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Motivated by the discovery of superconductivity in the two-leg, quasi-one dimensional ladder
compound, BaFe2S3 we present a renormalization group study of electrons moving on a two leg, two
orbital ladder, subjected to Hubbard repulsion U and Hund’s coupling J . In our calculations, we
adopt tightbinding parameters obtained from ab-initio studies on this material. At incommensurate
filling, the long wavelength analysis displays four phases as a function of 0 ≤ J/U < 1. We show
that a fully gapped superconductor is stabilized at sufficiently large Hund’s coupling, the relative
phases at the three Fermi points are “+,-,-”. By contrast, when the system is tuned to half filling,
Umklapp scattering gives rise to Mott insulating phases. We discuss the general implications of our
study for the broad class of iron-based superconductors.

PACS numbers: 75.50.Bb, 74.70.Xa, 71.10.Pm

I. INTRODUCTION

The origin of the superconducting phase of iron pnic-
tides and iron chalcogenides remains an open and fas-
cinating puzzle. The robust nature of iron-based super-
conductivity, found in both tetrahedral iron-pnictide and
iron-selenide structures, despite a wide variation in Fermi
surface geometries and crystal structures, is particularly
striking[1–4]. The transition temperatures appear to be
broadly independent of whether the particular compound
displays hole pockets, electron pockets or both types of
carrier. In view of substantial on-site Coulomb repul-
sion, this makes the quest for a generic pairing mecha-
nism particularly challenging. Moreover, superconduc-
tivity has been reported in systems in both tetragonal
and orthorhombic phases.

A particularly exotic example of this superconduct-
ing robustness within the zoo of iron-based materials is
BaFe2S3 under pressure [5]. While the sulfide shares the
same staggered tetrahedral structure as its quasi-two di-
mensional (q2D) cousins, with a band of delocalized d-
electrons forming between Fe2+ ions, here the tetrahedra
are organized into two-leg ladders, forming a quasi-one
dimensional (q1D) structure (see Fig. 1). One of the fas-
cinating aspects of this system, is that it opens up the
possibility of analyzing the physics of iron based super-
conductivity using the powerful tools of one-dimensional
renormalization group and bosonization.

The experimentally observed phase diagram [6–8] re-
sembles that of q2D materials, with a superconducting
dome developing at the end point of an antiferromag-
netic (AF) phase. A further analogy is the ”stripe” or-
dering of spins, in the ladder system this corresponds to
a ferromagnetic ordering on the rungs and AF ordering
along the legs [5]. On the other hand, a major difference
between BaFe2S3 and the q2D materials is the insulat-
ing nature of the antiferromagnet, which contrasts with
the bad metal behavior in more conventional materials.
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FIG. 1. (a) Ladder structure of BaFe2S3 shown running
along Z axis, with sulphur tetradhedra (gold) surrounding
iron atoms (blue). (b) Staggered antiferromagnetic “stripe”
structure along ladder in magnetic phase at ambient pressure
(c) Following ab-initio calculations [9, 10] we consider an effec-
tive two-orbital tight model composed from the dx2−y2 ≡ |a〉
orbital and a |b〉 orbital composed of a superposition of dxz
and dxy orbitals.

Three years after the discovery of superconductivity in
BaFe2S3 theoretical studies of this novel superconductor
are still relatively sparse. Two groups [9, 10] reported
ab-initio calculations extracting an effective two orbital
tight binding model. The dispersion relation in ladder
direction and the orbital content near the Fermi surface
(see also Fig. 4) [11] qualitatively agree in both studies.
A rough summary of energy scales follows: the Hubbard
U ∼ 3eV , the bandwidth (intraladder hopping) Λ ∼ 2eV ,
the Hund’s coupling J ∼ 0.5eV , the interladder hopping
t⊥ ∼ 0.25eV . The effects of interactions on this com-
pound are discussed in Ref. [9] based on the analysis of
the Lindhard function, while the authors of Ref. [10] in-
vestigate the interplay of Hubbard and Hund’s coupling
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FIG. 2. Phase diagram and critical temperature as a function
of U. As explained in the main text, the nature of the ground
state depends on the ratio J/U , only. The numerical solutions
of the RG equations presented here were obtained for Fermi
velocities as defined by Fig. 4. Panel a): Phase diagram for
three values of U/Λ, data points are marked by dots (C3S2),
squares (C2S1a), diamonds (C2S1b) and triangles (C1S0) cor-
responding to four different phases in ascending order of J/U .
Panel b): The critical temperature Tc(U) associated to the
instability of RG equations. Straight solid lines are obtained
using Eq. (13) with Tc(Λ) as the only numerical input, addi-
tional numerical solutions are again presented as dot, square,
diamond and triangle, respectively. We used Λ = v̄/ã and as-
sumed Λ ∼ 1eV to estimate Tc in Kelvin on the right vertical
axis.

using density matrix renormalization group. Both papers
correctly reproduce the ”striped” AF state, which was
also reported in earlier density functional theory stud-
ies [12]. A slave spin approach [13] based on the tight-
binding model of Ref. [9] reveals orbital selective correla-
tions. The first order, pressure induced magnetic transi-
tion was recently scrutinized [14] for BaFe2S3 and related
materials. We note that stripe order may also be under-
stood in terms of a J1 - J2 AF Heisenberg model: As soon
as the diagonal coupling J2 exceeds J1/2, stripe order
is energetically favored over a Néel-type order[15]. Su-
perconductivity is discussed qualitatively in Ref. [9] and
the calculation of Ref. [10] indicates a pairing tendency
in hole doped systems at sufficiently strong interactions.
In a recent follow-up [16], the same group reports pair-
ing tendencies in single-leg chains with the same orbital
content and the importance of Hund’s coupling was em-
phasized. It is important to realize, that density matrix
renormalization group studies for multi-orbital Hamilto-
nian are numerically costly and thus restricted to small
systems.

Motivated by these recent experimental and theoreti-
cal advances, here we present a weak-coupling renormal-
ization group study of a two-orbital, two-leg ladder with
on-site Hubbard and Hund interactions. The orbital con-
tent of Fermi-surface excitations is chosen in accordance
with Refs. [9, 10] and we employ the same tight binding
parameters as in [10] to determine the Fermi velocities
at three pairs of Fermi momenta. A crucial step in our
approach, is the reformulation of the onsite Coulomb and
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FIG. 3. Schematic summary of the RG flow obtained numer-
ically in Figs. 8-11 of the Appendix. At the initial stage, cou-
pling constants flow towards a quantum critical point (QCP),
which in the present 1D study is just a spinful Luttinger liquid
(LL) with three charge and three spin modes (C3S3). Near
the QCP, the flows diverge towards four possible attractive
fixed points (phases), discussed in Fig. 2. At intermediate
J/U , the RG flow approaches the QCP very closely, it there-
fore slows down and Tc is suppressed in the phases C2S1a and
C2S1b.

Hund’s interactions as a set of eighteen interaction pa-
rameters gµ (µ ∈ (1, 18)) defining the strength of inter-
action between the left and right moving spin and charge
currents in the various orbitals. From this formulation,
we are able to construct a set of coupled RG equations
that have the general form

dgµ(y)

dy
= βµνρgν(y)gρ(y), (1)

where y = ln Λ is the logarithm of the energy cut-off. Our
analysis of coupled RG equations for the ladder model is
the 1D analog of the parquet-RG approach to q2D iron
based superconductors [17–19] and, being a weak cou-
pling - long wavelength study it provides a complimen-
tary perspective to the strong coupling DMRG compu-
tations on finite ladders [10].

The key result of our paper is the identification of four
stable ground-state phases which fan out from a central
quantum critical point described by a gapless Luttinger
liquid (LL). Crucially, it is the strength of the Hund’s
coupling which tunes between the four phases. (see fig-
ures 2 and 3). Moreover, by analyzing the effect of
umklapp scattering at half-filling we can show that these
phases emerge from a Mott insulating phase that devel-
ops at half-filling.

To characterize the excitation spectrum of these
phases, we have used bosonization to perform a semi-
classical strong-coupling analysis which permits a charac-
terization of the gapless modes that dominate the quasi-
long-range order. Following the convention of 1D ladder
systems, we use the notation “CmSn” to describe a phase
with m gapless boson modes in the charge sector and n
gapless modes in the spin sector. The four stable phases
can be summarized as follows:

• C1S0 (J/U > 0.55) Orbitally selective singlet su-
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perconductor, characterized by strong intraband
pairing with relative phases +,−,− on the three
Fermi momenta.

• C2S1b (J/U ∈ [0.45, 0.55]) Singlet, equal sign, in-
traband superconductor at two Fermi momenta de-
coupled from a LL at the third Fermi momentum.

• C2S1a (J/U ∈ [0.18, 0.42]) Orbitally ordered
charge density wave decoupled from a LL.

• C3S2 (J/U ≤ 0.18) Long range superconduct-
ing and charge density wave correlations stemming
from one out of the three Fermi momenta.

The structure of the paper is as follows: The micro-
scopic model is introduced in Sec. II, the RG analysis and
the discussion of the rich phase diagram are presented in
Sec. III. We conclude with a summary and outlook. Full
details on the model and the RG calculation are included
in the appendices A and B.

II. MODEL

In this section we present the model under investiga-
tion. At each rung of the ladder, see Fig. 1, there are
eight degrees of freedom: the chain index τ = 1, 2, the or-
bital quantum number γ = a, b and the spin z-component
σ =↑, ↓. The corresponding electron annihilation opera-
tor at site j is then written dτγσ(j). We incorporate the
chain and orbital indices into a four-component spinor,
defined for each site j and spin component σ as follows:

dσ(j) =

d1aσ(j)
d1bσ(j)
d2aσ(j)
d2bσ(j)

 . (2)

A. Kinetic term

The dispersion relations presented in Refs. [9, 10] are
qualitatively similar to Fig. 4. For details of the tight
binding model see Appendix A 1. The important, robust
features of the model are as follows:

1) In the interval k ∈ [0, π], there are two Fermi points of
right movers at kI, kII and one left mover at −kIII. For
each of them, time reversal symmetry imposes Fermi
points of opposite velocity at the reversed momentum.

2) The excitations near kII and kIII are even parity un-
der reflections in the mirror plane running along the
ladder (Y → −Y ), whereas the excitations near kI are
odd-parity under this reflection.

3) The excitations near ±kII or ±kIII approximate pure
orbital states a and b respectively, while excita-
tions near ±kI are in an orbital superposition (|a〉 ±
i |b〉)/

√
2.

4) At half-filling the integration over filled states implies
kI + kII + kIII = 0 (we took into account that crystal
momenta of 0 and 2π are equivalent).

In the continuum limit, this motivates an expansion in
low-energy modes. For convenience, we label the continu-
ous position along the chain by xj = ãj and set the lattice
constant ã = 1 everywhere in the paper. (Note that by
using x, we have tacitly rotated the co-ordinate system
relative to Fig. 1 and introduced (x, y, z) = (Z,X, Y )).
In the continuum limit, we can factor out the rapidly
varying components of the electron field, and decompose
it into right (R) and left (L) moving components as fol-
lows:

d̂σ(x) =
∑

β∈[I,III]

[
eikβxΨβ â

R
βσ(x) + e−ikβxΨ∗β â

L
βσ(x)

]
(3)

where aR,Lβσ (x) corresponding to right and left-moving
components of the fields and the three Fermi momenta
are kβ = (kI, kII, kIII). The spinor components of the
wavefunctions are

ΨI =

(
1/
√

2

−1/
√

2

)
τ

⊗
(

1/
√

2

i/
√

2

)
γ

=

 1/2
i/2
−1/2
−i/2

 ,

ΨII =

(
1/
√

2

1/
√

2

)
τ

⊗
(

1
0

)
γ

=


1/
√

2
0

1/
√

2
0

 ,

ΨIII =

(
1/
√

2

1/
√

2

)
τ

⊗
(

0
1

)
γ

=


0

1/
√

2
0

1/
√

2

 . (4)

The kinetic part of the long-wavelength Hamiltonian is
then

Hkin = −ivβ
∫
dx
[
aRβσ
†∇xaRβσ − aLβσ

†∇xaLβσ
]
. (5)

where we use an index notation for summation over the
repeated variables β = (I, II, III) and σ = (↑, ↓). The
Fermi-velocities vI,II,III as well as the values kI,II,III are
non-universal and may continuously vary as a function
of the microscopic parameters.

B. Interaction terms

We assume a simplified model of onsite Hubbard and
Hund interactions, Hint =

∑
j HU (j) +HJ(j), where the

interactions at each site are

HU (j) =
U

2

∑
τ,γ,σ,
γ′,σ′

′
nτγσ(j)nτγ′σ′(j), (6a)

HJ(j) = −4J
∑
τ

~Sτa(j) · ~Sτb(j), (6b)
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FIG. 4. Dispersion relation using the tight binding pa-
rameters determined in Ref. [10] for an applied pressure of
12.36 GPa and including next-nearest neighbor hopping. The
dashed (solid) curves correspond to states which are sym-
metric (antisymmetric) under y → −y reflection and at the
avoided crossing at k ≈ π/3 (k = 0) the orbital character of
the eigenstates changes. For the symmetric states, we use
dark green to represent orbital |a〉 and blue for |b〉. For
the antisymmetric states the superposition [|a〉 + i |b〉]/

√
2

([|a〉 − i |b〉]/
√

2) is represented in red (cyan).

where the summation symbol
∑′

excludes (γ, σ) =
(γ′, σ′) and we have introduced density and spin oper-
ators, defined as follows:

nτγσ(j) = d†τγσ(j)dτγσ(j), (7)

~Sτγ(j) =
∑
σ,σ′

d†τγσ(j)

(
~σ

2

)
σ,σ′

dτγσ′(j). (8)

More complicated Hubbard-Kanamori interactions with
non-equal intra- and interorbital repulsion do not alter
the main conclusions of our study and are therefore dis-
cussed in Apps. A 2 and B 5. In the continuum limit, it is
useful to represent the interaction term in terms of scalar

J rαβ(x) =
∑
σ

arασ(x)†arβσ(x), (r ∈ {R,L}) (9)

and vector currents

~J rαβ(x) =
∑
σ,σ′

arασ
†(x)

(σ
2

)
σ,σ′

arβ,σ′(x), (10)

involving states near the Fermi points α, β = I, II, III.
Writing Hint =

∫
dxHint(x) in terms of the Hamiltonian

density, then

Hint(x) = c̃ραβJ
R
αβ(x)J Lαβ(x) + f̃ραβJ

R
αα(x)J Lββ(x)

−
[
c̃σαβ ~J Rαβ(x) · ~J Lαβ(x) + f̃σαβ ~J Rαα(x) · ~J Lββ(x)

]
,

(11a)

where we have used an index summation on the indices
α, β. The bare interaction constants are given by

f̃ραβ =
U

8

 0 3 3
3 0 4
3 4 0


αβ

, (11b)

f̃σαβ =
U

2

 0 1 1
1 0 0
1 0 0


αβ

+ J

 0 1 1
1 0 2
1 2 0


αβ

, (11c)

c̃ραβ =
U

8

 8 1 1
1 4 0
1 0 4


αβ

− J

4

 3 0 0
0 0 0
0 0 0


αβ

, (11d)

c̃σαβ =
U

2

 0 1 1
1 4 0
1 0 4


αβ

+ J

 1 0 0
0 0 0
0 0 0


αβ

, (11e)

see Appendix A 2 for derivation.
By convention [20], the diagonal elements of forward

scattering amplitudes f̃αβ are chosen to vanish and are
absorbed into the Cooper channel constants c̃αβ . Com-
pletely chiral interactions of the form (J R)αα(J R)ββ
will also be disregarded since they are not renormal-
ized and do not renormalize the above couplings at one
loop order. Formally, the itinerant approach assumes
v̄ =

∑
α vα/3� U/(2π) and we consider U > J .

C. Umklapp scattering

The effective low-energy Hamiltonian presented above
is restricted to two-body interactions, which are marginal
operators. Interactions involving a higher number of
fermionic operators are generated during RG but are ir-
relevant near the non-interacting fixed point and there-
fore usually disregarded. However, as the strong coupling
regime is approached such terms can become relevant.

An example of such a three-body interaction that en-
codes qualitatively new physics is given by umklapp scat-
tering. It develops at commensurate filling, only, by
means of the processes represented in Fig. 5. In the
present model umklapp scattering is a three body inter-
action even at half filling in view of the aforementioned

constraint
∑III
β=I kβ = 0: Three right movers, one for

each Fermi point, have to conspire and collectively trans-
fer twice their total momentum (a crystal momentum) to
the lattice. The difference between our model and more
conventional Hubbard models, where umklapp scatter-
ing is typically a two body interaction, derives from the
detailed band structure of Fig. 4.

Umklapp scattering implies the following terms, see
Fig. 5

Humklapp ∼ −gU

 III∏
β=I

(
aR†βσ′β

aLβσβ

)
e−i2kβx + H.c.

 .
(12)
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aLIII,σIII

aLII,σII

aLI,σI

aR,†III,σIII

aR,†II,σII

aR,†I,σI'

'

'

FIG. 5. For the model defined by Fig. 4, the umklapp pro-
cess at half filling is a three body interaction. On the tree
level, such processes are generated by means of two-body in-
teractions and involve one virtual state away from the Fermi
energy. Note that momentum is conserved modulo an inverse
lattice vector only. This diagram indicates that the bare cou-
pling is of the order U2/v̄.

Note that momentum is conserved only modulo the re-
ciprocal lattice vector 2π. For the present model, there
is a multitude of such interactions which differ by dissim-
ilar spin indices (only the total spin is conserved). All of
them have bare coupling constants gU ∼ U2/v̄.

III. RG ANALYSIS AT INCOMMENSURATE
FILLING

In this section we present the RG analysis for the model
defined in the previous section. We first concentrate on
the case of incommensurate filling.

The low-energy theory introduced above is analogous
to that of a three leg ladder [21–23], albeit with rather
anisotropic interactions. It is known that the 18 in-
dependent parameters c̃σ,ραβ and f̃σ,ραβ form a closed set
of running coupling constants under one-loop RG. The
RG equations for a generic N-leg ladder were derived in
Ref. [20]. Collecting the coupling constants into a sin-

gle eighteen component vector gµ = (c̃ραβ , f̃
ρ
αβ , c̃

σ
αβ , f̃

σ
αβ)µ,

the RG equations have the form of Eq. (1). Physically,
the logarithmic scale factor y = ln(Λ/T ) is determined
by the ratio of the UV cut-off Λ ∼ v̄ and temperature T .
The detailed form of the structure factors βµνρ is given
in App. B. Typically, the coupling constants diverge at
a characteristic scale Tc. As a working definition we as-
sociate this scale with the onset of a symmetry broken
phase, bearing in mind that strictly speaking, the di-
vergence of one-loop RG in 1D marks the onset of the
strong coupling regime and the development of gaps in
some parts of the spectrum. In view of the simple struc-
ture of one-loop equations (1), the critical temperature
Tc(U) has the following functional form (see App. B)

Tc(U) = Λ

(
Λ

Tc(Λ)

)− Λ
U

. (13)

The reference scale Tc(Λ) depends on J/U , therefore both
the magnitude of U and of J/U determine the scale of the
instability. In contrast, rescaling of the running scale and

coupling constants demonstrates that the phase diagram
depends on the ratio J/U , only.

The RG equations were solved numerically using start-
ing values defined by Eqs. (11) and Fermi velocities
vI ≈ 0.80eV, vII ≈ 0.86eV, vIII ≈ 0.57eV as obtained from
Fig. 4, restricting the values to the range J/U ∈ [0, 0.8].
We considered a large variety of U/v̄ ∈ [0.02, 10], all lead-
ing to the same phase diagram as presented for three ex-
emplary values of U/v̄ in Fig. 2. As we have mentioned
above, the Fermi velocities are non-universal and depend
on the chosen microscopic parameters. Therefore, a dif-
ferent set of Fermi velocities is explored in Appendix B,
yielding similar results.

Our analysis identifies four different phases, as illus-
trated in figures 2 and 3. The distinguishing character-
istic of each phase is the set of coupling constants that
diverges and the signs of the divergences. Near the phase
boundaries, large finite values and true divergencies are
numerically indistinguishible, leading to minor numerical
uncertainties in Fig. 2. In three out of four phases, several
coupling constants diverge at the same scale preserving a
finite, often universal, ratio. We derive these fixed ratios
analytically, they imply an enhanced symmetry[24] at the
attractive fix point and a connection to the integrable
Gross-Neveu models discussed below. To determine the
physical meaning of the phases, we bosonize the degrees
of freedom

aR,Lα,σ ∼ ei
√
π(Φα,σ±Θα,σ) (14)

and perform a semiclassical strong coupling analysis near
the instability. The latter allows to characterize gapful
bosonic modes and to classify the operators displaying
quasi-long range order. Following the lingo of 1D lad-
der systems, we use the notation “CmSn” for a phase
with m (n) massless bosons in the charge (spin) sector.
Details on this procedure can be found in Appendix B.
Here we summarize its outcome and discuss the phases
in ascending order of J/U .

A. Phase C3S2

For small Hund’s coupling J/U . 0.16 only c̃σI,I di-

verges towards negative infinity (attraction in the Cooper
channel), while all other coupling constants remain fea-
tureless. This is due to the small starting value of c̃σI,I = J
which places the system close to a Cooper instability and
in turn is due to the different orbital structure of left and
right moving particles near kI. A spin gap is developed
near kI while all excitations near kII,III remain gapless.
Long-range correlations for singlet superconducting (SS)
and also of charge density wave (CDW) order parame-
ters occur in the C3S2 phase. When transformed back to
the orbital and chain space, the superconducting order



6

parameter takes the form

∆ ∼ ∆IΨ
R
I (x)[ΨL

I (x)]T =
∆I

4

(
1 −1
−1 1

)
τ

⊗
(

1 −i
i 1

)
γ

.

(15)
We have included indices τ and γ in the matrix repre-
sentation to clarify the direct product of chain and or-
bital spaces. Thus, the gap function contains a significant
amount of orbital entanglement [25, 26] and has opposite
sign along the rung and the steps of the ladder. As such it
could be referred to as ”d-wave”, however, in 1D the no-
tion of s-,d-, ... (p-,f-...) wave pairing is not well defined
and we use the term even- (odd-) parity superconductiv-
ity instead. The gap function may be transformed to a
real matrix by means of a π/2-rotation about the z-axis
in orbital space.

B. Phase C2S1a

At intermediate 0.16 . J/U . 0.41 coupling constants
involving only Fermi points kII and kIII diverge, while
those which involve Fermi point kI are unaffected. The
coupling constants scale as follows: c̃σαβ , f̃

ρ
αβ → +∞ and

c̃ραβ , f̃
σ
αβ → −∞ for α, β ∈ {II,III}. For all starting val-

ues within phase C2S1a, the divergence of diagonal spin
components is subdominant, such that c̃σαα/c̃

σ
II,III → 0,

while the other coupling constants diverge with a univer-
sal, finite ratio near the fix point. This corresponds to
the runaway flow in a certain, well defined direction of
parameter space, such that the flow becomes effectively
one-dimensional. In the Appendix, we expand the full
RG equations about this ray and determine the ratios of
divergence, amongst others c̃ρII,III = −c̃σII,III/4.

As compared to the three other phases, C2S1a displays
repulsion in the Cooper channel. By means of the out-
lined semiclassical evaluation of the bosonized theory we
find that the following bosonic modes are gapped

ΦρII − ΦρIII, ΦsII − ΦsIII, Θs
II + Θs

III, (16)

where Φρ,sα = (Φα,↑ ± Φα,↓)/
√

2 are charge and spin
modes, respectively. The refermionization of bosonic de-
grees of freedom in these three sectors yields a Gross
Neveu model and highlights the emergent SO(6) ∼
SU(4) symmetry, see App. B. Physically, the symmetry
broken state corresponds to an orbitally ordered charge
density wave. Returning to orbital and chain space, the
order parameter is

OCDW (x) =

(
1 1
1 1

)
τ

⊗ γy ⊗ 1σ e
−i(kII+kIII−π)x. (17)

C. Phase C2S1b

A rather narrow phase occurs for 0.42 . J/U . 0.53.
Again, coupling constants involving only Fermi points kII

and kIII diverge, while those which involve Fermi point
kI are featureless. As in the C2S1a phase, the ratios
of the divergent coupling constants is universal and the
effective one-dimensional RG flow is derived in Appendix
B. The divergent quantities are c̃ρ,σαβ → −∞ and f̃ραβ →
+∞, while f̃σαβ/c̃

σ
αα → −0. Amongst the various finite

ratios, we remark that c̃σII,II/vII = c̃σIII,III/vIII and c̃ρII,III =

c̃σII,III/4. Such a phase was discussed in detail in Ref. [20]
and contains two massless charged and one massless spin
mode while

Θs
II, Θs

III, ΦρII − ΦρIII, (18)

are gapped. Again, the connection to an SO(6) Gross
Neveu model with enlarged symmetry can be obtained by
refermionization in the three sectors in which the bosons
condense. Physically, this phase corresponds to an intra-
band superconductor with gaps ∆II,∆III on the Fermi
points kII, kIII, in which ∆II∆III > 0. In orbital and
chain space, the spin singlet gap function is the sum of
the following contributions

∆IIΨ
R
II(x)[ΨL

II(x)]T =
∆II

2

(
1 1
1 1

)
τ

⊗
(

1 0
0 0

)
γ

,

(19a)

∆IIIΨ
R
III(x)[ΨL

III(x)]T =
∆III

2

(
1 1
1 1

)
τ

⊗
(

0 0
0 1

)
γ

.

(19b)

This superconducting state relies on intraorbital pair-
ing and has the same sign along and across the ladder.

D. Phase C1S0

Finally, for 0.53 . J/U coupling constants involving
any Fermi surface diverge. The Cooper coupling con-
stants c̃σ,ρI,II, c̃

σ,ρ
I,III → +∞ while all other c̃σ,ραβ → −∞. As

in the C2S1b phase, for non-equal α 6= β the relationship
4c̃ραβ/c̃

σ
αβ → 1 holds. In the forward scattering channel

f̃σαβ/c̃
σ,ρ
αβ → 0, while f̃ραβ/c̃

σ
αβ approaches a small con-

stant value for α 6= β. The C1S0 phase is the analog of
the C2S1b phase, with the only difference that now all
three Fermi points display an instability towards a sym-
metry broken state and that intraband Cooper couplings
diverge independently c̃σI,I/vI 6= c̃σII,II/vII 6= c̃σIII,III/vIII.
The semiclassical analysis of the bosonized theory pre-
dicts spin gaps for all three spin modes Θs

i and charge
gaps for the following two degrees of freedom.

ΦρI − ΦρII, ΦρI − ΦρIII. (20)

This state represents a fully gapped superconductor with
gaps ∆I,II,III and the charge modes lock in a manner such
that

sign(∆I∆II) = sign(∆I∆III) = −sign(∆II∆III). (21)
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This follows from the positive signs of c̃σ,ρI,III and c̃σ,ρI,II. Such
a state may be called “s+−− ”, its gap function is the sum
of Eqs. (15) and (19) with signs as imposed by Eq. (21).
The only massless bosonic mode is the overall phase of
the superfluid.

E. Discussion

In this section we include a discussion of the results,
in particular of the superconducting phases.

1. RG flow

We begin with an examination of the RG flow. In this
context it is useful to introduce the Luttinger parameter
matrices Kρ

αβ ' δαβ − 2Cραβ ,Kσ
αβ ' δαβ + Cσαβ/2 with

Cρ,σαβ =
1

π(vα + vβ)

 c̃ρ,σI,I f̃ρ,σI,II f̃ρ,σI,III

f̃ρ,σI,II c̃ρ,σII,II f̃ρ,σII,III

f̃ρ,σI,III f̃ρ,σII,III c̃ρ,σIII,III


αβ

. (22)

The RG flow can be subdivided into two stages, see
Fig. 3: In a first step, Kσ

αβ renormalizes down to-

wards δαβ with Kρ
αβ being barely affected. Techni-

cally, this is due to terms of the standard Cooper form
dCσαβ/d ln(Λ/T ) = −(Cσαβ)2 in the RG equations (B1).
This state corresponds to a spinful LL with a non-
interacting spin sector, as is customary. Its quantum
critical nature is crucial in the present context as it rep-
resents a repulsive fixed point. Near the fixed point the
flows diverge and, in the second stage, the system flows
towards one of the four phases discussed above. By con-
sequence, the set of coupling constants (c̃ρ,σαβ , f̃

ρ,σ
αβ ) in the

infrared bears very little resemblance with the bare high-
energy parameters. The pattern of interactions is com-
pletely reshuffled by many body effects. Notably, Kρ

αα−1
changes sign from intraband repulsion to intraband at-
traction for α = II, III (α = I,II,III) in the superconduct-
ing phases C2S1b (C1S0) at lowest energies.

When a trajectory approaches the quantum critical
point very closely, the flow slows down and Tc shoots
up, this is the origin of the small Tc in the C2S1 phases.
Furthermore, since small starting values of U are closer
to Kσ

αβ = δαβ this also explains the dependence Tc(U)

as found in Eq. (13). We also note that the appearance
of phases with gaps on a subset of the Fermi points is
rather generic in N-leg ladders [20].

More specific technical observations follow. The tra-
jectories towards C3S2 and C1S0 do not approach the
QCP so closely leading to higher Tc. In particular, the
vanishing bare value c̃σI,I at J → 0 places the system close
to the superconducting instability already. At larger J
the repulsive flow near the QCP is driven by the RG
equations (B1) which imply that the initially vanishing

c̃σ,ρII,III are increasing in magnitude due to finite f̃σ,ρII,III.

Finally, the divergence of c̃σ,ρII,III feeds back into the
other channels, which are small at intermediate scales.
This provides a mechanism to explain the transition near
J ∼ U/2 between phases C2S1a, in which c̃σII,III →
+∞, and C2S1b, in which c̃σII,III → −∞. Namely, the

RG equation for c̃σII,III contains the term c̃σII,III[f̃
ρ
II,III −

f̃σII,III/2]. The square bracket changes sign at J = U/2,

see Eq. (11). It is important to stress that c̃σ,ρII,III have van-
ishing initial values, while the other interpocket Cooper
interactions, c̃σ,ρI,II and c̃σ,ρI,III are repulsive (positive). Even

after renormalization, c̃σ,ρI,II and c̃σ,ρI,III retain their positive
sign, which ultimately leads to the s+−− superconductor
in the C1S0 phase at largest Hund’s coupling J .

2. Physical implications and comparison to 2D

We now turn the attention towards the physical impli-
cations of the results. Based on Fig. 2 b), in which Tc
is estimated in Kelvin based on a bandwidth Λ ∼ 1eV ,
we conclude the following: First, none of the phases has
an experimentally relevant Tc (above 1K) in the con-
trolled weak coupling regime. We therefore extrapolate
our analysis to larger interaction amplitudes under the
assumption that the RG flow is at least qualitatively un-
changed. Second, the phases with realistically observable
Tc at intermediate coupling are C3S2 and C1S0, both
of which have long-range superconducting correlations.
The orbital order charge density wave C2S1a occurs at
unrealistic energy scales, only.

It is interesting to compare the present 1D RG for
the ladder material with previous studies of parquet
RG [17, 18] designed for materials with cylindrical Fermi
surfaces. Both approaches involve weak coupling the-
ory, and the basic form of RG equations, Eq. (1), is the
same, and thus Eq. (13) has an analogue in the 2D case.
While the general observation that many body effects
completely reshuffle the pattern of interaction constants
persists to the higher dimensional systems, the clear two
stage RG as observed in Figs. 8-11 seems to be spe-
cific to quasi 1D. In contrast with our q1D study, the
2D kinematics implies a “parquet-to-ladder” crossover
scale given by EF � Λ, below which the general weak
coupling form Eq. (1) (parquet) takes the simpler form
βµνρ = δµνδνρβµ (ladder). Finally, an important com-
mon observation valid both for q2D and q1D is that intra-
band Coulomb interaction changes sign in the last stages
of RG. Hence the RG predicts superconducting pairing
states with sign changes between Fermi surfaces.

In view of this last point, it is often assumed that RG
resolves the “Coulomb problem”: the question of how
Coulomb repulsion is overcome in the superconducting
state of iron pnictides and chalcogenides in a wide va-
riety of different Fermi surface configurations, without a
significant impact on the transition temperature. We re-
cently investigated this issue in more detail [27] and came
to the conclusion that generically RG is not sufficient to
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explain the robustness of superconductivity against the
Coulomb repulsion. In the present study the diverging
Cooper attraction develops at the end of the scaling tra-
jecties in channels with small or even vanishing bare cou-
plings. The energy scale at which this occurs is strongly
dependent on detailed microscopic interactions, suggest-
ing a corresponding dependence of Tc on the microscopic
details. Consequently, although RG is able to account for
the appearance of pairing in a variety of different Fermi
surface structures, it does not provide a natural explana-
tion of the robustness of the superconducting transition
temperatures in iron-based superconductors, and does
not solve the Coulomb problem. This unsolved problem ,
which lies at the heart of the ubiquituous superconductiv-
ity in the family of iron-based superconductors remains
an important challenge for the future.

IV. HALF-FILLING: UMKLAPP SCATTERING

The goal of this section is to qualitatively discuss umk-
lapp operators, Eq. (12), by analyzing their scaling di-
mension du. We remind the reader that two electrons oc-
cupy each site at half filling, cf. Fig. 1, as a consequence
umklapp scattering involves six fermionic operators. Due
to the different spin structure discussed in Sec. II C, there
is a total of 27 = 128 umklapp terms. Their coupling
constants are most conveniently parametrized by seven
complex numbers Aρ, Asα, B

s
α

Hu = Re[Aρei
√

6πΘρtot ]

III∏
α=I

Re[Asαe
i
√

2πΘsα +Bsαe
i
√

2πΦsα ].

(23)

We introduced Θρ
tot =

∑
α Θρ

α/
√

3 in the sector of to-
tal U(1) charge, the associated Luttinger parameter is
Kρ

tot =
∑
αβK

ρ
αβ/3. We discuss the scaling dimension

of the umklapp operators in the vicinity of the five fixed
points presented in Fig. 3, details are relegated to Ap-
pendix C. If umklapp scattering is RG relevant, it can
lock the bosonic field Θρ

tot. Then the system becomes an
insulator with respect to the electromagnetic U(1) charge
and all superconducting phases are suppressed.

At the repulsive quantum critical point, the scaling
dimensions of the coupling constants are equal for all
128 umklapp terms and

du = (1− 3Kρ
tot)/2. (24)

Umklapp operators are relevant only at strong repulsion
Kρ

tot < 1/3. We also remark that for an n-body inter-

action du = 2 − n n=3
= −1 at the non-interacting fixed

point.
In the phase C3S2 the phase Θs

I condenses and there-
fore the product in Eq. (23) involves α =II,III, only. As-
suming Kσ

αβ = δαβ for α, β ∈ {II, III} the scaling dimen-
sion becomes

du = 1− 3Kρ
tot/2. (25)

Mott localization occurs at intermediately strong cou-
pling Kρ

tot < 2/3, only.
The phases C2S1a and C2S1b are characterized by a

spin gap near both Fermi points kII and kIII. Effectively,
the remaining umklapp terms have the form

Hu = Re[Aρei
√

6πΘρtot ]Re[AsIe
i
√

2πΘsI +BsI e
i
√

2πΦsI ] (26)

and (for Kσ
II = 1) the scaling dimension

du = 3(1−Kρ
tot)/2. (27)

The transition occurs now at weak coupling, Kρ
tot = 1.

Note, however, that Kρ
αβ flows to attractive values near

the fixed points. If Mott localization occurs C2S1a be-
comes a phase C1S0a in which the long range CDW cor-
relations survive. Similarly, C2S1b becomes C1S0b, here
superconducting correlations are suppressed but long
range CDW correlations stemming from the Fermi point
kI persist.

Finally, the phase C1S0 has a spin gap at all Fermi

momenta such that, effectively, Hu = Re[Aρei
√

6πΘρtot ].
The effective scaling dimension of the umklapp terms at
the C1S0 fixed point is thus

du = 2− 3Kρ
tot/2, (28)

and Mott localization occurs at Kρ
tot < 4/3, i.e. formally

even for attractive interaction. Then the system is fully
gapped. In practice, the scaling dimension becomes rel-
evant even before the C1S0 fixed point is reached. As
we show explicitly in the Appendix, the dominant four
umklapp operators have the form

Hu = guRe[Aρei
√

6πΘρtot ]Re[Asei
√

6πΘsrel ] (29)

with Θs
rel = (Θs

I − Θs
II − Θs

III)/
√

3. Even in the weak
coupling limit, the scaling dimension of these operators
change sign from irrelevant to relevant before reaching
the C1S0 fixed point, see Fig. 15 of the Appendix, and
generate a C2S2 Mott insulating phase.

In order to illustrate the appearance of a Mott phase
we numerically solve Eq. (1) along with dgu/dy =
du({gµ})gu in the parameter regime of strong Hund’s
coupling, see Fig. 6. For sufficiently large U/Λ (e.g.
U/Λ & 1.6 for J = 0.6U) du > 0 even at the initial
stage of RG. The divergence of the coupling constant is
then dominated by the repulsive quantum critical fixed
leading to

gu(y) ≈ gu(0)e[1−3Kρ
tot(y=0)]y/2. (30)

In Fig. 6, we employ a working definition of the Mott
activation gap TMott by means of the scale yMott =
ln(Λ/TMott) at which gu(yMott) = (2πΛ) for starting
value gu(0) = U2/(2πΛ). For a density n away from
the density of half filling n0, the divergence of gu is
cut at an energy scale v̄|n − n0| leading to TMott(n) =√
TMott(n0)2 − (v̄|n− n0|)2. For clear illustration we
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FIG. 6. Phase diagram at J = 0.6U , taking umklapp scatter-
ing into account. The quantity U/Λ = Uã/v̄ on the x-axis de-
creases with pressure, while the y-axis variable 1/ ln(Λ/T ) in-
creases with temperature. At large U/Λ and perfect commen-
suration, the superconducting Tc (numerical solution: brown
dots; Eq. (13): dashed brown) always lies below the Mott
localization temperature TMott(n0) defined heuristically by
gu(yMott) = (2πΛ) (numerical solution: black squares; ap-
proximate solution, Eq. (30), valid for U/Λ & 1.6: black
dotdashed). Away from half filling the Mott phase bound-
ary is modified by the finite energy scale associated with
doping (purple, here (v̄|n − n0|/Λ)2 = 0.3) giving rise to a
superconductor-insulator transition.

chose (v̄|n − n0|/Λ)2 = 0.3, i.e. a rather large value, in
Fig. 6. We note that using Λ ' 1eV , the phase bound-
aries of 6 occur at unrealistically low temperatures, which
is a direct consequence of our weak coupling treatment.
However, we conjecture that the qualitative outcome of
our controlled calculations still holds in the strong cou-
pling limit.

All in all, we conclude that Mott physics can be impor-
tant for the present itinerant model. Umklapp scattering
at half filling may be RG relevant near the attractive
fixed points even though it is strongly irrelevant at the
non-interacting limit.

V. SUMMARY AND OUTLOOK

In summary, we have investigated a single ladder
for the quasi 1D iron based superconductor BaFe2S3

on the basis of the tightbinding model as suggested in
Refs. [9, 10] and a simple onsite Hubbard and Hund inter-
actions. The long-wavelength low-temperature physics
was studied using an RG analysis of excitations close to
the three pairs of Fermi points.

In the case of incommensurate filling the weak cou-
pling RG analysis yields four phases depending on the
ratio of Hund J to Hubbard U interactions, see Fig. 2.
We have shown analytically and checked numerically that
the absolute value of the interaction U at given J/U does
not affect the ground state, but Tc increases rapidly as
a function of U . In particular, a fully gapped supercon-

ductor is stabilized at sufficiently large ratio J/U & 0.53.
The intraband pairing gaps have signs +,−,− on the
three pairs of Fermi points and the critical temperature
Tc is estimated to be of the order of 10 K for interme-
diately strong coupling. This theory provides a way to
understand the conducting high pressure part of the ex-
perimental phase diagram [6]. In order to account for
the observation of a Mott phase at low pressure we fur-
thermore investigated umklapp scattering at half filling.
In our three band model, umklapp processes are repre-
sented by three-body interactions and are hence irrele-
vant at weak coupling. However, we have shown that
umklapp scattering does become relevant near some of
the strong coupling fixed points. In this circumstance a
charge gap develops, giving rise to a correlated insulator.
Near commensurate filling these results indicate a Mott
insulator-superconductor quantum phase transition (see
Fig. 6) into a Hund’s-driven superconducting phase at in-
termediate repulsion. This corroborates DMRG studies
on very similar models [10, 16].

One of the fascinating aspects of our model, is that
it is able to realize several different ground states which
develop a dynamically enhanced symmetry, each char-
acterized by different universal fixed-point ratios of the
coupling constants. In the real 3D material the 1D renor-
malization group flows will be cut-off by interchain hop-
ping, which is a relevant perturbation. In this spirit, the
present study provides insight into the predeliction to-
wards certain superconducting and magnetic states that
the real material inherits from its 1D building blocks.

There are various lessons that we have learnt that are
relevant to the wider theoretical study of iron based su-
perconductors. First, we have seen that the orbital struc-
ture of wave functions near the Fermi surface plays a
crucial role in the formation of the order parameters.
Second, the interorbital and orbital selective pairings are
ubiquitous as soon as the orbital structure of the wave
functions is taken into account. Third, even in weak
coupling theories, the Hund’s coupling has a dramatic
impact. Finally, although RG studies enable us to un-
derstand the appearance of pairing in a wide variety of
q1D Fermi surface structures, this pairing still requires
a channel with a weak bare Coulomb interaction, and a
generic mechanism which accounts for the weak bare re-
pulsion in the iron-based superconductors is still needed.
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Appendix A: Microscopic model

1. Tight binding model

In this Appendix we present further details on the tight
binding model [10], which we use to obtain input param-
eters for the numerical integration of RG equations.

We consider a ladder as shown in Fig. 1. Our approach
employs the following notation for the 2 × 2 × 2 = 8
degrees of freedom at each site: a) Spin is represented
by Pauli matrices σ. Spin eigenvalues are ↑, ↓. b) Pauli
matrices in chain space are τ . We denote the chains by
1, 2 (upper, lower chain). Due to mirror symmetry along
the chain direction, τ̃ = ±1 is a good quantum number

which corresponds to parity eigenstates |1〉+τ̃ |2〉√
2

. c) Pauli

matrices in orbital space are denoted by γ. The two
orbitals are called a, b. The tight binding Hamiltonian
contains nearest and next nearest rung hopping,

Hkin =
∑
jσ

{
[d+
j tZ1τdj+1 + h.c.] + [d+

j t2Z1τdj+2 + h.c.]

+ [d+
j tZ+Y τ1dj+1 + h.c.] + [d+

j t2Z+Y τ1dj+2 + h.c.]

+ d+
j tY τ1dj + ∆d+

j γ3dj − µd+
j dj

}
. (A1)

We note that tµ with µ = Z, Y, Z+Y, 2Z, 2Z+Y are 2×2
matrices in orbital space and that their off-diagonal parts
are antisymmetric and that we returned to the coordinate
system (X,Y, Z) to make contact with Ref. [10]. We
omitted the spin index for notational simplicity, following
Ref. [10] tY is a diagonal matrix.

We introduce the Fourier transform dj = 1
N

∑
k e

ikjdk
and perform a transformation in chain space into the
basis of bonding/antibonding states. We define

dk =

(
dk,τ̃=+1

dk,τ̃=−1

)
=
τ1 + τ3√

2

(
ck,1
ck,2

)
, (A2)

where spin and orbital quantum numbers have been sup-
pressed for convenience. This leads to the following result

Hkin =
∑

σ=↑↓,τ̃=±1

∫
(dk)d+

k,σ,τ̃

 ∑
i=0,2,3

h
(i)
τ̃ γi

 dk,σ,τ̃
(A3a)

where dk,σ,τ̃ are two spinors in orbital space, γ0 = 1γ and
we have introduced

h
(0)
τ̃ = 2 cos(k)[t

(0)
Z + τ̃ t

(0)
Z+Y ] + 2 cos(2k)[t

(0)
2Z + τ̃ t

(0)
2Z+Y ]

− µ+ τ̃ t
(0)
Y (A3b)

h
(2)
τ̃ = 2i sin(k)[t

(2)
Z + τ̃ t

(2)
Z+Y ] + 2i sin(2k)[t

(2)
2Z + τ̃ t

(2)
2Z+Y ]

(A3c)

h
(3)
τ̃ = 2 cos(k)[t

(3)
Z + τ̃ t

(3)
Z+Y ] + 2 cos(2k)[t

(3)
2Z + τ̃ t

(3)
2Z+Y ]

+ ∆ + τ̃ t
(3)
Y . (A3d)

We have also introduced t
(i)
µ = tr[tµγi]/2 with µ =

Z, Y, Z + Y, 2Z, 2Z + Y and i = 0, 2, 3. In this no-

tation, h
(2)
τ̃ is real and the time reversal symmetry[∑

i=0,2,3 h
(i)
τ̃ γi

]T
=
[∑

i=0,2,3 h
(i)
τ̃ γi

]
k→−k

is apparent.

The spectrum of the tight binding Hamiltonian is then

ετ̃ ,γ(k) = h
(0)
τ̃ + γ

√
(h

(2)
τ̃ )2 + (h

(3)
τ̃ )2. (A4)

The plot of the spectrum for the parameters given in Eq.
(3) of Ref. [10] is given in Fig. 4.

2. Interaction terms

Here we provide more details about the interaction
terms. It is useful to disentangle interorbital from in-
traorbital contributions in the Hubbard interaction, even
though we set Ũ = U in the main text. In the following
Pγ,τ,σ are projectors onto a given orbital, chain, and spin
respectively.

HU = U
∑
j

∑
γ=a,b

∑
τ=1,2

(d†j,↑PγPτdj,↑)(d
†
j,↓PγPτdj,↓)

(A5)

HŨ = Ũ
∑
j

∑
τ=1,2

(d†jPaPτ1σdj)(d
†
jPbPτ1σdj) (A6)

As a next step, we carry out the long-wavelength ex-
pansion, Eq. (3), into the interaction terms of the Hamil-
tonian. As usual, the overall momentum conservation
may be preserved in three different manners, correspond-
ing to direct, exchange and Cooper channels.

a. Intraorbital Hubbard interaction We begin by
rewriting the intraorbital Hubbard interaction, Eq. (A5)
in terms of low-energy modes.

In the density channel we then obtain

H
(0)
U =

U

8

∫
dx

∑
α=II,III

(∑
r

(ar,†I,↑a
r
I,↑ + 2ar,†α,↑a

r
α,↑)

)

×

(∑
r′

(ar
′,†

I,↓ a
r′

I,↓ + 2ar
′,†
α,↓a

r′

α,↓)

)
, (A7a)

while in the exchange channel the interaction takes the
form

H
(X)
U = −U

8

∫
dx

∑
α=II,III

(∑
r

(ar,†I,↑a
r
I,↓ + 2ar,†α,↑a

r
α,↓)

)

×

(∑
r′

(ar
′,†

I,↓ a
r′

I,↑ + 2ar
′,†
α,↓a

r′

α,↑)

)
. (A7b)

Finally, in the Cooper channel we obtain

H
(C)
U =

U

8

∫
dx

∑
α=II,III

(∑
r

(ar,†I,↑a
−r,†
I,↓ + 2ar,†α,↑a

−r,†
α,↓ )

)

×

(∑
r′

(ar
′

I,↓a
−r′
I,↑ + 2ar

′

α,↓a
−r′
α,↑ )

)
. (A7c)
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b. Interorbital Hubbard interaction Next we look at
the interorbital Hubbard term, Eq. (A6). In the density
channel we obtain

H
(0)

Ũ
=
Ũ

8

∫
dx

(∑
σ,r

(ar,†I,σa
r
I,σ + 2ar,†II,σa

r
II,σ)

)

×

∑
σ′,r′

(ar
′,†

I,σ′a
r′

I,σ′ + 2ar
′,†

III,σ′a
r′

III,σ′)

 , (A8a)

while in the exchange term,

H
(X)

Ũ
= − Ũ

8

∫
dx
∑
σ,σ′

(∑
r

rar,†I,σa
r
I,σ′

)(∑
r′

r′ar
′,†

I,σ′a
r′

I,σ

)
.

(A8b)
In the Cooper channel

H
(C)

Ũ
= − Ũ

8

∫
dx
∑
σ,σ′

(∑
r

rar,†I,σa
−r,†
I,σ′

)(∑
r′

r′ar
′

I,σ′a
−r′
I,σ

)
(A8c)

only operators from the Fermipoint kI are involved.

c. Hund’s coupling. The treatment of Hund’s cou-
pling is analagous to the treatment of the interorbital
Hubbard interaction.

In the density channel we obtain

H
(0)
J = −J

8

∫
dx

(∑
r

(ar,†I ~σarI + 2ar,†II ~σa
r
II)

)

×

(∑
r′

(ar
′,†

I ~σar
′

I + 2ar
′,†

III ~σa
r′

III)

)
, (A9a)

while in the exchange,

H
(X)
J =

J

8

∫
dx
∑
σ,σ′

(∑
r

r~σarIa
r,†
I

)
σσ′

×

(∑
r′

r′~σar
′

I a
r′,†
I

)
σ′,σ

(A9b)

and Cooper channel,

H
(C)
J =

J

8

∫
dx
∑
σ,σ′

∑
σ̃,σ̃′

(~σT )σ,σ̃(~σ)σ′,σ̃′

(∑
r

rar,†I,σ̃′a
−r,†
I,σ

)

×

(∑
r′

r′ar
′

I,σ̃′a
−r′
I,σ′

)
. (A9c)

only operators from the Fermipoint kI are involved.

At U = Ũ , the interaction terms presented in this Ap-
pendix may be rearranged in the form of scalar and vec-
tor current densities and ultimately yield Eq. (11) of the

main text. In contrast, if Ũ = U − J̃ additions to the

coupling constants with the following form arise

δf̃ραβ = − J̃
4

 0 1 1
1 0 2
1 2 0


αβ

, (A10a)

δf̃σαβ = 0, (A10b)

δc̃ραβ = − J̃
4

 3 0 0
0 0 0
0 0 0


αβ

, (A10c)

δc̃σαβ = J̃

 1 0 0
0 0 0
0 0 0


αβ

. (A10d)

Appendix B: RG flow - incommensurate filling

In this appendix we collect representative numerical
solutions of the RG equations for each of the four phases
presented in Fig. 2 of the main text. We also present
some technical details from the analysis of the phases,
begining with the J̃ = 0 phases, in increasing order of
J/U . In Fig. 7 we show the phase diagram obtained for
a different set of Fermi velocities to those used in Fig. 2,
showing how the phase boundaries shift with velocities.
We have left the discussion of finite J̃ for appendix B 5

1. RG equations

The RG equations for an N-leg ladder without umk-
lapp scattering were derived in Ref. [20]

ḟραβ = (cραβ)2 +
3

16
(cσαβ)2, (B1a)

ḟσαβ = −(fσαβ)2 + 2cραβc
σ
αβ −

1

2
(cσαβ)2, (B1b)

ċραβ = −
∑
γ

{ααβ,γ(cραγc
ρ
γβ +

3

16
cσαγc

σ
γβ))},

+(cραβh
ρ
αβ +

3

16
cσαβh

σ
αβ) (B1c)

ċσαβ = −
∑
γ

{ααβ,γ(cραγc
σ
γβ + cσαγc

ρ
γβ +

1

2
cσαγc

σ
γβ))},

+(cραβh
σ
αβ + cσαβh

ρ
αβ −

1

2
cσαβh

σ
αβ) (B1d)

Parameters without the tilde are defined by fραβ =

f̃αβ/π(vα + vβ) etc., the ratio ααβ,γ = (vα + vγ)(vβ +
vγ)/[2vγ(vα + vβ)] and hρ,σαβ = 2fρ,σαβ + δαβc

ρ,σ
αβ . The dot

indicates the derivative with respect to the running scale,
ċ = dc/d ln(L/ã), where ã is the UV length scale.
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FIG. 7. Phase diagram for small Hubbard U and Hund’s
J ≤ U , for the set of Fermi velocities used in Fig. 4 (top) and
vI = vII = 0.8eV, vIII = 0.6eV (bottom). In the second case,
the system at U = 0.1v̄, J = 0.04v̄ and U = 0.12v̄, J = 0.05v̄
flows to the phase C2S1b (dashed circles), thus the boundary
between C2S1b and C2S1a is shifted downwards.

2. Relationship Tc(U)

Here, we derive Eq. (13) of the main text. It is useful
to employ the schematic representation Eq. (1) of the
RG equations. If the coupling constants gµ(y) obey the
RG equations, so do ḡµ(y) = gµ(y/U)/U . Let gµ have an
instability at yc(g

0
µ), where yc(g

0
µ) is an unknown function

of the bare values g0
µ. Clearly, the instability of ḡµ occurs

at yc(g
0
µ/U) and in view of the relationship between gµ(y)

and ḡµ(y) it follows that

yc(g
0
µ/U) = Uyc(g

0
µ). (B2)

Using yc = ln(Λ/Tc) Eq. (13) of the main text follows.

3. Analysis of RG flow

a. C3S2 phase The phase of smallest J/U is char-
acterized by the lone divergence of cσI,I → −∞, while all

other coupling constants remain featureless (see Fig. 8).
Expanding the set of RG equations in powers of cσI,I one
we confirm that the flow of cσI,I decouples from all other

RG equations and diverges as ċσI,I = −(cσI,I)
2.

ln(L/a)~

cρI,I
cρII,II
cρIII,III
cρI,II
cρI,III
cρII,III

cσI,I
cσII,II
cσIII,III
cσI,II
cσI,III
cσII,III

fρI,II
fρI,III
fρII,III
fσI,II
fσI,III
fσII,III

FIG. 8. Numerical integration of RG equations for starting
values determined by U/v̄ = 5 and J/U = 0.1. In this case,
the system flows to the C3S2 phase, which is characterized by
divergent cσI,I.

b. C2S1a phase. The phase of second smallest J/U ,
plotted in light green in Fig. 2, is characterized by a
divergence of several coupling constants, while the ratio
to cσII,III → +∞ is fixed throughout the phase

cρII,II = cρIII,III = −R1

8
cσII,III (B3a)

cρII,III = −1

4
cσII,III (B3b)

fρII,III =
1

8
R2c

σ
II,III (B3c)

fσII,III = −R3c
σ
II,III. (B3d)

The intraband, spin-spin interactions are equal and have
a subdominant divergence cσII,II = cσIII,III → +∞ but
are small in comparison to the coupling constants of
Eq. (B3), i.e. cσII,II/c

σ
II,III → 0. All other coupling con-

stants remain small (see Fig. 9). The ansatz (B3), when
introduced into the full RG equations, proves to be con-
sistent provided (ζ = 1/2 + vII/[4vIII] + vIII/[4vII] is non-
universal)

R1 = ζR2 (B4a)

R2 =
2R3

R2
3 + 1

(B4b)

R3 =

√√
8 + ζ2

4
− ζ

2
(B4c)

For vII → vIII all R1,2,3 approach unity. The set of RG
equations reduces to a single equation for one of the six
parameters, ċσII,III = 2(cσII,III)

2/R2.

c. C2S1b phase. The C2S1b phase is characterized
by the following diverging running coupling constants
where the sign of cσII,III → −∞ constitutes the key differ-
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fσII,III

ln(L/a)~

FIG. 9. Numerical integration of RG equations for starting
values determined by U/v̄ = 5 and J/U = 0.3. In this case,
the system flows to the C2S1a phase.

ence with the phase previously discussed.

cρII,II = cρIII,III =
R1

8
cσII,III (B5a)

cσII,II = cσIII,III = R2c
σ
II,III (B5b)

cρII,III =
1

4
cσII,III (B5c)

fρII,III = −R3

8
cσII,III. (B5d)

Though the coupling constants fσII,III, increase near crit-

icality, they remain relatively small fσII,III/c
σ
II,III → 0.

Again, the ratios R1,2,3 are constant throughout the
phase and given in terms of α by the following functions
which approach unity as ζ → 1.

R1 = ζR3 (B6a)

R2 =

√√
8ζ2 + 1

4
− 1

2
(B6b)

R3 =
2R2

R2
2 + ζ

(B6c)

The coupled divergences are captured by the single RG
equation ċσII,III = −2(cσII,III)

2/R3.

d. C1S0 phase Finally, at the largest J we con-
sidered, coupling constants involving any of the three
Fermi points diverge. As in the C2S1b phase and in
Ref. [20], the ratio cραβ = cσαβ/4 for α 6= β is preserved
and fσαβ → 0. In contrast with the previous discussion,
the divergence of the intra Fermi point couplings cαα is
generically i dependent. The sign of the diverging cou-

cρI,I
cρII,II
cρIII,III
cρI,II
cρI,III
cρII,III

cσI,I
cσII,II
cσIII,III
cσI,II
cσI,III
cσII,III

fρI,II
fρI,III
fρII,III
fσI,II
fσI,III
fσII,III

ln(L/a)~

FIG. 10. Numerical integration of RG equations for starting
values determined by U/v̄ = 5 and J/U = 0.5. In this case,
the system flows to the C2S1b phase. Note that, as compared
to Fig. 9, cσIII,III flows towards negative infinity.

cρI,I
cρII,II
cρIII,III
cρI,II
cρI,III
cρII,III

cσI,I
cσII,II
cσIII,III
cσI,II
cσI,III
cσII,III

fρI,II
fρI,III
fρII,III
fσI,II
fσI,III
fσII,III

ln(L/a)~

FIG. 11. Numerical integration of RG equations for starting
values determined by U/v̄ = 5 and J/U = 0.6. In this case,
the system flows to the C1S0 phase.

pling constants is

cσαα → −∞ (B7a)

cραα → −∞ (B7b)

cσI,II = 4cρI,II → +∞ (B7c)

cσII,III = 4cρII,III → −∞ (B7d)

cσI,III = 4cρI,III → +∞ (B7e)

fραβ → +∞ (B7f)

Once again, fσαβ > 0 is small as compared to the cou-

plings discussed in Eq. (B7) and formally fσαβ → 0 at the
fixed point.

4. Physical meaning of the different phases

In the previous section we analyzed the RG flow and
distinguished four different phases, characterized by the
divergence of four different sets of coupling constants at
a critical, exponentially large length scale L∗. Here, we
study the physical implications of these four cases. In
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this analysis we follow Ref. [20] and bosonize the theory
near L∗ subsequently using a semiclassical analysis.

a. Bosonization Dictionary

For the bosonization we use the dictionary

arα,σ(x) =
1√
2πa

ηασe
i
√

4πφrα,σ(x) (B8a)

with the following identities

{ηα,σ, ηα′,σ′} = 2δαα′δσ,σ′ (B8b)[
φrα,σ(x), φr

′

α′,σ′(x
′)
]

=
ir

4
sign(x− x′)δrr′δαα′δσ,σ′

+
ir

4
δr,−r′δαα′δσ,σ′ . (B8c)

The length scale a∗ is the UV cut-off of the renormalized
theory. Since we have assumed the same Majorana Klein
factor for creation and annihilation operators, normal or-
dering must be imposed prior to bosonization in order to
preserve the consistency of signs. We assume that any
operator under consideration contains an even number
of fermionic operators from each Fermipoint β. Thus, in
the Klein factor Hilbert space, each operator involving
Fermi point β contains one of the following 4 operators
at least once:

ηβ,↑ηβ,↑ = 1; ηβ,↓ηβ,↓ = 1; ηβ,↑ηβ,↓ ≡ gβ ; ηβ,↓ηβ,↑ ≡ −gβ .
(B9)

The algebra of gβ is g2
β = −1 and [gγ , gβ ] = 0, a repre-

sentation of this algebra is

gβ = i, ∀j. (B10)

We introduce density and displacement fields

φRα,σ =
Φα,σ + Θα,σ

2
, (B11)

φLα,σ =
Φα,σ −Θα,σ

2
. (B12)

Spin charge separation is accounted for by the
parametrization

Φρα =
Φα,↑ + Φα,↓√

2
(B13)

Φsα =
Φα,↑ − Φα,↓√

2
(B14)

and analogously for Θ variables. Using our bosonization
convention, Φρα turns out to be proportional to the col-
lective phase for a superconducting ground state.

b. Operators under consideration.

The phases under consideration are of the supercon-
ducting and charge density wave (CDW) /spin density
wave (SDW) type. We study correlation functions of
CDW, SDWz (z-component of the SDW order parame-
ter), singlet superconductivity (SS) and the z-component
of triplet superconductivity (TSz). The phases under
consideration regard the following intraband operators,

O
(α)
CDW = (aR,†α,↑a

L
α,↑ + aR,†α,↓a

L
α,↓)e

−i2kαx

∼ 1

(πa)
e−i
√

2πΘρα cos(
√

2πΘs
α)e−i2kαx, (B15a)

O
(α)
SDWz

= (aR,†α,↑a
L
α,↑ − a

R,†
α,↓a

L
α,↓)e

−i2kαx

∼ 1

(πa)
e−i
√

2πΘρα sin(
√

2πΘs
α)e−i2kαx, (B15b)

O
(α)
SS = (aR,†α,↑a

L,†
α,↓ − a

R,†
α,↓a

L,†
α,↑)

∼ 1

(πa)
e−i
√

2πΦρα cos(
√

2πΘs
α), (B15c)

O
(α)
TSz

= (aR,†α,↑a
L,†
α,↓ + aR,†α,↓a

L,†
α,↑)

∼ 1

(πa)
e−i
√

2πΦρα sin(
√

2πΘs
α), (B15d)
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as well as the following interband operators in the particle-hole channels

O
(αβ)
CDW =

1

2
(aR,†α,↑a

L
β,↑ + aR,†α,↓a

L
β,↓)e

−i(kα+kβ)x + α↔ β

∼ e−i(kα+kβ)x e
−i
√
πΘρ+αβ

πa

(
cos(
√
πΦρ−αβ) cos(

√
πΘs+

αβ) sin(
√
πΦs−αβ)− i sin(

√
πΦρ−αβ) sin(

√
πΘs+

αβ) cos(
√
πΦs−αβ)

)
(B15e)

O
(αβ)
SDWz

=
1

2
(aR,†α,↑a

L
β,↑ − a

R,†
α,↓a

L
β,↓)e

−i(kα+kβ)x + α↔ β

∼ e−i(kα+kβ)x e
−i
√
πΘρ+αβ

πa

(
cos(
√
πΦρ−αβ) sin(

√
πΘs+

αβ) sin(
√
πΦs−αβ)− i sin(

√
πΦρ−αβ) cos(

√
πΘs+

αβ) cos(
√
πΦs−αβ)

)
(B15f)

O
[αβ]
CDW =

1

2
(aR,†α,↑a

L
β,↑ + aR,†α,↓a

L
β,↓)e

−i(kα+kβ)x − α↔ β

∼ e−i(kα+kβ)x e
−i
√
πΘρ+αβ

πa

(
cos(
√
πΦρ−αβ) sin(

√
πΘs+

αβ) cos(
√
πΦs−αβ)− i sin(

√
πΦρ−αβ) cos(

√
πΘs+

αβ) sin(
√
πΦs−αβ)

)
(B15g)

O
[αβ]
SDWz

=
1

2
(aR,†α,↑a

L
β,↑ − a

R,†
α,↓a

L
β,↓)e

−i(kα+kβ)x − α↔ β

∼ e−i(kα+kβ)x e
−i
√
πΘρ+αβ

πa

(
cos(
√
πΦρ−αβ) cos(

√
πΘs+

αβ) cos(
√
πΦs−αβ)− i sin(

√
πΦρ−αβ) sin(

√
πΘs+

αβ) sin(
√
πΦs−αβ)

)
.

(B15h)

c. Interactions

For the purposes of classifying the instabilities pre-
sented in Figs. 8-11, it is sufficient to keep only those
interactions which generate potential terms (e.g. cosine
terms) of bosonic fields

Hint = −
∑
αβ

f̃σαβ
2

∑
σ

aR,†α,σa
L,†
β,σ̄a

L
β,σa

R
α,σ̄

+
∑
α6=β

∑
σ,σ′

(
c̃ραβ +

c̃σαβ
4

)
aR,†α,σa

L,†
α,σ′a

L
β,σ′a

R
β,σ

−
∑

(α,σ)6=(β,σ′)

c̃σαβ
2
aR,†α,σa

L,†
α,σ′a

L
β,σa

R
β,σ′ , (B16)

where from now on c̃σαβ etc. are to be understood as the
renormalized coupling constants. The notation σ̄ means
↓ (↑) for σ =↑ (σ =↓). A bosonization of these terms is
presented for each phase separately.

In addition, interactions can generate gradient terms
of bosons

H∇2 =
(vα + vβ)Cραβ

2

[
∇Θρ

α∇Θρ
β −∇Φρα∇Φρβ

]
+

(vα + vβ)Cσαβ
8

[
∇Φsα∇Φsβ −∇Θs

α∇Θs
β

]
(B17a)

with

Cρ,σαβ =

 cρ,σI,I fρ,σI,II fρ,σI,III

fρ,σI,II cρ,σII,II fρ,σII,III

fρ,σI,III fρ,σII,III cρ,σIII,III


αβ

. (B17b)

For the RG procedure it is useful to express the con-
tractions of fast fields in terms of a Luttinger parameter
matrix〈

Θρ,s
α Θρ,s

β

〉
fast

=
1

2π
ln(L/a∗)Kρ,σ

αβ (B18)〈
Φρ,sα Φρ,sβ

〉
fast

=
1

2π
ln(L/a∗)[(Kρ,σ)−1]αβ (B19)

where L is running length scale.

Kρ
αβ ' δαβ − 2Cραβ , (B20a)

Kσ
αβ ' δαβ + Cσαβ/2. (B20b)

d. Phases under consideration

We now investigate each of the four phases obtained
from the RG analysis.
a. C3S2 phase. The potential part of the bosonized

Hamiltonian in the C3S2 phase is

Hint ∼
1

(2πa∗)2
cσI,I cos(

√
8πΘI,s). (B21)

Since cσI,I < 0, the system locks into one of the minima√
2/πΘs

I ∈ Z and thus only two out of three spin modes
remain gapless. Comparing with Eqs. (B15), we read-

ily see that O
(I)
CDW and O

(I)
SS have algebraic correlations,

while SDW and TS correlations are massive. Fermions
near kII,III remain unaffected of the condensation of Θs

I .
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b. C2S1a phase. Using Eqs. (B3), Eq. (B16) be-
comes

Hint = −1

2

∑
α6=β

{∑
σ

f̃σαβa
R,†
α,σa

L,†
β,σ̄a

L
β,σa

R
α,σ̄

+
∑
σ,σ′

c̃σαβ a
R,†
α,σa

L,†
α,σ′a

L
β,σa

R
β,σ′

}
∼ − 1

(2πa∗)2

∑
α6=β

{
f̃σαβ cos[2

√
π(Φs−αβ + Θs+

αβ)]

+c̃σαβ cos(2
√
πΦρ−αβ) cos(2

√
πΦs−αβ)

−c̃σαβ cos(2
√
πΦρ−αβ) cos(2

√
πΘs+

αβ)
}
. (B22)

Here we have introduced Φρ±αβ = (Φρα±Φρβ)/
√

2 and anal-

ogous notations for all other channels. Since f̃σαβ → −∞
and c̃σαβ → +∞, there are two sets of solutions which

minimize the potential energy for α, β ∈ {II,III};α 6= β

Φρ−αβ/
√
π ∈ Z, Φs−αβ/

√
π ∈ Z, Θs+

αβ/
√
π ∈ Z + 1/2,

(B23a)

Φρ−αβ/
√
π ∈ Z + 1/2, Φs−αβ/

√
π ∈ Z + 1/2, Θs+

αβ/
√
π ∈ Z.
(B23b)

The low energy theory perturbing about any of the given
minima is the same for either solution. Fermions with
momenta close to kI remain unaffected. Only two charge
and one spin mode remain gapless, hence the notation
C2S1. Comparison with Eqs. (B15) demonstrates that

for any of the two solutions of (B23) the operator O
[II,III]
CDW

orders. Note that, in view of the locking of Φρ−αβ into a

minimum, the conjugate variable Θρ−
αβ is maximally un-

certain and thus O
[II,III]
SS and O

[II,III]
TSz

do not display long
range correlations in either case.

It is instructive to refermionize the interaction term
of excitations near Fermi points II, III in the basis of
fermions describing fluctuations in the relative charge,
relative spin and total spin sectors. Assuming vII = vIII

for simplicity, Eq. (B22) may be written as

Hint = −|f̃σII,III|[Ms−Ms+ −Mρ−Ms− +Ms+Mρ− ],
(B24)

where we introduce mass terms

Ma = aR,†a aLa + aL,†a aRa , with a = ρ−, s−, s+. (B25)

If we further perform a gauge transformation in the (s,+)
sector, aLs,+ → −aLs,+, Eq. (B24) corresponds to the in-
teraction term of an SO(6) ∼ SU(4) Gross-Neveu model.

c. C2S1b and C1S0 phases. Again, we keep only the
dominant coupling constants and exploit cραβ = cσαβ/4 for

α 6= β. Then

Hint = −
∑
α,σ

c̃σαα
2
aR,†α,σa

L,†
α,σ̄a

L
α,σa

R
α,σ̄

−
∑
α 6=β

∑
σ

c̃σαβ
2
aR,†α,σa

L,†
α,σ̄(aLβ,σa

R
β,σ̄ − aLβ,σ̄aRβ,σ)

∼ 1

(2πa∗)2

{
c̃σαα cos(

√
8πΘs

α)

+ 4
∑
α<β

c̃σαβ cos(
√

4πΦρ−αβ) cos(
√

2πΘs
α) cos(

√
2πΘs

β)
}
.

(B26)

We note that in the C2S1b phase, c̃σαβ → −∞ for α, β =
II,III. Thus the minimum of the potential is√

2/πΘII,s ∈ Z,
√

2/πΘIII,s ∈ Z, Φρ−II,III/
√
π ∈ Z.

(B27)
Thus the C2S1b phase has two gapless charge modes and
one gapless spin mode. It is, in essence, a spinful Lut-
tinger liquid near Fermi point kI and a superconductor
with equal gaps (c̃σII,II = c̃σIII,III) at Fermi points kII,III.
Again, we can refermionize the interaction term of the
C2S1b phase in the same channels as in the case of C2S1a.
At vII = vIII we obtain

Hint = −2|c̃II,II|[Ms+Ms− +Mρ−(Ms+ +Ms−)] (B28)

which represents an SO(6) Gross-Neveu model, albeit in
a different phase then in the case of C2S1a.

The C1S0 phase is characterized by c̃σαα → −∞,
c̃σII,III → −∞ and c̃σI,II → ∞, c̃σI,III → ∞. Therefore,
the minimum occurs at√

2/πΘα,s ∈ Z, Φρ−I,II/
√
π ∈ Z + 1/2, (B29)

Φρ−I,III/
√
π ∈ Z + 1/2, Φρ−II,III/

√
π ∈ Z. (B30)

Since Φρ−I,II = Φρ−I,III − Φρ−II,III there are two independent
constraints on bosons in the charge sector and three in-
dependent constraints on bosons in the spin sector, jus-
tifying the notation C1S0. This phase is a fully gapped
spin singlet s+−− intraband superconductor with the fol-
lowing products of gap functions: ∆I∆II < 0,∆I∆III <
0,∆II∆III > 0.

5. Unequal interorbital and intra-orbital repulsion

This appendix examines the effect of unequal inter and
intra-orbital repulsion, i.e. J̃ 6= 0 in Eqs. (11),(A10). We

note that at J̃ = J , the Hubbard-Kanamori interaction
takes the form

HU (j) =
U

2

∑
τ,γ,σ,
γ′,σ′

′
nτγσ(j)nτγ′σ′(j)

+ 2J
∑
τ

{[T (x)
τ (j)]2 + [T (y)

τ (j)]2}. (B31)
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J/U

J/J
~

0.2

0.6

0.4

0

0 0.4 0.8 1.2

FIG. 12. Summary of the integration of RG equations at fi-
nite J̃/J and U/v̄ = 5. In addition to the phases C3S2 (red
dots), C2S1a (light green squares), C2S1b (dark green dia-
monds), C1S0 (brown triangles) we find an additional phase
C2S1c (orange pentagons). For all of those phases the diver-
gence occurs at running scales yc < 100 (for C1S0 and C3S2
yc < 27) while in the extended critical region (blue stars), no
divergence occurs for any y ≤ 1000.

Here, T
(µ)
τ (j) = d†σ,τ τ̃µdσ,τ/2 is the orbital isosopin oper-

ator and τ̃µ are Pauli matrices in orbital space.

The integration of RG equations for general 0 ≤ J/U ≤
0.7 and 0 ≤ J̃/J < 1.2 reveals five phases and a rather
extended critical regime (see Fig. 12). In addition to the
four phases discussed in the main text there is an ex-
tended critical regime corresponding to the C3S3 QCP
of Fig. 3 where the numerical integration of RG (consis-
tently performed at U = 5v̄) does not reveal a divergence
for any y < 1000 (see Fig. 14). This corroborates the
finding summarized in Fig. 3 and highlights the impor-
tance of the critical phase.

A typical RG flow for the phase C2S1c is shown in
Fig. 13. Among the data points of Fig. 12 which fall into
the C2S1c phase, J̃ = 1.2J, J = 0.5U has the highest
Tc ∼ 0.1mK for Λ = 1eV at U/v̄ = 5. This phase is
characterized by cσI,I ' cσI,I ' −4cρI,II ' −cσI,II → −∞
with cρI,I ' cρII,II = −fρI,II → −∞. We now can exploit

Eq. (B26) for α, β ∈ {I,II}, revealing that the minimum
given by

√
2/πΘI,s ∈ Z,

√
2/πΘII,s ∈ Z, Φρ−I,II/

√
π ∈ Z + 1/2.

(B32)
describes a two band superconductor with relative phase
π.

Appendix C: Umklapp scattering

In this appendix we provide details on umklapp scat-
tering as a discussed in Sec. IV.

FIG. 13. Numerical integration of RG equations for starting
values determined by U/v̄ = 5 and J/U = 0.5, J̃ = 1.2J . In
this case, the system flows to the C2S1c phase.

FIG. 14. Numerical integration of RG equations for starting
values determined by U/v̄ = 5 and J/U = 0.3 and J̃ = 0.4J .
In this case, the system remains critical for any y ≤ 1000.

1. Bosoniziation of umklapp terms

We consider

Hu = −Gu(2πa)
[( III∏

α=I

aR,†α,σ′αa
L
α,σα

)
δ{σ′},{σ}

]
+H.c..

(C1)
The symbol δ{σ′},{σ} implies equality of the two sets
{σ′Iσ′IIσ′III} and {σIσIIσIII} of spin indices, which reflects
the overall spin conservation. Note that the spin is not
conserved within any given pair of Fermi points, i.e. in
general σα 6= σ′α (see Fig. 5). A summation over all
permutations of spin indices which preserve the overall
spin conservation is implied. For this section we there-
fore concentrate on the term which is fully symmetric
under exchange of spin indices, more generic terms are
discussed afterwards.

Bosonization of Eq. (C1) leads to

Hu = gue
−i
√

2π
∑III
α=I Θρα

×
III∏
α=I

[
cos(
√

2πΘs
α)− i sin(

√
2πΦsα)

]
+H.c..(C2)
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In principle, gu = i2Gu/(πa)2 can have both real and
imaginary parts. This leads to an overall of 16 umklapp
terms, all of which may have different bare values in the
case of spin dependent Gu. In addition, under RG, in-
terband interaction generates additional terms.

2. Analysis of umklapp scattering

We first analyze umklapp scattering in the Luttinger
phase prior to an instability, proveeding to each of the
phases obtained above. Employing fermionic diagrams,
Fig. 5, illustrates that the three-body umklapp scattering
can not renormalize two-body interactions at weak cou-
pling in the one-loop approximation. Therefore we can
determine the scaling dimension du of the most dominant
umklapp process without considering its backreaction on
the other coupling constants.

a. Umklapp scattering in the Luttinger liquid phase
When Cσαβ has predominantly positive entries and Kσ has
eigenvalues large than unity, the umklapp terms with the
largest dimension involve Φsα, so we disregard all terms

with Θs
α. We introduce Θρ

tot = [
∑
α Θρ

α]/
√

3

Hu = cos(
√

6πΘρ
tot)×

×
[
gsss sin(

√
2πΦsI ) sin(

√
2πΦsII) sin(

√
2πΦsIII)

+ gscc sin(
√

2πΦsI ) cos(
√

2πΦsII) cos(
√

2πΦsIII)

+ gcsc cos(
√

2πΦsI ) sin(
√

2πΦsII) cos(
√

2πΦsIII)

+ gccs cos(
√

2πΦsI ) cos(
√

2πΦsII) sin(
√

2πΦsIII)
]
.

(C3)

By contrast, when Cσαβ has (predominantly) negative
eigenvalues we disregard terms with Φsα and keep

Hũ = cos(
√

6πΘρ
tot)×

×
[
g̃ccc cos(

√
2πΘs

I ) cos(
√

2πΘs
II) cos(

√
2πΘs

III)

+ g̃css cos(
√

2πΘs
I ) sin(

√
2πΘs

II) sin(
√

2πΘs
III)

+ g̃scs sin(
√

2πΘs
I ) cos(

√
2πΘs

II) sin(
√

2πΘs
III)

+ g̃ssc sin(
√

2πΘs
I ) sin(

√
2πΘs

II) cos(
√

2πΘs
III)
]
.

(C4)

In both cases, terms with cos(
√

6πΘρ
tot)→ sin(

√
6πΘρ

tot)
may also exist. They have the same scaling dimension as
the cosine terms shown here.

The tree level RG equations are

 gsss
gssc
gcsc
gccs


.

=

2−
3Kρ

tot +
∑
α(Kσ,−1)αα
2

+


0 (Kσ,−1)II,III (Kσ,−1)I,III (Kσ,−1)I,II

(Kσ,−1)II,III 0 −(Kσ,−1)I,II −(Kσ,−1)I,III

(Kσ,−1)I,III −(Kσ,−1)I,II 0 −(Kσ,−1)II,III

(Kσ,−1)I,II −(Kσ,−1)I,III −(Kσ,−1)II,III 0



 gsss
gssc
gcsc
gccs


(C5) g̃ccc

g̃ccs
g̃scs
g̃ssc


.

=

2−
3Kρ

tot +
∑
α(Kσ)αα

2
+

 0 (Kσ)II,III (Kσ)I,III (Kσ)I,II

(Kσ)II,III 0 −(Kσ)I,II −(Kσ)I,III

(Kσ)I,III −(Kσ)I,II 0 −(Kσ)II,III

(Kσ)I,II −(Kσ)I,III −(Kσ)II,III 0



 g̃ccc
g̃ccs
g̃scs
g̃ssc

 (C6)

At the bare level interections in the spin sector are
weak and repulsive Cσαβ > 0, renormalize downwards as

the QCP is approached (see Fig. 3). The Luttinger pa-
rameter in the total charge sector is

Kρ
tot =

∑
αβK

ρ
αβ

3
. (C7)

The largest scaling dimension, which occurs in Eq. (C5),
is typically negative and as [Kσ]αβ → δαβ from above,

becomes [1−3Kρ
tot]/2. Thus, a three band LL with weak

interactions does not display Mott localization.

b. Umklapp scattering in the C3S2 phase. In the
C3S2 phase, Θs

I condenses, while the Luttinger parame-
ter in the sector of channels II, III remains positive and
approximately cσII,II = cσIII,III = fσII,III � 1 reflecting the
spin symmetry being enhanced at the interband level.
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The dominant umklapp terms are

Hu = cos(
√

6πΘρ
tot)×

×
[
gcc cos(

√
2πΦsII) cos(

√
2πΦsIII)

+ gss sin(
√

2πΦsII) sin(
√

2πΦsIII). (C8)

In this phase, there are three other pairs of operators
which have the same RG equations, namely

(
gcc
gss

).
=

[
2−

3Kρ
tot +

∑III
α,II(K

σ,−1)αα

2

+

(
0 (Kσ,−1)II,III

(Kσ,−1)II,III 0

)](
gcc
gss

)
(C9)

The dominant operator is obtained for gcc = gss and has

scaling dimension 2− 3Kρ
tot+

∑III
α,II(K

σ,−1)αα−2(Kσ,−1)II,III

2 '
1− 3Kρ

tot

2 . Therefore, the Mott transition occurs at Ktot =
2/3 which requires rather stong interactions.

c. Umklapp scattering and the phase C2S1a. In this
phase the spin sector of channels II, III is fully gapped
and 0 < cσI,I � v̄. We therefore concentrate on an umk-
lapp term for which there is spin conservation within
Fermi surface I, i.e.

Hu = g cos(
√

6πΘρ
tot) cos(

√
2πΘs

I ). (C10)

and the analogous term obtained by cos(
√

6πΘρ
tot) →

sin(
√

6πΘρ
tot). The scaling dimention of these terms is

2− 3Kρ
tot/2−Kσ

I,I/2 and thus the transition occurs at

Kρ
tot =

2

3

[
2−

Kσ
I,I

2

]
≈ 1. (C11)

We observe that the ordering in the spin sector promotes
a Mott transition in its vicinity and we expect Kρ

tot <
1. When the Mott transition occurs, the total charge
mode Θρ

tot freezes, corresponding to an electrical charge
insulator. At the same time Θs

I freezes. Taken together,
the phase phase C2S1a becomes a phase C1S0a.

The long-range correlations of O[II,III]
CDW of the C2S1a

phase survive the Mott transition and additional long-

range correlations of OI,I
CDW appear.

d. Umklapp scattering and the phase C2S1b. The
umklapp terms of relevance for the phase C2S1b are the
also given by Eq. (C10) and the transition to a phase
C1S0b again occurs at Kρ

tot ≈ 1. All superconducting
correlations are killed by the ordering of Θρ

tot, the only

long range correlations occur for OI,I
CDW.

e. Umklapp scattering and the phase C1S0. In the
phase C1S0 all spin modes are frozen and only the pair

Θρ
tot,Φ

ρ
tot displays long-range correlations. The umklapp

term is

Hu = g cos(
√

6πΘρ
tot), (C12)

10 20 30 40
Ln(L/a)

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5
du

FIG. 15. Scaling dimension du, see Eq. (C14), for the umk-
lapp operator given in Eq. (C13) as a function of RG-time.
Here, J/U = 0.6 and U = 1.5v̄ were assumed and we used
Eqs. (B20) for the evaluation of the Luttinger parameters.
Clearly, the umklapp operator becomes relevant before the
transition to the superconducting state at ln(L/ã) = 48.

which has dimension 2− 3Kρ
tot/2 and thus appears to be

relevant for Kρ
tot < 4/3, i.e. even for attractive inter-

actions. This seems physically inconsistent and a more
appropriate treatment of the umklapp scattering for the
phase C1S0 follows.

In the present case where Cσαα → −∞ for all three di-
agonal matrix elements, the Mott transition at half fill-
ing occurs prior to the instability to the fully gapped
superconductor. Indeed, as we see from Eq. (C6), the
dominant operator has the form

Hu = g cos(
√

6πΘρ
tot)×

×
[

cos(
√

2πΘs
I ) cos(

√
2πΘs

II) cos(
√

2πΘs
III)

− cos(
√

2πΘs
I ) sin(

√
2πΘs

II) sin(
√

2πΘs
III)

+ sin(
√

2πΘs
I ) cos(

√
2πΘs

II) sin(
√

2πΘs
III)

+ sin(
√

2πΘs
I ) sin(

√
2πΘs

II) cos(
√

2πΘs
III)
]

= g cos(
√

6πΘρ
tot) cos(

√
6πΘs

rel) (C13)

with
√

3Θs
rel = Θs

I −Θs
II−Θs

III. The scaling dimension of
this operator is

du = 2− 3
Kρ

tot +Kσ
rel

2
, (C14)

where

Kσ
rel =

∑
αK

σ
αα + 2Kσ

II,III − 2
∑
α=II,IIIK

σ
I,α

3
. (C15)

When the operator Eq. (C13) orders prior to the C1S0
instability, an insulating C2S2 emerges, see Fig. 15.
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