy

0 χ0 −χxy χ1 −χ′
xy χ2

χ1 −χxy χ0 0 χ2 −χ′
xy

χxy χ1 0 χ0 χ′
xy χ2

χ2 −χ′
xy χ2 χ′

xy χi 0
χ′
xy χ2 −χ′

xy χ2 0 χi

















, (9)
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where the linear response calculation of non-zero entries
is described in the appendix B.
Likewise, the diamagnetic contribution can be written

as

jd = −χdA, (10)

where, again, symmetries reduce the tensor χd to the
diagonal form

χd =















χd0 0 0 0 0 0
0 χd0 0 0 0 0
0 0 χd0 0 0 0
0 0 0 χd0 0 0
0 0 0 0 χdi 0
0 0 0 0 0 χdi















, (11)

with the calculation of non-zero entries explicited in the
appendix B.

C. Drude matrix

The physical current can be written as

j = −χA, (12)

where χ = χp + χd. The expressions given in Eqs. 9
and 11 correspond to the q = 0 but arbitrary frequency,
so that all entries are frequency functions. Indeed, the
chiral entries χxy(ω) and χ′

xy(ω) are responsible for the
experimentally observed circular dichroism at optical fre-
quencies. As in ref.28, we will be concerned with the
ω → 0 limit, which physically corresponds to the Drude
weight, here promoted to a Drude matrix. Therefore, we
define the Drude matrix as

D = lim
ω→0

χ, (13)

given explicitly by

D =

















D0 0 D1 Dxy D2 D′
xy

0 D0 −Dxy D1 −D′
xy D2

D1 −Dxy D0 0 D2 −D′
xy

Dxy D1 0 D0 D′
xy D2

D2 −D′
xy D2 D′

xy Di 0
D′

xy D2 −D′
xy D2 0 Di

















, (14)

where, for instance, D0 = limω→0[χ0(ω) + χd0] and sim-
ilarly the remaining entries.
The Drude matrix is essentially a dynamical concept:

it measures the system density of inertia (inverse mass)
resisting the (slow) acceleration of a currents by electric
fields. This is best seen by writing the electric field as
E = iωA and rewriting the response as

−iω j = χE, (15)

which, upon restoring the time, is equivalent to

∂tj = DE, (16)

for slow variations. Introducing a phenomenological
scalar dissipation τ , Eqs. 15 and 16 are equivalent to
a matrix generalization of the more familiar expression
for the conductivity, σ = 1

−iω+τ−1D.

D. Physical interpretation

The Drude matrix of Eq. 14 provides the most com-
plete information of the response for q = 0 and ω → 0,
and we will present results for all entries later. But prior
to that, it is convenient to adopt a slightly different view
in order to gain more physical insight. What follows is a
generalization of out treatment of ref.28 to the full tight-
binding case.
Firstly, we can assume that the field changes linearly

between layers, correct to lowest order. Then the three
perturbing fields can be written as

E(inter) = E‖

E(1) = E‖ + (E(1) −E(2))/2

E(2) = E‖ − (E(1) −E(2))/2,

(17)

so that the perturbation can be spelled in terms of the av-
erage parallel field, E‖, and its change across the bilayer,

(E(1) −E(2)) , later related to the magnetic field.
Correspondingly, we will focus on the total current re-

sponse, jT , and its variation, jm,

jT = j(1) + j(2) + j(inter)

jm = (j(1) − j(2))/2.
(18)

Note that jm will be non-zero if the layers are driven
in opposite direction, the couterflow configuration con-
sidered in Ref.17 We will later relate it to the magnetic
moment, whereof the notation.
Using the Drude matrix in Eq. 14, one can show that

the physical response can be cast in the form of the fol-
lowing constitutive relations

∂tjT = DT E‖ +Dchir ẑ × (E(2) −E(1))

∂tjm = Dchir ẑ ×E‖ −
Dmag

2
(E(1) −E(2)),

(19)

where we have introduced the total (DT ), chiral (Dchir),
and counterflow or magnetic (Dmag), Drude parameters,
given by

DT = 2(D0 +D1) + 4D2 +Di (20)

Dchir = Dxy +D′
xy (21)

Dmag = D1 −D0. (22)

The magnetic language is introduced using Maxwell
equations to write

ẑ × (E(2) −E(1)) = −a ∂t B‖, (23)



4

where B‖ is the parallel magnetic field. Therefore, we
can rewrite the constitutive relations as

∂tjT = DT E‖ − aDchir ∂tB‖

∂tm‖ = aDchir E‖ +
a2

2
Dmag ∂tB‖,

(24)

where the parallel magnetic moment density, m‖ =
a jm × ẑ, has been introduced.
Notice that, if only a magnetic field is present, one can

drop the time derivatives, leading to

jT = −aDchir B‖ (25)

m‖ =
a2

2
Dmag B‖. (26)

It is important not to forget the dynamical meaning of
the previous expression. It is the adiabatic application of
a magnetic field what results in a total parallel current
and, perhaps less surprisingly, a magnetic moment. The
associated currents are produced by the transient electric
fields, and the ideal dissipationless nature of the calcu-
lation makes those currents permanent. This has two
consequences. Firstly, the practical observation would
require a dynamical measurement with ωτ >> 1 , as
stressed in our previous work28. Secondly, even in the
ideal dissipationless case, the current and magnetic mo-
ment of Eqs. 25 and 26 need not coincide with the equi-
librium response in the presence of a magnetic field. This
issue is treated in detail in section II E. Let us mention
that dissipationless counterflow at the neutrality point
was also seen in the context of superfluid exciton flow, but
only in the quantum Hall regime under the influence of a
strong magnetic field in perpendicular sheet-direction.37

On symmetry grounds, Eq. 25 is allowed as both cur-
rent and field have the same signature upon time rever-
sal. On the other hand, current and field have opposite
signature under parity reversal, and Eq. 25 would be for-
bidding for a parity invariant system. Of course, lack of
parity invariance is precisely what chirality means and,
therefore, Eq. 25 is allowed.
Finally, we consider the effect of the chiral terms

on plasmons. Doped TBG, as graphene30,31,38 or any
2d metal, exhibits self-sustained charge oscillations39,40.
These can be obtained from the constitutive equations as
shown in Ref.28. Adapting that treatment to the present

case, the plasmon dispersion is given by ωp(q) =
√

DT

2ǫ0
q,

where the chiral terms do not appear. Nevertheless, the
chiral contributions add a transverse component to the
plasmon current, given by the following relation between
electric and magnetic dipole oscillations:

q̂ ·m = a
Dchir

DT
q̂ · jT , (27)

as is easily shown from the constitutive relations ignor-
ing magnetic self-fields (instantaneous approximation).
Therefore, the plasmon carries total charge q·jT 6= 0 and,
by the constraint of Eq. 27, also carries a longitudinal

magnetic moment, the hallmark of chiral excitations1,41.
Thus, the finite value of the chiral Drude terms, Dxy and
D′

xy, bestows plasmons with chiral character.

E. Equilibrium response

The Drude response, in spite of the limit ω → 0, is
a dynamical magnitude, as already explained. Here we
consider the true equilibrium response. At the formal
level, equilibrium, χeq, and Drude responses to a vector
potential only differ in the order of limits,

χeq = lim
q→0

lim
ω→0

χ(q, ω) (28)

D = lim
ω→0

lim
q→0

χ(q, ω), (29)

and writing the equilibrium response in the tight-binding
case as

χeq =

















χ̃0 0 χ̃1 χ̃xy χ̃2 χ̃′
xy

0 χ̃0 −χ̃xy χ̃1 −χ̃′
xy χ̃2

χ̃1 −χ̃xy χ̃0 0 χ̃2 −χ̃′
xy

χ̃xy χ̃1 0 χ̃0 χ̃′
xy χ̃2

χ̃2 −χ̃′
xy χ̃2 χ̃′

xy χ̃i 0
χ̃′
xy χ̃2 −χ̃′

xy χ̃2 0 χ̃i

















, (30)

it is shown in the appendix B 2 that each equilibrium
entry only differs from the corresponding Drude one in a
Fermi surface term whose calculation is there detailed.
In addition to the symmetries already considered in

writing Eq. 30, gauge invariance imposes further con-
straints. The fact that a globally uniform vector poten-
tial, A(1) = A(2) = A(inter), should have no physical
consequences (currents), enforces the following relations
among the equilibrium matrix entries:

χ̃0 + χ̃1 + χ̃2 = 0 (31)

χ̃i + 2χ̃2 = 0 (32)

χ̃xy + χ̃′
xy = 0. (33)

These consistency requirements have been verified in our
calculation to numerical accuracy.

III. CONTINUUM MODEL

Here we just outline the basic points of the continuum
description, referring the reader to references16,17,35 for
details. The Hamiltonian is written as

H = ~vF
∑

k,α,β

[c†1,k,α τ
−θ/2
αβ · (k +

∆K

2
) c1,k,β

+ c†2,k,α τ
+θ/2
αβ · (k − ∆K

2
) c2,k,β] (34)

+ t⊥
∑

k,G,α,β

(c†1,k+G,α Tαβ(G) c2,k,β +H.c.) ,
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where (τ γ
x , τ

γ
y ) = eiγτz/2(τx, τy)e

−iγτz/2, τx,y,z being
Pauli matrices. The separation between twisted cones
is ∆K = 2|K| sin(θ/2) [0, 1] with K = 4π

3ag
[1, 0].

Interlayer hopping is restricted to wavevectors G =

{0,−G1,−G1 − G2} with G1 = |∆K|
[√

3
2 , 3

2

]

, G2 =

|∆K|
[

−
√
3, 0

]

, and

T (0) =

[

1 1
1 1

]

,

T (−G1) = T ∗(−G1 −G2) =

[

ei2π/3 1
e−i2π/3 ei2π/3

]

.

(35)

The Hamiltonian is described by two parameters, vF and
t⊥. The Fermi velocity is connected with the tight-

binding Hamiltonian by the relations ~vF =
√
3
2 |t|ag,

whereas t⊥ can be obtained from the Fourier transform
of the tight-binding interlayer Hamiltonian as described
in appendix A. Calculations correspond to the choice
t⊥ = 0.12 eV.
Parallel currents are restricted to graphene layers,

where they become the pseudospin operators. They are
denoted j(1,2), as in the tight-binding model. For in-
stance, the q = 0, x component of the current density
for layer (1) is given by

x̂ · j(1) = e vF
S

∑

k,α,β

c†1,k,α τxαβ c1,k,β , (36)

with Pauli matrix τx =
(

0 1
1 0

)

, and straightforward gen-
eralization to the remaining cases.
Linear response to the perturbing fields, A(1,2), pro-

ceeds as usual. Diamagnetic currents are nominally ab-
sent, though the treatment of the ultraviolet cut-off re-
quires some care if one is to extract the Drude weight
from the usual optical conductivity36,39. The fact that
only two currents and two perturbing fields are present
implies 4 × 4 response matrices, for which we keep the
same tight-binding notation. For instance, the Drude
matrix in the continuum model has the block structure

D =







D0 0 D1 Dxy

0 D0 −Dxy D1

D1 −Dxy D0 0
Dxy D1 0 D0






. (37)

Except for the obvious reduction of Drude terms, the
entire discussion of section IID applies to the continuum
case. Therefore, Eqs. 24 still applies, but with Drude
terms given by

DT = 2(D0 +D1) (38)

Dchir = Dxy (39)

Dmag = D1 −D0, (40)

in the continuum model.
As for the Drude case, the equilibrium response in the

continuum model becomes the 4× 4 matrix

χeq =







χ̃0 0 χ̃1 χ̃xy

0 χ̃0 −χ̃xy χ̃1

χ̃1 −χ̃xy χ̃0 0
χ̃xy χ̃1 0 χ̃0






, (41)

and the corresponding gauge invariance requirements are

χ̃0 + χ̃1 = 0 (42)

χ̃xy = 0. (43)

IV. RESULTS

A. Drude matrix

The comparison between the tight-binding and the
continuum model results is presented in this section as a
function of chemical potential. We will restrict our atten-
tion to the region around zero doping. Needless to say,
the validity (and its limits) of the continuum description
of single-layer graphene is taken for granted. What is at
the stake here is, therefore, mainly an assessment of the
approximate description of the interlayer Hamiltonian in
the continuum model, mostly for linear response.
The simplest comparison corresponds to the common

Drude entries of both models, namely, D0, D1, and Dxy.
They are shown in Fig. 1 as a function of chemical po-
tential for two twist angles. Though quantitative differ-
ences are visible, mainly a systematic greater electron-
hole asymmetry in the tight-binding model, the overall
behavior is very similar in both models. All the qual-
itative relevant features reported by us before for the
continuum model, are present in the tight-binding calcu-
lation. For instance the very existence of a chiral term
Dxy, and its Hall-like dependence on carrier sign is pre-
served in the tight-binding results. The same applies to
the term D1: its dependence upon doping and its offset
aboveD0 at zero doping, related later to paramagnetism,
are also systematic features of the tight-binding results.
The remaining entries of the tight-binding Drude ma-

trix, Di, D2, D
′
xy, are connected with the interlayer par-

allel current, neglected in the continuum. They are
presented in Fig. 2, where they are compared with
D0, D1, Dxy. They are generally smaller and featureless
in that range, though Di can become sizable near zero-
doping.
Perhaps a more sensible comparison from a physical

standpoint is afforded by the parameters DT , Dchi, and
Dmag. They describe the physical response in exactly
the same way for both models, Eqs. 24. The total Drude
weight, DT , first considered in Ref.39, is presented in
Fig. 3 for both models. Notice that DT describes the
total current accelerated by an electric field, and could
have been obtained from the mass tensor of the band
structure, as shown in the appendix B. The agreement
between both models is remarkable.
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The chiral contributions, Eqs. 21 and 39, are com-
pared in Fig. 4. As already mentioned, the qualitative
behavior is very similar. Therefore, the main physical
significance of this chiral term, namely, the parallel mag-
netic moment accompanying the longitudinal currents of
intrinsic plasmonic excitations, Eq. 27, seems to be a
robust feature of the system.
Finally, the comparison for the parameter Dmag is

shown in Fig. 5. Owing to its definition, Dmag ∝
(D1 − D0), it can be interpreted as the Drude weight
for accelerating opposite currents in each layer, or coun-
terflow. Accounting for the (magnetic) sign convention of
Eq. 19, the mostly negative Dmag of Fig. 5 implies that
the current in each layer is accelerated by their respective
electric field in the expected correct way. But, as noted
in our previous work for the continuum model, Dmag

starts off positive and remains so in a finite range around
the neutrality point, a feature also confirmed here in the
tight-binding calculation. This implies that, within that
range, the electric field is accelerating currents in the
apparently wrong way and that, even at the neutrality
point, there are couterflow currents. This puzzling pic-
ture is made more conventional in the magnetic language
of Eqs. 24, where it could also be seen as the emergence
of a magnetic moment upon the slow application of a
magnetic field, for which the sign of the response need
not be prejudiced, and free carriers need not be present,
as neutral graphene shows. Both models give a positive
sign at the neutrality point for the twist angles here con-
sidered, implying paramagnetism. Indeed, we will later
see that in-plane orbital paramagnetism is also the equi-
librium susceptibility for a rather wide doping window.
From the above analysis, it is clear that tight-binding

and continuum models agree on the basic aspects. It
is true, however, that the tight-binding numerical effort
limits the accessible angles. As argued in ref.35, though,
the very nature of the continuum model suggests its be-
coming increasingly better for smaller angles. From this
perspective, the comparison should degrade for larger
commensurate angles. This is shown in Fig. 6, where the
lowest commensurate structures are shown, θi=1 = 21.8o

in the left and θi=2 = 13.2o in the right. For such large
angles the interlayer coupling is very small, and only the
interlayer dominated entries D1 and Dxy are shown. For
θi=1 = 21.8o, significant goodwill is required to discover
similarities between tight-binding and continuum. But
for θi=2 = 13.2o, the comparison dramatically improves,
with all the salient qualitative features considered above
clearly present. Looking at Fig. 1, one could say that
θi=3 = 9.4o marks the beginning of quantitative agree-
ment.

B. Equilibrium response. Parallel magnetic field

Here we consider the true equilibrium response and
explore the fate of expressions like those of Eqs. 25 and
26. A parallel magnetic field can be introduced by the
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panel: twist angle θi=6 = 5.1o.
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following choice of perturbing vector potential

A(1) =
a

2
ẑ ×B‖, A(2) = −A(1), A(inter) = 0. (44)

It is worth mentioning that, although we will use the
linear response formalism outlined in section II E, one
could alternatively calculate currents directly from the
ground state averages of the perturbed Hamiltonian. The
reason being that no computational penalty arises in the
Hamiltonian perturbed by the vector potential of Eq. 44,
as it retains the original translational symmetry. In fact,
we have often used this second route as an additional
consistency check.
We first consider the equilibrium version of Eq. 26,

m‖ =
a2

2
χ̃mag B‖, (45)

where

χ̃mag = χ̃1 − χ̃0. (46)

In Fig. 7, we plot the equilibrium susceptibility as a
function of chemical potential. Albeit with some quan-
titative differences, both tight-binding and continuum
cases exhibit similar behavior. There is a positive re-
sponse in an extended plateau around the neutrality
point, roughly covering the entire region between the
energies corresponding to the intersecting Dirac cones.
Therefore, the equilibrium magnetic response in that area
corresponds to (orbital) paramagnetism. The gate de-
pendence of the magnetic response of Fig. 5 is strikingly
similar to the gate dependence of the lattice contribu-
tion of the out-of-plane magnetic susceptibility of single
layer graphene42 and related systems.43,44 This points to
some sort of universality in the orbital response of lay-
ered materials which seems to be independent of the field
direction and would deserve further investigation.
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Orbital paramagnetism is present, though small, even
for the largest possible angle in our commesurable lattice
(θi=1 ∼ 22o), and it increases with decreasing angle in
the central plateau region up to the magic angle.28 For
comparison, the Drude response of Fig. 7 is also plotted,
showing that Drude and equilibrium response coincide
at the neutrality point, where the Fermi surface correc-
tion vanishes, as expected. As previously reported,28 this
orbital paramagnetism can be quite substantial if com-
pared to other sources of orbital magnetic response, in
the vicinity of the magic twist angle.45 Furthermore, the
vanishing of the density of states and Pauli spin paramag-
netism, makes this orbital paramagnetism the dominant
response around the neutrality point.
We now inquire about the possible existence of an equi-

librium counterpart to Eq. 25,

jT = −aχ̃chir B‖, (47)

where now

χ̃chir =

{

χ̃xy + χ̃′
xy tight-binding,

χ̃xy continuum.
(48)

Let us recall that both in the Drude and equilibrium
cases, the emergence of a parallel current in response to
a parallel magnetic field is allowed on time and (lack of)
parity symmetry. In spite of this, the gauge invariance
relations Eqs. 33 and 43 make

χ̃chir = 0, (49)

and, therefore, the total equilibrium current vanishes.
However, it is interesting to realize that the cancel-

lation of χ̃chir takes place with non-zero values of χ̃xy

and χ̃′
xy in the tight-binding case, as shown in Fig. 8.

This means that, though globally zero, there is a current
structure summarized as follows

j(1) = j(2) = −1

2
j(inter). (50)

That is, the parallel current associated to the non-vertical
nature of the interlayer bonds is non-zero, and opposite
to that carried by the layers themselves. The current
structure illustrated in Fig. 8 is a consistent feature of
all our tight-binding calculations. Notice that, were the
system parity invariant, each such current contribution
would be forbidden. Therefore, this layered current re-
sponse to a magnetic field is a remainder of the chiral
nature of TBL.

C. Drude weight and superfluid density

In view of the recent developments concerning super-
conductivity in TBG,20 it is worth closing this section by
recalling that the BCS gap makes the difference between
Drude and equilibrium responses disappear in the super-
conducting ground state. Thus, for instance, DT would
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FIG. 8. (color online): Chiral components of the equilibrium
response, χ̃xy and χ̃′

xy, for the tight-binding calculation (see
Eqs. 47 and 48). Left panel: twist angle θi=3 = 9.4o. Right
panel: twist angle θi=6 = 5.1o.

become the physically correct equilibrium response to an
in-plane transverse vector potential, that is, the super-
fluid density46 DS . For the usual case of a superconduct-
ing gap much smaller than the bandwidth, also applicable
to superconducting TBG, the quantitative evaluation of
the superfluid density at zero temperature could be car-
ried out in the normal state. Therefore, a normal state
calculation of DT like that of Fig. 3 close to the magic
angle could be immediately translated as the superfluid
density of the superconducting ground state.

V. SUMMARY

We have presented a comprehensive study of the elec-
tromagnetic linear response of TBL, described by both a
tight-binding model and its continuum limit. The study
has been restricted to homogeneous horizontal fields,
q → 0, but otherwise unrestricted along the stacking di-
rection. This non-locality along the ẑ, which is a require-
ment to describe optical activity at finite frequencies, has
been here studied in the limit ω → 0, on the grounds
that novel phenomena might be unearthed by the exper-
imental possibility of addressing layers individually. Our
study has considered both the dynamical, Drude aspect
(q = 0 limit first) and the equilibrium response (ω = 0
limit first).
As for the declared objective of assessing the valid-

ity of the continuum model, the conclusion is affirma-
tive: all previously reported28 qualitative features on the
continuum model are present in the tight-binding calcu-
lation. In particular, the tight-binding calculation fully
supports the existence of a peculiar magnetic or coun-
terflow Drude component, Dmag = D1 −D0, finite even
at the neutrality point and with nominally wrong sign.
The agreement also extends to the chiral Drude compo-
nent, Dchir, implying that accelerated currents such as
those of intrinsic plasmons are accompanied of a parallel
magnetic moment, the basic signature of chirality. The
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calculation has been extended to cover the equilibrium re-
sponse, where the agreement between tight-binding and
continuum models also holds. The equilibrium response
to a parallel magnetic field implies orbital paramagnetism
over a substantial doping range and the existence of a
layered current structure as the last remnant of chirality.
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Appendix A: Interlayer Hamiltonian

The tight-binding hopping parameter between two pz
orbitals in different layers is taken to be

V (d) = c

[

(a

d

)2

Vppσ(d) +
(ρ

d

)2

Vppπ(d)

]

, (A1)

where d =
√

ρ2 + a2 is their distance, with in-plane com-
ponent ρ and interlayer separation a. Adapting the treat-
ment of ref.47, Vppσ(d) and Vppπ(d) are assumed to de-
pend on distance as

Vppσ(d) =
α1

dα2

exp(−α3 d
α4)

Vppπ(d) =
β1

dβ2

exp
(

−β3 d
β4

)

,
(A2)

with α1 = 11.7955, α2 = 0.7620, α3 = 0.1624, α4 =
2.3509 , and β1 = −5.4860, β2 = 1.2785, β3 =
0.1383, β4 = 3.4490, in eV and Å units. The interlayer
distance has been taken as a = 3.5 Å, and the graphene
lattice constant as ag = 2.46 Å. The overall constant c is
adjusted so that the 2d Fourier transform

Ṽ (q) =
1

s0

∫

d2ρ e−iq·ρ V (
√

ρ2 + a2), (A3)

evaluated at the Dirac K-point with K = 4π
3ag

(1, 0), gives

Ṽ (K) = 0.12 eV. s0 is the graphene unit cell area.
This interlayer scheme produces for the hopping inte-
gral between two vertically aligned orbitals the value
tA1B2

= 0.49 eV, very close to that used in previous tight-
binding calculations36.
Notice that Ṽ (K) is the magnitude that appears in

the continuum model for the interlayer Hamiltonian, as
shown in ref.17 . Therefore, the quantitative connec-
tion between the tight-binding model and the continuum
model for the interlayer term is

t⊥ = Ṽ (K) = 0.12 eV. (A4)

With the choice of Eq. A4, one has the ratio t⊥
|t| ∼

0.4, as in previous continuum model calculations.16,28,39.
This choice also produces for the first magic angle17 the
value θ ∼ θi=31 = 1.05o.

Appendix B: Tight-binding Linear Response

Any tight-binding Hamiltonian can accommodate the
presence of an electromagnetic field, given by the vec-
tor potential A, by the following replacement for each
elementary hopping term

tij c
†
i cj → tije

−i
e
~
A·rij c†i cj , (B1)

with rij = rj − ri, where rj(i) are the orbital positions,
and A, the average field along the bond. Currents op-
erators are then obtained for each bond from the func-
tional derivative j = −∂H

∂A . This leads to the following
expression for the current operator associated with an
elementary hopping term:

jij = jp,ij + jd,ij , (B2)

where the first term defines the paramagnetic current
operator, given by

jp,ij = i
e

~
rij tijc

†
i cj , (B3)

and the second is the diamagnetic one, given to linear
order by

jd,ij =
e2

~2
tijc

†
i cjrijrij ·A. (B4)

1. q = 0 response. Drude limit

Summing Eq. B3 for all hopping terms, then the q = 0
Fourier component of the parallel, paramagnetic current
operator can be decomposed as

j(1)p =
e

S

∑

k
n∈1,m∈1

vnm(k)c†k,nck,m

j(2)p =
e

S

∑

k
n∈2,m∈2

vnm(k)c†k,nck,m

j(inter)p =
e

S
[

∑

k
n∈1,m∈2

vnm(k)c†k,nck,m

+
∑

k
n∈2,m∈1

vnm(k)c†k,nck,m].

(B5)

j
(1,2)
p correspond to the intralayer currents whereas

j
(inter)
p describes the parallel current carried by the

(oblique) interlayer tight-binding bonds. c†k,n(ck,n) are
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fermion operators for the Bloch state with orbital index
n. The velocity matrix is given by

vnm(k) = ~
−1

∇khnm(k), (B6)

where hnm(k) = 〈k, n|H0|k,m〉 is the Bloch matrix in
orbital indices, and |k, n〉, the Bloch state for supercell
orbital index n.
The response tensor χp for q = 0 enjoys all the symme-

tries of the problem, namely, time-reversal for H0, rota-
tional invariance around the ẑ axis, and π-rotation invari-
ance around any in-plane axis in the mid-point between
layers. As a consequence, non-zero entries are those of
Eq. 9. Linear response dictates their generic form to be
as follows

χp(ω) = S
∑

k,n,m

〈m,k|A|n,k〉〈n,k|B|m,k〉×

nF (ǫm,k)− nF (ǫn,k)

~ω+ − ǫn,k + ǫm,k
,

(B7)

where ω+ = ω + i0+, and the states |m,k〉 are Bloch
eigenstates48 of H0 with band index m and eigenenergy
are ǫn,k, and nF is the Fermi function. The operator
correspondences for each entry are:

χ0 : A = x̂ · j(1)p andB = x̂ · j(1)p

χi : A = x̂ · j(inter)p andB = x̂ · j(inter)p

χ1 : A = x̂ · j(1)p andB = x̂ · j(2)p

χ2 : A = x̂ · j(1)p andB = x̂ · j(inter)p (B8)

χxy : A = x̂ · j(1)p andB = ŷ · j(2)p

χ′
xy : A = x̂ · j(1)p andB = ŷ · j(inter)p ,

where x̂ and ŷ are in-plane orthogonal unit vectors. Fur-
thermore, the chiral entries χxy and χ′

xy are odd func-
tions of the twist angle θi, whereas the rest are even
functions.
The non-zero entries of the q = 0 diamagnetic re-

sponse, Eq. 11, are given by

χd0 =
1

S

e2

~2

∑

k
n∈1,m∈1

[∂2
kx
hnm(k)] 〈c†k,nck,m〉

χdi =
1

S

e2

~2
{

∑

k
n∈1,m∈2

[∂2
kx
hnm(k)] 〈c†k,nck,m〉

+
∑

k
n∈2,m∈1

[∂2
kx
hnm(k)] 〈c†k,nck,m〉},

(B9)

where 〈 〉 imply equilibrium average forH0. Both χd0 and
χdi are even function of the twist angle. Notice that the
diamagnetic response does not depend on ω. Therefore,
The Drude limit of Eq. 13 is given explicitly by

D = lim
ω→0

χp(ω) + χd. (B10)

The total Drude weight of Eqs. 20 and 38 can also be
obtained from the bands by the familiar expression

DT =
1

S

e2

~2

∑

k,n

[∂2
kx
ǫn,k] nF (ǫn,k). (B11)

2. Equilibrium response

The ω → 0 limit of the Drude matrix corresponds to
an adiabatic application of fields, and needs not coincide
with the equilibrium response. In general, one has

j(q, ω) = −χ(q, ω)A(q, ω), (B12)

and the equilibrium response corresponds to

χeq = lim
q→0

lim
ω→0

χ(q, ω), (B13)

whereas the Drude matrix is

D = lim
ω→0

lim
q→0

χ(q, ω), (B14)

and the order of limits matters in the paramagnetic cur-
rent response for gapless systems. Fortunately, the differ-
ence is a Fermi surface term that comes from the n = m,
intraband contribution in Eq. B7. It can be obtained
from the relation

lim
q→0

lim
ω→0

nF (ǫn,k−q/2)− nF (ǫn,k+q/2)

~ω − ǫn,k−q/2 + ǫn,k+q/2
=

lim
ω→0

lim
q→0

nF (ǫn,k−q/2)− nF (ǫn,k+q/2)

~ω − ǫn,k−q/2 + ǫn,k+q/2
− δ(ǫn,k − µ) =

− δ(ǫn,k − µ),

(B15)

where zero temperature has being assumed for simplicity.

Therefore, the equilibrium entries of Eq. 30 can be
obtained from the Drude ones as

χ̃0 = D0 + χF
0

χ̃i = Di + χF
i

χ̃1 = D1 + χF
1

χ̃2 = D2 + χF
2 (B16)

χ̃xy = Dxy + χF
xy

χ̃′
xy = D′

xy + χ′F
xy,

with Fermi surface contributions given generically by

χF
α = −S

∑

k,n

〈n,k|A|n,k〉〈n,k|B|n,k〉 δ(ǫn,k − µ),

(B17)
where the operator correspondences for each entry α is
as in Eq. B8.

The equilibrium response in the continuum model, not
considered in our previous Ref.28 , is as in Eqs. B16 and
B17, with the obvious changes in current operators and
number of terms.
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