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We study the superconducting pairing symmetry in twisted bilayer graphene by solving the Bogoliubov-de
Gennes equation for all electrons in Moiré supercells. With increasing the pairing potential, the system evolves
from the mixed non-topological d + id and p+ ip phase to the s+ p+ d phase via the first order phase transition.
In the time-reversal symmetry breaking d + id and p + ip phase, vortex and antivortex lattice accompanying
spontaneous supercurrent are induced by the twist. The superconducting order parameter is nonuniform in the
Moiré unit cell. Nevertheless, the superconducting gap in the local density of states is identical in the unit cell.
The twist induced vortices and non-topological nature of the mixed d + id and p + ip phase are not captured by
the existing effective models. Our results suggest the importance of long-range pairing interaction for effective
models.

I. INTRODUCTION

Pristine graphene is not superconducting. Surprisingly, by
slightly twisting one layer in vertically aligned graphene bi-
layer, superconductivity emerges with a highest critical tem-
perature Tc ≈ 1.7 K [1]. The experimental twist angle is about
θ = 1.05◦, which belongs to a discrete set of angles called
magic angles. Theoretically, it was calculated that the electron
velocity is quenched significantly at these angles [2, 3], which
has also been confirmed experimentally [4–7]. As a conse-
quence, the kinetic energy of the electrons is reduced signif-
icantly and the role of electronic interaction becomes more
important in the twisted bilayer graphene (TBLG). The mis-
alignment between graphene layers induces a Moiré superlat-
tice (MSL) whose period is aM = a/2 sin(θ/2) with a = 0.246
nm the graphene lattice constant. At θ = 1.05◦, there exist
four nearly flat bands around the Fermi energy according to
an effective continuum model [2, 3]. At half filling of the
lower two flat bands, a Mott-like insulating state has been
observed in experiments [8]. By doping the Mott-like state,
superconducting domes appear. The phase diagram resem-
bles that of high-Tc cuprate superconductors, where the mi-
croscopic mechanism of superconductivity remains an open
question, despite more than 30 years of effort. Unlike cuprate
where chemical doping usually introduces unwanted side ef-
fects such as impurities, the electron concentration in TBLG
can be controlled by using a gate voltage. Thus the TBLG
offers a new platform to investigate the mechanism of uncon-
ventional superconductivity.

The experiments have triggered tremendous theoretical en-
deavor to understand the origin of the Mott-like and supercon-
ducting state in TBLG. Several effective low-energy models
based on MSL have been proposed to describe the flat bands
at the magic angles [9–18]. Based on these effective mod-
els, a variety of pairing symmetries, including spin singlet
d+ id wave [19–22], spin singlet but valley triplet d+ id wave
[23], spin triplet but orbital singlet d + id wave [9, 24], in-
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tertwined spin singlet (triplet) superconductivity with charge
(spin) density-wave orders [25], nematic and orbital triplet
spin singlet superconducting state [15], extended s wave [26],
have been proposed. It is argued that intervalley electron pair-
ing with either chiral (d + id mixed with p − ip) or helical
form factor is the dominant instability driven by the interval-
ley fluctuations [17]. These d + id or p + ip superconductors
are topological, and can host nontrivial edge states [27, 28].
Using the effective continuum model, both phonon-mediated
s wave and d + id wave are proposed [29, 30]. It is argued
that superconductivity arises from melting (doping) a Wigner
crystal realized in TBLG [31]. It is suggested that an emer-
gent Josephson lattice is realized because of the inhomoge-
neous local density of states (LDOS) in TBLG [32]. It is also
proposed that the Kohn-Luttinger instability in TBLG leads
to an effective attraction between electrons and gives rise to
superconductivity [33]. The nature of the Mott-like state has
also been discussed extensively [11, 14, 22, 34–38].

The size of a Moiré unit cell (MUC) is about 156 nm2 at
θ ≈ 1.05◦, and the LDOS is nonuniform. In principle, nontriv-
ial superconducting texture in a MUC can arise, which cannot
be captured by an effective low-energy Hamiltonian with elec-
trons hopping in the MSL. The big size of the MUC allows for
experimental detection of these superconducting texture. Fur-
thermore, an effective low-energy model for describing elec-
trons in the MSL has not been firmly established yet [14, 39].
Mapping of the electron interactions from the original tight-
binding model to the effective model is highly nontrivial. In
this paper, we solve the Bogoliubov-de Gennes (BdG) equa-
tion by including all carbon sites in a MUC and by assuming
a nearest neighbor (NN) pairing potential between electrons.
For a weak pairing potential, a topologically trivial but time-
reversal symmetry (TRS) breaking d + id mixed with p + ip

spin singlet pairing state is stabilized. At a strong pairing po-
tential, the system is stabilized at a nematic time-reversal in-
variant s+p+d pairing state. The transition between these two
states is of the first order. In the mixed d + id and p+ ip state,
vortices and antivortices in the MUC accompanying a sponta-
neous supercurrent are induced by twist. The superconducting
order parameter is maximal at the center of a MUC. Neverthe-
less, the superconducting gap in the LDOS is identical in the
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MUC.
The bilayer superconducting systems can be regarded as

two band superconductors. In the two band superconduc-
tors, there exist metastable phase soliton excitations [40]. The
phase soliton can be generated by injecting electrical current
in nonequilibrium superconducting wires or by the proximity
effect [41]. Such a phase soliton has only been observed re-
cently in bilayer thin films [42]. In this work, we uncover a
new mechanism to generate phase soliton lattice in mechani-
cally twisted bilayer superconducting wires when the TRS is
broken, see Sec. IV. In twisted bilayer films, the twisted in-
duced topological excitations become the vortex and antivor-
tex lattice. We remark that vortices are fundamental topo-
logical excitation in superconductors, that govern the physi-
cal properties of the superconductors. Metastable vortices can
be induced by defects or thermally fluctuations. The known
mechanism for creating a vortex lattice requires an external
magnetic field.

The paper is organized as follows. In Sec. II, we detail
our model and numerical methods of simulating the super-
conducting TBLG. Then we study possible pairing symme-
tries in Sec. III. A quantum phase transition between two dis-
tinct superconducting phases is identified. Moreover, we find
vortex and antivortex lattice appearing in the superconducting
TBLG when the TRS is spontaneously broken. In Sec. IV,
we use a toy model to illustrate how twist can induce vortices
and antivortices without external magnetic field. Finally, we
show the spontaneous supercurrent and local density of states
in Secs. V and VI, respectively.

II. MODEL AND METHOD

In experiments, the transition from normal state to su-
perconducting state is of the Berezinskii-Kosterlitz-Thouless
transition due to the strong fluctuation of global phase of the
superconducting order parameter in two dimensions. As far
as the pairing symmetry of the superconducting order param-
eter in a MUC is concerned, we can neglect the fluctuation of
the global phase and adopt a mean field approximation in the
following. The superconductivity is suppressed by a magnetic
field parallel to TBLG which indicates a spin singlet pairing.
Moreover, the similarity between the cuprate and TBLG su-
perconducting phase diagrams motivates us to introduce a sin-
glet superconducting pairing potential between NNs. Such a
pairing interaction can originate from the mean field treatment
of the resonant valence bond interaction in t-J model [27].
For a single layer graphene, functional renormalization group
calculations have revealed the emergence of singlet pairing
interaction between electrons in the nearest or next-nearest
neighborhood [43]. A recent calculation [30] based on phonon
mechanism has demonstrated the existence the assumed pair-
ing interaction in TBLG. The direct interlayer pairing inter-
action is neglected because sites are misaligned vertically in
TBLG. We neglect the Coulomb interaction. With these sim-
plifications, the Hamiltonian for TBLG can be written as

H =
∑

i jσ

ti jc
†
iσ

c jσ − V
∑

〈i j〉
h
†
i j

hi j − µ
∑

iσ

c
†
iσ

ciσ, (1)
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FIG. 1. (color online). (a) Rescaled TBLG lattice. The black parallelogram

encloses a MUC. AA, AB, and BA mark three different stacking patterns

in a MUC. (b) The schematic BZs of the two graphene layers (red and blue
hexagons) and the MBZ of the TBLG (black hexagon). (c) The band structure

of the TBLG. The green points are from the unrescaled model, while the

curves are from the rescaled model. The red curves denote the four flat bands.

(d) The DOS of the TBLG. (e) and (f): Fermi surface and LDOS of the TBLG

at the filling ν = (N − 1.8)/N, where N is the total number of energy bands.

where c
†
iσ

(ciσ) creates (annihilates) an electron at site i with
spin σ =↑ or ↓, and 〈i j〉 denotes the two NN sites. Both the
intralayer and interlayer hopping of electrons in TBLG are
encoded in the first term. The hopping energy ti j depends on
the vector ri j = (xi j, yi j, zi j) connecting the two sites as [44,
45]

ti j = t0 exp

(

−β
ri j − b

b

)















x2
i j
+ y2

i j

r2
i j















+ t1 exp

(

−β
ri j − d

b

)

z2
i j

r2
i j

,

(2)
where t0 = −2.7 eV, t1 = −0.11t0, β = 7.2 characterizes the

decay of hopping energy, b = a/
√

3 is the distance between
NN intralayer carbon atoms, and d = 0.335 nm is the distance
between the two graphene layers. Here the interlayer hopping
is truncated at ri j ≤ 4b and only the NN intralayer hopping
is considered. The second term in Eq. (1) depicts the spin-

singlet pairing interaction with hi j =

(

ci↓c j↑ − ci↑c j↓
)

/
√

2, and

the last term is the chemical potential. The model for a doped
single layer graphene has been studied where a topological
d + id superconducting state is stabilized. [46]

The periodicity and Fermi velocity of a TBLG are deter-
mined by the twist angle θ. Strictly speaking a TBLG has
translation symmetry only at certain discrete commensurate
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angles [47]

θ = cos−1

(

3p2
+ 3pq + q2/2

3p2 + 3pq + q2

)

, (3)

where p and q are coprime positive integers. For the other
twist angles, the TBLG is not translation invariant though
the period of MSL is still well defined. The lattice con-

stant of commensurate TBLG is aC = qaM/
√

gcd(q, 3) and
aC = aM only when q = 1 [39]. For the magic angle
θ = 1.05◦, the commensurate TBLG with p = 31 and q = 1
has N = 4(3p2

+ 3pq + q2) = 11908 carbon atoms in a MUC,
which makes it time-consuming for numerical simulations.
On the other hand, the effective continuum models fail to cap-
ture the internal structure of superconducting order parameter
in a MUC. Therefore, it is essential to find a way to reduce
the computation complexity while maintaining the essential
features of the electronic structure in MSL. In this work, we
adopt a rescaling approximation introduced in Ref. 48 that
enables us to use a lager twist angler θ′ and smaller MUC to
mimic the flat band signature of the magic-angle TBLG. In
this approximation, the model parameters are renormalized as

t′0 =
t0

λ
, V ′ =

V

λ
, a′ = λa, d′ = λd, λ =

sin θ′

2

sin θ
2

, (4)

such that the Fermi velocity and MSL constant are invariant
under the renormalization. Here primed quantities are the pa-
rameters for the rescaled model. In our numerical simulation,
we choose θ′ = 4.41◦ (for p = 7 and q = 1) and the number
of carbon atoms in a rescaled MUC is N = 676. The rescaled
TBLG is shown in Fig. 1(a). The graphene layer 2 (blue hon-
eycomb lattice) is rotated anticlockwise with respect to layer
1 (red honeycomb lattice) by the rescaled twist angle θ′. The
black parallelogram encloses a MUC that can be separated
into AA, AB, and BA regions depending on the local stack-
ing pattern. The schematic Brillouin zone (BZ) for the two
graphene layers (red and blue hexagons) as well as the TBLG
(black hexagon) is shown in Fig. 1(b). Here ±Kl=1,2 and ±KM

denote the inequivalent valleys in the graphene BZs and in
the Moiré Brillouin zone (MBZ). Moreover, in the MBZ , the
K1 and −K2 valleys coincide at −KM, while the −K1 and K2

valleys coincide at KM for gcd(q, 3) = 1 [47].
To validate the model, we calculate the single-particle band

structure when V = 0 for both the rescaled and unrescaled
TBLGs. The calculated band structure at θ = 1.05◦ for the
high symmetry path KM-ΓM-MM-(−KM) in the MBZ [marked
by the green path in Fig. 1(b)] is displayed in Fig. 1(c). Here
the green points are from the unrescaled TBLG, while the
curves are from the rescaled TBLG. Apparently, the rescaled
model shows a good approximation to the unrescaled model.
There are four flat bands with spin degeneracy near the Fermi
energy in undoped systems and they are marked by the red
curves in Fig. 1(c). These four bands touch at the KM and
−KM of the MBZ, as a consequence of the spatial inversion,
time-reversal and C3 rotation symmetry of the TBLG [14].
The weak hybridization between the states near Kl and −Kl′

of the original graphene BZ opens a small gap at KM and
−KM, which is manifested as a dip in density of states (DOS)
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FIG. 2. (color online). Superconducting order parameter distribution in the

TBLG for the pairing strength V = 0.8eV (a) and 1.6eV (b).

at E = 0, as depicted in Fig. 1 (d). Such a hybridization is
neglected in the continuum model approximation [2, 49]. The
shape of the four flat bands is in a good agreement with those
obtained from continuum model. The present model has a
slightly higher band width about 20 meV. Our model correctly
yields large band gaps between the flat bands and other bands,
which is underestimated by the continuum model according
to the experiments [50].

The four low-energy flat bands are mainly contributed from
the four valleys of two graphene layers and each graphene
layer provides two valleys. The four flat bands can at most
host eight electrons in each MUC accounting for the spin de-
generacy. The charge neutrality point corresponds to the lower
two flat bands are fully filled, while the upper two are fully
empty. According to the experiments, there are Mott-like in-
sulating phases at half fillings of the lower or upper two flat
bands as a consequence of the reduced band width [8]. More-
over, in proximity to the half filling of the lower two flat bands,
there are two narrow superconducting phases [1]. Including
the total N (that is also the number of carbon atoms in a MUC)
energy bands, the half filling of the lower two flat bands corre-
sponds to the (N−2)/N filling of the whole spectrum. Now we
fix the filling at ν = (N−1.8)/N, which corresponds to a slight
electron doping of the half filling of the lower two flat bands,
where superconductivity is observed in experiments [1]. The
Fermi surface of the non-interacting magic-angle TBLG at the
filling ν is shown in Fig. 1(e), where the red and blue curves
respectively denote the Fermi surfaces from the lowest and
second lowest flat bands. The Fermi surfaces are different
from those of the continuum model due to the hybridization
between the Kl and −Kl′ valleys of the original graphene BZ,
which is neglected in the continuum model. The LDOS at
the filling ν is shown in Fig. 1(f). The LDOS is inhomoge-
neously distributed in the MUC and the AA and AB (BA) re-
gions correspond respectively to the region with maximal and
minimal LDOS. Because superconductivity is enhanced for
a larger DOS. It is expected that spatially nonuniform super-
conductivity is stabilized in TBLG with a higher amplitude of
superconducting order parameter in the AA region. This ex-
pectation is borne out by the numerical results shown below.

We now turn on the spin-singlet pairing in the magic-angle
TBLG. In the mean-field approximation, the pairing term be-
comes

− V
∑

〈i j〉
h
†
i j

hi j =

∑

〈i j〉

[

∆i j

(

c
†
i↑c
†
j↓ − c

†
i↓c
†
j↑

)

+ H.c.
]

, (5)

with ∆i j = − V√
2
〈hi j〉. We then solve numerically the corre-
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FIG. 3. (color online). Averaged order parameter components s, px + dxy,
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eraged s component around the phase transition point. The inset of (d) shows
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sponding BdG equation HBdGΨm = EmΨm [51], where the
BdG Hamiltonian is

HBdG =

∑

〈i j〉

(

c
†
i↑ c

†
j↑ ci↓ c j↓

)





























−µ −ti j 0 ∆i j
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0 ∆
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0 ti j µ
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. (6)

The self-consistent equations for charge density ni and ∆i j are

ni =

∑

m

[

∣

∣

∣um
i↑
∣

∣

∣

2
f (Em) +

∣

∣

∣vm
i↓
∣

∣

∣

2
f (−Em)

]

, (7)

∆i j =
V

4

∑

m

[

um
i↑
(

vm
j↓
)∗
+

(

vm
i↓
)∗

um
j↑
]

tanh

(

Em

2kBT

)

, (8)

where Ψm = (· · · , um
i↑, um

j↑, vm
i↓, vm

j↓, · · · )T and Em are the m-

th eigenvector and eigenvalue of the BdG equation associated
with Eq. (6), and f (Em) is the Fermi function. In our nu-
merical simulations, the TBLG contains 12 × 12 MUCs and
has periodic boundary condition. We solve the equations iter-
atively until ni and ∆i j converge for all sites and bonds. We
determine different superconducting phases by calculating ∆i j

at different V and at zero temperature T = 0.

III. PAIRING SYMMETRY

In Fig. 2, we show the two typical profiles of the bond su-
perconducting order parameter ∆i j in the MSL for V = 0.8
eV and 1.6 eV. Due to the inhomogeneous electron concen-
tration in each MUC, the order parameters are maximal in the
AA region. Apparently, the order parameters preserve the ro-
tation symmetry of the superlattice for V = 0.8 eV; while for

V = 1.6 eV, the distribution of superconducting order param-
eter breaks the superlattice symmetry by elongating in the di-
agonal direction, and the resulting superconducting phase is
nematic.

To elucidate the pairing symmetry and phase transition of
the two distinct superconducting phases, we first consider the
superconducting order parameter in different graphene layers.
For graphene, it has D6h point group. We project the super-
conducting order parameter onto different irreducible repre-
sentations of the D6h point group. For the D6h point group of
graphene, the three dominant irreducible representations are
A1g, E1u, and E2g that corresponds to s wave, p wave, and
d wave, respectively. Due to the C3 rotation symmetry, the
py and dx2−y2 components as well as the px and dxy compo-
nents are indistinguishable in the projection. Here we choose
an orientation one graphene bond is in the y direction. Be-
cause the superconducting order parameter is defined on the
bonds connecting NNs, the basis functions for s wave, px

and dxy waves, py and dx2−y2 waves are ψ1 = (1, 1, 1)/
√

3,

ψ2 = (0,−1, 1)/
√

2, ψ3 = (2,−1,−1)/
√

6 respectively. For a
single layer graphene, the parity of orbital wave function in
the superconducting wave function, i.e. d wave or p wave can
be distinguished from the parity of the spin wave function.
The pairing symmetry can be either s or d wave for the spin
singlet or p wave for the spin triplet to ensure the Fermi statis-
tics for Cooper pairs. For TBLG, two bands originated from
the single graphene Kl and −Kl′ valleys are quasi-degenerate
near the MBZ KM and −KM points, as discussed in Sec. II. In-
terband Cooper pairing between electrons in these two bands
is also allowed. Here we call this pairing channel the interval-
ley pairing, which can also be decomposed into valley singlet
or triplet in the valley degree of freedom. For the spin singlet
pairing considered in Eq. (1), we have p wave valley singlet
pairing and d wave valley triplet pairing. Because the symme-
try of the TBLG is lowered compared to that of single layer
graphene, and the nonlinear coupling of the superconducting
order parameter is important at T = 0, generally the supercon-
ducting order parameter of TBLG can be decomposed into a
mixture of the different irreducible representations of the D6h

point group.

According to our calculations, p wave and d wave pair-
ing coexist in TBLG. The phase difference between supercon-
ducting order parameters in different layers is about ±π, as a
result of layer counter-flow velocity [2]. In Fig. 3, we show
the MUC averaged amplitude and phase of the s component,
mixed py+dx2−y2 component, and mixed px+dxy component of
the order parameters in the two graphene layers by projecting
∆i j into ψi. As the pairing strength V increases, the py + dx2−y2

and px + dxy components firstly merge together and increase
as displayed in Figs. 3(a) and 3(c). The amplitude of the su-
perconducting order parameter grows as exp(−1/NDOSV) in
accordance with a weak coupling theory. Our results differ
from those obtained by the continuum model with an onsite
attractive pairing interaction, where the amplitude of order
parameter grows linearly with pairing interaction [29]. This
discrepancy is due to the fact that the four low-energy bands
are not completely flat, but are weakly dispersive with band
width about 20 meV. Above a critical Vc = 1.325 eV, the sub-
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FIG. 5. (color online). (a) and (b): profiles of different superconducting order parameter components for the two graphene layers in a MUC with V = 1.6eV.

The upper panels show the amplitude distribution and the lower panels show the phase distribution.

dominant s component jumps up from zeros and the py+dx2−y2

and px + dxy components separate. For V < Vc, the phase dif-
ference between the py + dx2−y2 and px + dxy components is
π/2 as shown in Figs. 3(b) and 3(d). Namely, this supercon-
ducting phase is a mixture of d + id and p + ip in this region.
The amplitude of the order parameter has C6 rotation symme-
try, but breaks the TRS. The states with phase difference +π/2
and −π/2 are degenerate and are related to each other through
time-reversal transformation. For V > Vc, the phase differ-
ence between the py + dx2−y2 and px + dxy components is 0 for
the two layers, while the phase difference between the s and
px + dxy components are 0 and π for the two layers. There-
fore, we conclude the superconducting phase in this region
is s + p + d, which breaks the C6 rotation symmetry and is
nematic.

The amplitude and phase distributions of the three order
parameter components for V = 0.8 eV and 1.6 eV in the
two distinct superconducting phases are shown in Figs. 4 and
5, respectively. Within one MUC, there are vortices associ-
ated with the winding of phases in all the pairing channels for
V = 0.8 eV. At the center of these vortices, the amplitude of

the order parameter vanishes to avoid singularity, as shown in
the upper panels of Figs. 4(a) and 4(b) for the two graphene
layers respectively. The total vorticity is zero in a MUC as
shown in the lower panels of Figs. 4(a) and 4(b). The origin
and consequence of these vortices will be discussed in Sec.
IV and V. In contrast, there is no vortex in the s+ p+ d super-
conducting phase (V = 1.6 eV). In stead, the order parameters
are divided into different domains and the phase difference be-
tween different domains is π, as shown in Figs. 5(a) and 5(b).

To further distinguish the mixed d and p components, we
perform the Fourier transform ∆(k) of order parameters ∆i j.
The even part (for s and d components) of ∆(k), ∆g(k) ≡
(∆(k)+∆(−k))/2 and the odd part (for p component), ∆u(k) ≡
(∆(k) − ∆(−k))/2 in the MBZ are displayed in Figs. 6 and 7.
For V = 0.8 eV, both the d + id component (see Figs. 6(a) and
6(b)) and the p+ ip component (see Figs. 6(c) and 6(d)) show
vortices at the MBZ center and with 4π and 2π phase winding,
respectively. Besides the central vortices, there are additional
vortices carrying opposite winding number and the net vor-
ticity in the MBZ is zero. Therefore, the mixed TRS breaking
d+id and p+ip superconducting phase is topologically trivial.
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The amplitude of order parameter vanishes at the vortex cores.
The quasiparticle spectrum is fully gapped because the Fermi
surface does not cross the vortex cores. For V = 1.6 eV, the
dominant s + d component (see Figs. 7(a) and 7(b)) has con-
stant phase in the MBZ, while the subdominant p component
has π phase difference between two domains (see Figs. 7(c)
and 7(d)). The superconductivity does not break TRS because
∆(k) and ∆∗(−k) are related by a global U(1) transformation,
i.e. ∆(k) = ∆∗(−k) exp(iπ).

IV. TWIST INDUCED VORTICES

Our calculations reveal that vortices are nucleated by twist
in the TRS breaking phase. To understand the origin of vortex
at zero magnetic field, we consider a simple one dimensional
toy model. There are two chains with mismatched lattice con-
stants a1 and a2 > a1. A MSL with period aM = a1a2/(a2−a1)
is created by superimposing the two chains. Let us assume
that each chain stabilizes a TRS breaking superconducting or-
der parameter with ∆α, j = |∆α| exp(±i jφα) when they are de-
coupled. Here α = 1, 2 labels the two chains and j labels the
bond, and ± corresponds to two degenerate states related by
time-reversal operation. The inter-chain hopping of electrons
yields a Josephson coupling between the two superconducting
condensates, which favors the alignment of superconducting
phase in different chains. An effective low-energy functional
F for the superconducting phase φα can be constructed

F =
∑

α=1,2

ηα

2
(∂xφα)2 − J cos(φ1 − φ2), (9)

subjected to the periodic boundary condition that φα changes
by γα2π in a MUC, with γα being an integer. Here J is the
interlayer Josephson coupling. Minimizing F with respect to
φα, we obtain

ηα∂
2
xφα ∓ J sin(φ1 − φ2) = 0, (10)

where− (+) corresponds to α = 1 (2). The equation for φ1−φ2

is

λ2
J∂

2
x(φ1 − φ2) − sin(φ1 − φ2) = 0, (11)

with λJ ≡
√

η1η2/J(η1 + η2). For aM ≫ λJ, Eq. (11) allows
for a soliton solution φ1 − φ2 = ±4 arctan[exp(x/λJ)]. There
are γ1 − γ2 solitons of size λJ in a MUC. In this example, one
can see that the TRS breaking allows φα winds by multiple
2π in a MUC. The competing of Josephson coupling and this
phase winding gives rise to phase slips with a sharp increase
of phase by 2π in the MUC.

The analysis can be generalized to the case of TBLG. In the
TRS breaking superconducting phase in TBLG, the supercon-
ducting phase winds around the center of a MUC. Similar to
the chain chase, the competition between the phase winding
and interlayer Josephson coupling induces phase slips in the
MUC. The phase slips in two dimensions are vortices and an-
tivortices, as we have observed in the BdG calculations. The
generation of vortices requires to break TRS, but it does not
require the superconductors to be topological.

V. SPONTANEOUS SUPERCURRENT

The twist induced vortices results in spontaneous current
and magnetization, which can be measured experimentally.
In two dimensional systems, the screening of magnetiza-
tion by supercurrent is negligible, and we neglect it in our
calculations. We calculate the current at each bond Ji j =

−ie/~〈c†
i
ti jc j − c

†
j
t jici〉êi j where êi j is the unit vector pointing
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form site j to site i. The spontaneous currents in the mixed
d + id and p + ip state (for V = 0.8 eV) are shown in Fig.
8(a) and 8(b) for the periodic boundary condition (PBC) and
open boundary condition (OBC) respectively. For PBC, there
are spontaneous current produced by vortices in both AA and
AB (BA) regions of a MUC. Because the vortices carry op-
posite winding numbers (see Fig. 4), the current circulation
directions are also opposite in different regions. The current
is much stronger in the AA region because the superconduct-
ing order parameter is maximal there. For OBC, there are
spontaneous supercurrent vortices in the AA region, while no
current happens in the AB (BA) region due to the edge effect.
The central current is stronger than that of the PBC. No edge
supercurrent is observed, consistent with the non-topological
nature of the d + id (p + ip) phase discussed in the previous
section. No spontaneous supercurrent is found in the s+ p+ d

phase.

VI. LOCAL DENSITY OF STATES

The nonuniform superconducting order parameter in a
MUC, at first sight, implies a variation of superconducting
gap in the quasiparticle spectrum. We calculate the LDOS
for both the mixed d + id and p + ip phase and s + p + d

phase at different sites in a MUC marked in the inset of Fig.
9(b). For both V = 0.8 eV and 1.6 eV, the LDOS is highest
in the AA region and lowest in the AB (BA) region, consis-
tent with those in Fig. 1 (f). The quasiparticle spectrum is
fully gapped at V = 0.8 eV with the same gap at different
location even though the superconducting order parameter is
small in AB (BA) region, as shown in Fig 9(a). The iden-
tical superconducting gap in the MUC can be understood as
follows. Firstly, the Fermi wave length of the Moiré band is
comparable to the MSL constant, although it is equal to 13.4
nm at θ = 1.05◦. In this sense, the distribution of supercon-
ducting order parameter in a MUC is in the “atomic” limit.
Secondly, the scattering of quasiparticles in the AB (BA) re-
gion among strong superconducting AA region could produce
Andreev bound state. However, when the Fermi wave length
is longer than the dimension of the weak superconducting re-
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FIG. 9. (color online). LDOS at four different points in a MUC for V = 0.8

eV (a) and 1.6 eV (b), respectively. The four different points marked as a, b,

c, d are shown in the inset of (b), where the black parallelogram denotes the

MUC.

gion as in the present case, the quantum well produced by
superconducting gap in the AA region is not deep enough to
support any Andreev bound states. This can lead to identi-
cal gap with the gap determined by the superconducting gap
in the AA region in a MUC. We note that the superconducting
order parameters cannot be measured directly, because it is not
gauge invariant. They are usually inferred from the quasiparti-
cle spectrum. Our results pose a question how the nonuniform
superconductivity originated from the variation of LDOS in a
MUC can be measured experimentally.

At V = 1.6 eV, the dominant pairing symmetry is d wave.
The subdominant p wave has nodes at the Fermi surface. The
LDOS vanishes linearly as |E| → 0, as shown in Fig. 9(b).
The mixed d + id and p + ip pairing symmetry can be distin-
guished from the s+ p+d pairing symmetry by measuring the
LDOS.

VII. SUMMARY AND DISCUSSIONS

Our numerical results clearly reveal a textured supercon-
ducting order parameter with maximal amplitude in the AA
region and minimal amplitude in the AB and BA regions. The
textured superconductivity in a MUC was also proposed in
Ref. 32 based on the observation of nonuniform LDOS. The
calculation based on the continuum model also results in a
nonuniform superconductivity in a MUC both for the s wave
and d wave superconductors [29, 30]. The Fermi wavelength
for the Moiré band is comparable to the Moiré period, and the
distribution of order parameter in a MUC can be regarded in
the “atomic” limit. Despite that superconductivity is nonuni-
form in the length about 13.4 nm for the magic twist angle
θ = 1.05◦, the superconducting gap in the quasiparticle spec-
trum inferred from LDOS is identical in the MUC in the mixed
d+ id and p+ ip superconducting phase. This poses questions
how the textured superconductivity induced by variation of
LDOS in a MUC can be measured experimentally.

We find two superconducting pairing symmetries, with a
mixed d + id and p + ip spin singlet at weak pairing inter-
action and mixed s + p + d spin singlet at strong pairing in-
teraction, as shown in Table I. A similar mixture of d + id

and p − ip driven by valley fluctuations was discussed based
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TABLE I. Summary of pairing symmetry (PS), pairing interaction strength

(PIS), superconducting gap (SG), time-reversal symmetry (TRS), and topol-

ogy of the two different superconducting phases.

PS PIS SG TRS topology

d + id and p + ip V < 1.325eV
√ × ×

s + p + d V > 1.325eV × √ ×

on an effective model [17]. Nevertheless, the mixed d + id

and p + ip phase breaks TRS, but it is topologically trivial,
which are different from those considered in effective mod-
els. This discrepancy could be originated from the neglect of
the long-range pairing interaction in these effective models.
For the NN pairing interaction between Moiré supercells, the
form factors for the superconducting gap functions can only
depend on cos kx, cos ky, sin kx and sin ky. These form factors
can describe the superconducting order parameter near the Γ
point of the MBZ. However, they are incapable of describing
the antivortices away from the Γ point in the MBZ. Our results
suggest that long-range pairing interaction is important for the
construction of an effective model.

We also reveal twist induced vortices and antivortices lat-
tice in the TRS breaking phase in TBLG. In the TRS breaking
phase, there are winding of the phases of superconducting or-
der parameter in different layers. Meanwhile, the interlayer
Josephson coupling favors alignment of the phases of the su-
perconducting order parameters. Because of the competition
of these two effects, phase slips in the superconducting or-
der parameters occur, which results in the nucleation of vortex
and antivortex lattice. Spontaneous supercurrent and magneti-

zation associated with the vortices and antivortices are gener-
ated, which can be detected by experiment using the standard
magnetic imaging techniques. The mechanical twist provides
a new mechanism to generate vortex and antivortex lattice in
bilayer superconducting systems without the TRS.

To summarize, by solving the BdG equation for all elec-
trons in a Moiré supercell, we show that the magic-angle
TBLG with spin singlet pairing interaction can support tex-
tured superconductivity due to the inhomogeneous distribu-
tion of electron density within a MUC. The two possible su-
perconducting pairing symmetries are mixed d+ id and p+ ip

wave and mixed s + p + d wave. The mixed TRS breaking
d + id and p + ip superconducting phase is topologically triv-
ial. In the TRS breaking phase, the twist induces vortex and
antivortex lattice in the MSL with spontaneous circulating su-
percurrent and magnetization. Though the superconducting
order parameter is nonuniform in a MUC, the superconduct-
ing gap inferred from LDOS is uniform. In the s + p + d state
with TRS, no vortex is induced and the quasiparticle spectrum
is not gapped.
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