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We study quantum oscillations for a system of fermionic and bosonic dimers and compare the
results to those experimentally observed in the cuprate superconductors in their underdoped regime.
We argue that the charge carriers obey the Onsager quantization condition and quantum oscillations
take on a Lifshitz-Kosevich form. We obtain the effective mass and find good qualitative agreement
with experiments if we tune the model to the point where the observed mass divergence at optimum
doping is associated to a van Hove singularity at which four free-dimer Fermi pockets touch pairwise
in the interior of the Brillouin zone. The same van Hove singularity leads to a maximum in the
d-wave superconducting pairing amplitude when anti-ferromagnetic interactions are included. Our
combined results therefore suggest that a quantum critical point separating the underdoped and
overdoped regimes is marked by the location of the van Hove saddle point in the fermionic dimer
dispersion.

I. INTRODUCTION

Recent experiments suggest that the pseudogap phase
of the high temperature cuprate superconductors can
be described in terms of a vanilla Fermi liquid with an
anomalously low quasiparticle density1–4. In particular,
the observation of quantum oscillations in underdoped
cuprates4–11 with frequency between 500 and 600 T in-
dicates the existence of a Fermi surface with area ∼ p/8
(where p is the doping). What is most convincing evi-
dence of nearly free quasiparticles obeying Fermi-Dirac
statistics is the striking resemblance between the am-
plitude of the oscillations as a function of temperature
and that predicted by the Lifshitz-Kosevich formula4

A(T )/A(0) = πη/sinh(πη), where η = 2πkBTm
∗/~eB

and the effective mass m∗ is the only parameter used to
fit experiments over a wide range of temperatures. It is
therefore imperative that any candidate model for the
cuprates be capable of explaining these features.

A model of fermionic and bosonic (FB) quantum
dimers has recently been proposed as a candidate for
describing the physics of the underdoped cuprates12–17.
The FB dimer model contains spinless bosonic dimers,
representing a valence bond between two neighboring
spins, and spin-1/2 fermionic dimers, representing a
hole delocalized between two sites. By condensing the
bosonic dimers, one obtains a tractable mean field effec-
tive Hamiltonian for the fermionic dimers that captures
well the emergence of d-wave superconductivity when the
Fermi surface of the dimers exhibits appropriate pock-
ets15.

In this paper we study quantum oscillations in the FB
quantum dimer model, and compare our results with the
behavior experimentally observed in the cuprate super-
conductors in the underdoped regime. We remark that,
although we concentrate on the FB dimer model, the re-
sults here presented should apply more generally to sys-
tems with degrees of freedom sitting on the bonds, for

Figure 1. (color online) Inverse quasiparticle mass (circles, left
axis) and d-wave superconducting gap (squares, right axis)
as a function of the doping p near the van Hove singularity
at pc (vertical dashed line), for T2/T1 = −0.8, T3/T1 = 0.5
and J/T1 = 1.0. The thin line is the perturbative analytical
solution for the inverse mass near the van Hove singularity,
as discussed in the text. The data synthesizes our theoreti-
cal proposal of a quantum critical point near optimum dop-
ing, separating two regimes where the Fermi surface for the
fermionic dimers changes between the two topologies shown
in blue and red. The critical point is marked by the van Hove
singularity, with Fermi surface topology depicted in green.

instance multiorbital models of the cuprates that include
the oxygen sites18.

In a regime where the magnetic length and the size of
the quasiclassical wavepacket is much larger than the lat-
tice spacing, we argue that the fermionic dimers behave
as free quasiparticles and undergo semiclassical oscilla-
tions under the effect of a magnetic field. These oscil-
lations obey the Onsager quantization condition and the
standard Lifshitz-Kosevich form, dictated by the minimal
coupling of the gauge field to the quasiparticles.
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We compute the effective mass of the quasiparticles
and find that it is in good agreement with experiments if
we posit that the observed divergence of the mass at opti-
mum doping is associated to a van Hove singularity where
the dimer pockets merge in the bulk of the Brillouin zone.
Consistently, we find that the superconducting gap and
critical temperature are maximal at the value of doping
where the Fermi surface topology changes, due to the
enhanced density of states at the singularity.

Fig. 1 presents results for the effective mass and super-
conducting order parameter as function of doping. This
data summarizes our proposal of a quantum critical point
near optimum doping, separating two regimes where the
Fermi surfaces for the fermionic dimers have different
topology, as depicted in the figure. The quantum crit-
ical point corresponds to a van Hove singularity inside
the Brillouin zone, not at its boundary.

Together with earlier work12–17, our results make a
substantial contribution to highlight the suggestive sim-
ilarity between the behavior of the FB dimer model and
the physics of underdoped cuprates near the supercon-
ducting dome. This is most remarkable given the relative
simplicity of the effective dimer description. Whereas the
FB dimer model comes with a number of free parameters
that are difficult to fix from first principles, our work im-
poses strong limitations on the range of these parameters
where the behavior of the model compares well with ex-
periments. This brings us within reach of critically test-
ing the validity and limits of this model to describe the
behavior of underdoped cuprates.

II. THE EFFECTIVE MODEL

In our study of quantum oscillations, we consider the
mean field description presented in Ref. 15 of the FB
dimer model introduced in Ref. 12 to describe the pseu-
dogap phase of the underdoped cuprates. Substantial
progress in understanding the fermionic component of
the theory can be made using the mean field Hamil-
tonian obtained by condensing bosonic dimer bilinears,
which renormalize the effective hopping amplitudes for
the remaining fermionic dimers (illustrated pictorially in
Fig. 2). The approach is phenomenological, in that we
do not compute these amplitudes microscopically, but in-
stead we treat them as free fitting parameters T1,2,3.

The fermionic mean field Hamiltonian reads15:

HFB̄ =− T1

∑
i

∑
σ

(
c†i+ŷ,x̂,σci,x̂,σ + c†i+x̂,ŷ,σci,ŷ,σ

)
+ H.c.

− T2

∑
i

∑
σ

∑
v∈V2

c†i+v,ŷ,σci,x̂,σ + H.c.

− T3

∑
i

∑
σ

∑
v∈V3

c†i+v,ŷ,σci,x̂,σ + H.c.

− µ
∑
i

∑
σ

(
c†i,x̂,σci,x̂,σ + c†i,ŷ,σci,ŷ,σ

)
. (1)

The operator ci,η,σ annihilates a fermion with spin σ on

Figure 2. (color online) The FB quantum dimer model of
Ref. 12 contains dimers on the bonds of the square lat-
tice. Condensing the bosonic dimers leads to a theory of free
fermionic dimers, Eq. (1), with effective hoppings T1,2,3 that
encode both the bare coupling constants and the expecta-
tion values of bilinears in the bosonic dimers, as presented in
Ref. 15. The lattice of bonds contains two sublattices, corre-
sponding to the vertical and horizontal bonds. The hopping
amplitudes T2,3 moves dimers between the two sublattices,
while hopping amplitude T1 breaks chiral symmetry.

the bond (i, i+ η), which is horizontal for η = x̂ or verti-
cal for η = ŷ. Notice that T1 hops the fermionic dimers
between parallel bonds, while T2,3 flip the dimers from
horizontal to vertical and vice versa. We define (in mo-
mentum space) the spinor that encodes the horizontal

and vertical flavors as ψ†~k,σ
= (c†~k,ŷ,σ

, c†~k,x̂,σ
) and15:

HFB̄ =
∑
~k,σ

ψ†~k,σ

(
ξx~k γ~k
γ∗~k ξy~k

)
ψ~k,σ , (2)

where:

ξx,y~k
= −µ− 2T1 cos kx,y

γ~k = 4 ei(ky−kx)/2

(
T2 cos

kx
2

cos
ky
2

+T3 cos
3kx
2

cos
ky
2

+ T3 cos
kx
2

cos
3ky
2

)
.

The eigenvalues are given by E±,~k = ξ~k ±
√
η2
~k

+ |γ~k|2,

where ξ~k = (ξx~k + ξy~k
)/2 and η~k = (ξx~k − ξ

y
~k

)/2. The lower

band E−,~k will be partially occupied upon hole doping,

with concentration p.
We shall rescale the Hamiltonian and study HFB̄/|T1|,

i.e., work in energy units of |T1| = 1. We proceed with
our investigation of the model by analyzing its prop-
erties as a function of the dimensionless ratios T2/|T1|
and T3/|T1|, as well as the doping p (controlled by the
chemical potential µ). The essence of our approach is to
determine the space of parameters of the system where
it matches the phenomenology of the cuprates. For in-
stance, in Ref. 15 it was found that the region in the two
dimensional parameter space exhibiting four small Fermi
pockets largely overlapped with the region where d-wave
superconductivity existed, when the anti-ferromagnetic
coupling J of the t − J model was included. We note
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that the state with the lower band fully occupied cor-
responds to an unphysical doping p = 2; however, the
physics discussed in this paper pertains to sensibly small
values of the hole doping p where one can expect the
dimer representation to be valid.

III. QUANTUM OSCILLATIONS

Oscillations of magnetoresistence reflect how a system
responds to an applied magnetic field, which always cou-
ples minimally to the physical constituents of the system,
i.e., electrons. The fermionic dimers are not the elemen-
tary constituents; they are emerging particles, and there-
fore the case for quantum oscillations requires more care.

The Hamiltonian Eq. (1) is obtained from a mean field
approximation of an interacting FB dimer model, which
in turn is an effective projection of a microscopic system,
such as the Hubbard model, onto a subspace of dimers.
Thus we are faced with the problem of logically justifying
that the mean field Hamiltonian does capture quantum
oscillations of the underlying physical system.

The justification for minimally coupling the dimers to
the external magnetic field hinges on the fact that we
restrict our analysis to the case when the dimer size
(set by the lattice spacing) is much smaller than both
the magnetic length and the size of the wavepacket. In
other words, in this regime one cannot resolve the non-
elementary nature of the fermionic dimers. Hence, quan-
tum oscillations in the FB dimer model are described by
those of charged quasiparticles with dynamics governed

by Eq. (1) upon shifting ~k by the gauge potential. In this
regime, it is therefore reasonable to expect the quantum
oscillations to satisfy the Onsager quantization condition
as well as the Lifshitz-Kosevich formula.

We note that the conventional expectation for the
charge of fermionic dimers in the FB model is +e12. This
sign is consistent with Hall coefficient measurements at
high temperature. However, the data show a change of
sign of the carriers at low temperatures3,19. Understand-
ing this phenomenon is beyond the scope of the present
paper, but an explanation may be possible within the FB
dimer model if one accounts for phase factors in the wave
function of the bosonic dimers in presence of sufficiently
large magnetic fields.

One of the salient features of the mean field model
governed by Eq. (1) is a region in parameter space
T1,2,3 where the dispersion exhibits pockets near the
(±π/2,±π/2) points. The period of oscillations depends
on the size of the Fermi surfaces, with each disconnected
surface contributing its own frequency. The presence of
4 identical Fermi pockets of size p/8 (the factor of 2 due
to spin) is consistent with the experimental data4,9,10 in
the doping range of 10-16%, with the p/8 result being a
nearly ideal intercept at a doping of ∼ 13%. The slope
of the p/8 curve is higher then the slope of the exper-
imental data with the frequency of oscillations between
500-600 Tesla in the doping range of 10-16%; however the

kx

ky

E

kx

ky

p < pc p = pc p > pc

Figure 3. (color online) Dispersion for the effective model of
fermionic dimers for T2/T1 = −0.8 and T3/T1 = 0.5. Top
panel: constant energy surfaces, with E = 0 measured from
the bottom of the band near (±π/2,±π/2). Bottom panel:
Fermi surfaces corresponding to doping levels slightly below,
at, and slightly above optimum doping pc, where saddle points
in the energy dispersion occur near (0,±π/2) and (±π/2, 0).

discrepancy is small (see Appendix B).

Experimentally, the oscillations become less well de-
fined as one approaches optimal doping. In addition, ex-
perimental measurements show that the effective quasi-
particle mass increases as the density increases towards
the optimal doping value, with the extrapolation suggest-
ing a divergence. This is consistent with the presence of a
Fermi surface singularity, where quantum oscillations are
suppressed because of the corresponding enhancement in
the density of states and the residual interactions, not
captured by mean field theory, lead to scattering and de-
parture from the Lifshitz-Kosevich formula.

Here we explore the possibility that this suppression of
quantum oscillations near optimal doping corresponds to
a new type of van Hove singularity for the cuprates where
the four pockets merge in the bulk of the Brillouin zone,
morphing into two Fermi surfaces with one sheathing the
other (as illustrated in the bottom panel of Fig. 3).
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Figure 4. (color online) s-wave (blue) vs d-wave (green) phase
diagram of the mean field fermionic dimer model in presence
of antiferromagnetic interaction J/T1 = 50, where we have
chosen T1 > 0. Highlighted in yellow is the locus of the points
in the T2/T1, T3/T1 plane where the van Hove singularity oc-
curs for p ∈ (0.18, 0.22). Notice the small but finite overlap
with the d-wave region, near T2/T1 ' ∓0.8 and T3/T1 ' ±0.5.

Notice that this singularity is different in nature with
respect to the ones previously studied in the context of
underdoped cuprates18 in two main aspects: it does not
arise from the competition with an ordering instability
(e.g., CDW), and it takes place away from the Brillouin
zone boundary.

For our proposed scenario to occur, we ought to find a
region in parameter space of the mean field model where:
(i) the dispersion exhibits four pockets; (ii) the targeted
van Hove singularity occurs near p = 0.2 (say within
±0.02); and (iii) the leading superconducting instability
in presence of interactions is d-wave.

We find that the model is able to satisfy the conditions
(i) and (ii) in a small sliver in the T2/T1, T3/T1 plane (see
Fig. 4), only if we choose the sign of T1 to be positive.

In order to assess whether any portion of the identi-
fied sliver is consistent with the model exhibiting d-wave
superconductivity, we consider the effect of the antiferro-
magnetic interaction J of the t−J model from which the
FB model descends, and follow the procedure in Ref. 15
to compare s-wave vs d-wave free energies. The choice
of value of the ratio J/T1 of interaction strength J to
the scale T1 is non trivial, since in our phenomenological
approach we do not determine T1 from first principles.
(The value of T1 can be much smaller than the value of t
because of the suppression coming from the condensation
of the bosonic dimers.) However, we find – as it is rea-
sonable to expect – that the phase boundaries between
s-wave and d-wave as a function of system parameters
become independent of J when J/T1 � 1, and the lat-
ter in general favors d-wave superconductivity. For this
reason we opted to work in the large J/T1 limit and thus
obtain an upper bound to the portion of parameter space

where (i), (ii) and (iii) are satisfied. This is illustrated in
Fig. 4 by the overlap between the sliver and the d-wave
portion of the phase diagram (shown for J = 50 in units
of T1). What we find is a narrow but non-vanishing re-
gion in parameter space, located around T2/T1 = ∓0.8,
T3/T1 = ±0.5. The dispersion of the system at these
points is shown in the top panel in Fig. 3.

When a van Hove singularity occurs in a 2D fermionic
systems, the effective mass of the quasiparticle excita-
tions diverges logarithmically as

m∗ ∼ a log
Λ

|ε|
, (3)

where ε is the energy from the Van-Hove singularity,
Λ is the bandwidth, and a has dimensions of mass.
The inverse mass as a function of p is also shown for
T2/T1 = −0.8 and T3/T1 = 0.5 in Fig. 1. Near the van
Hove singularity, it is possible to obtain a perturbative
analytical expression that relates the inverse mass to the
doping,

|p− pc| = b

(
m∗

a
+ 1

)
e−m

∗/a , (4)

where a ' 0.25 and b ' 0.38 are found most conve-
niently by fitting to the numerical data (thin line near pc
in Fig. 1).

We further checked that d-wave is the leading super-
conducting instability for these values of T2/T1, T3/T1,
for a range of values of J/T1 (see the Supplementary On-
line Information). We find that the superconducting gap
∆ scales as ∆ ∼ 0.02J . In Fig. 1 we show the value of
the superconducting gap for J = 1.0 in units of T1. This
choice takes into account that the ratio J/t ∼ 0.2 − 0.4,
and that T1/t is similarly suppressed with respect to t.

As discussed above, and illustrated in Fig. 3, the van
Hove singularity considered here separates a region with
4 identical Fermi pockets of size p/8 from a region with
two (much larger) Fermi surfaces, with one surface encas-
ing the other. We therefore expect two distinct features
as the system crosses the singularity: (a) a discontinuous
jump in the period of oscillations; and (b) the appearance
of two (much smaller) distinct periods for p > pc. How-
ever, it may well happen that the experimental validity
of the FB dimer model does not extend to the overdoped
regime and breaks down at pc. Further work beyond the
scope of the present paper is needed to ascertain this pos-
sibility and investigate alternative scenarios as p is tuned
across the singularity.

IV. CONCLUSIONS

In this work we studied quantum oscillations in a
FB dimer model for high temperature superconductors,
within a mean field approximation. We argued that our
system satisfies Onsager quantization and the Lifshitz-
Kosevich formula. We studied the effective mass for
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quantum oscillations and found that it diverges at a van
Hove singularity where four Fermi pockets merge pair-
wise at a critical doping at four different points in the
Brillouin zone. The location of the singularity depends
on the effective fermionic dimer hopping parameters, and
we narrowed down the range of such parameters for the
model to contain pockets in the underdoped regime, dis-
play d-wave superconductivity, and have the singularity
near optimal doping p ∼ 0.2.

We find that we can match rather well the experimen-
tal quantum oscillation behavior in the cuprates. This
is remarkable given the simplicity of the effective dimer
model. It is furthermore enticing that the agreement oc-
curs for a relatively narrow range in parameter space; our
results bring us closer to propose a comparison of the be-
havior of the mean field dimer model with experiments
that will critically ascertain its limits of validity.

One of the predictions we make is that across the
van Hove singularity the quantum oscillation frequency
jumps discontinuously to much larger values and two pe-
riods appear. The current state-of-the-art high-field ca-
pability does not allow one to study quantum oscillations
near optimum doping in the cuprates to verify this pre-
diction. However, it may well be within range of near
future improvements in the experimental technique.

The enhanced density of states at the van Hove sin-
gularity consistently coincides with a maximum in the
superconducting gap at the value of doping correspond-
ing to that where the Fermi surface topology changes.
This result supports a theoretical proposal of a quantum
critical point near optimum doping associated with a van
Hove singularity where four Fermi pockets merge inside
the Brillouin zone (not at its boundary). Fig. 1 high-
lights our proposed scenario. We expect this finding to
have observable consequences in the quantum critical re-
gion, for instance on the temperature dependence of the
resistivity. Our results thus give a concrete motivation
to study quantum criticality at a van Hove singularity.

Acknowledgements. We are very grateful to Nigel
Cooper for many useful discussions that helped us shape
this project and understand the nature of quantum
oscillations in the fermion boson dimer model. This
work was supported, in part, by the Engineering and
Physical Sciences Research Council (EPSRC) Grant No.
EP/M007065/1 (C.Ca. and G.G.), and by DOE Grant
No. DE-FG02- 06ER46316 (C.Ch.). Statement of com-
pliance with the EPSRC policy framework on research
data: this publication reports theoretical work that does
not require supporting research data.

Appendix A: Superconducting gap and inverse mass

In Fig. 5 we verify that the d-wave superconducting
instability is the leading instability for T2/T1 = −0.8
and T3/T1 = 0.5, for a range of values of the interaction
J .
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Figure 5. (color online) Comparison of s-wave (blue) vs
d-wave (red) free energies as a function of the gap ∆ for
T2/T1 = −0.8 and T3/T1 = 0.5, for J/T1 = 1.5, 2.5, 3.5, 4.5
(top to bottom pairs of curves). The value of the chemical
potential was chosen near the van Hove saddle point. An ar-
tificial offset has been introduced (with respect to the bottom
pair of curves) for visualization purposes. Without offset, all
the curves coincide at ∆ = 0. In all cases (although it is dif-
ficult to see for small values of J in the figure), the minimum
of the d-wave free energy occurs at a finite value of ∆ and is
lower than the minimum of the s-wave free energy.

The mean field dimer model ceases to be a good repre-
sentation of the original FB dimer model, and even more
so of the underlying electronic system, when the den-
sity of fermionic dimers p increases. With this caveat in
mind, we show for completeness in Fig. 6 the behavior
of the inverse mass of the mean field dimer model over a
larger interval in p. Further van Hove singularities occur
for p > 0.8 (not shown). In Fig. 7 we then show the
behavior of the d-wave gap on the broader range of p,
for different values of J . We note that larger values of J
tend to mix the small p behavior with the large p behav-
ior of the model (namely, other van Hove singularities for
p > 0.8) and therefore they ought to be considered with
care.
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Figure 6. Inverse quasiparticle mass for p ∈ (0, 0.8) at
T2/T1 = −0.8 and T3/T1 = 0.5. The vertical dotted line
indicates the position of the van Hove singularity considered
in the main text. (These are the same data shown in Fig. 1
of the main text for a narrower range of doping.)
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Figure 7. (color online) d-wave gap ∆/T1 for T2/T1 = −0.8,
T3/T1 = 0.5 and J/T1 = 1.0, 1.5, 2.5, 3.5, 4.5 (red, blue, green,
magenta, cyan). The vertical dashed line indicates the loca-
tion of the van Hove singularity.

From Fig. 7 we observe that the dependence of the
maximum value of ∆(p)/T1 on the coupling strength
J/T1 is approximately linear, following the relation ∆ ∼
0.02J − 0.01 reported in the main text.

Appendix B: Frequency of the oscillations

If we assume a Fermi surface of area p/8 and a lattice
constant of 3.8 Å, we find that the frequency of oscilla-
tions F (measured in Tesla) is related to the doping p in
the cuprates as:

F = 3.58 · 103 · p . (B1)

According to this relation, a typical frequency of
530 Tesla corresponds to p = 0.148. Eq. (B1) is com-

0.10 0.14

600

400
F

p0.060.02

200

Figure 8. Frequency F of the quantum oscillations (in Tesla)
as a function of doping p from two independent experimental
groups (Ref. 9 in red and Ref. 10 in black). The black solid
line is Eq. (B1).

pared to experimental quantum oscillations data from
Ramshaw et al.10 (red dots)and from Singleton (black
triangles) et al.9 in Fig. 8.
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O. Cyr-Choinière, J. Chang, Y. J. Jo, L. Balicas, R. Liang,
D. A. Bonn, W. N. Hardy, C. Proust, and L. Taillefer,
Phys. Rev. B 83, 054506 (2011).


