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Non-reciprocal spin wave can facilitate the realization of spin wave logic devices. It has been
demonstrated that the non-reciprocity can emerge when an external magnetic field is applied to chi-
ral magnets whose spin structures depend crucially on an asymmetric exchange interaction, that is,
the Dzyaloshinskii-Moriya interaction (DMI). Here we demonstrate that the non-reciprocity can arise
even without the DMI. We demonstrate this idea for the chiral antiferromagnet Ba2NbFe3Si2O14

whose DMI is very small and chiral spin structure arises mainly from the competition between sym-
metric exchange interactions. We show that when an external magnetic field is applied, asymmetric
energy gap shift occurs and the spin wave becomes non-reciprocal from the competition between
symmetric exchange interactions and the external magnetic field.

I. INTRODUCTION

In many physical systems, waves propagating in oppo-
site directions share the same characteristics. In certain
special systems, on the other other hand, waves propa-
gating in opposite directions may exhibit different char-
acteristics. For instance, waves with wave vector ±k may
have different frequencies. Such non-reciprocity may en-
dow functionalities which are difficult to realize in recip-
rocal systems. In particular, it was suggested1,2 that spin
wave non-reciprocity can facilitate the realization of spin
wave logic devices, such as a spin current diode. For the
spin wave non-reciprocity to emerge in chiral magnets,
certain symmetries should be broken. In case of the chi-
ral magnets depicted in Fig. 1, their spin Hamiltonians
may be invariant under the time-reversal operation T 3,
which enforces the spin wave dispersion relation to be
reciprocal, E(k) = E(−k). Thus the time-reversal sym-
metry should be broken by some means to induce the
non-reciprocity.

Recently, the spin wave non-reciprocity in chiral mag-
nets has been studied. The experimental results in chiral
ferromagnets Cu2OSeO3

4, MnSi5, FeGe and Co-Zn-Mn
alloys6 indicate that the non-reciprocity arises in these
noncentrosymmetric systems when an external magnetic
field is applied. When the field direction is reversed, the
sign of the non-reciprocity is also reversed. In Cu2OSeO3,
it was demonstrated4 that the sign of non-reciprocity de-
pends not only on the field direction but also on the
sign of crystal chirality. Non-reciprocal spin wave dis-
persion relation has been reported for chiral antiferro-
magnet α-Cu2V2O7

7 as well, for which, similar to chi-
ral ferromagnets, the breakings of the time reversal and
the spatial inversion symmetries are important. We re-
mark that in these examples4–7, the very existence of the
chiral magnetism relies crucially on the Dzyaloshinskii-
Moriya interaction (DMI)8. Considering that the DMI
itself requires some symmetries to be broken, it is natu-
ral in some sense to expect the spin wave dispersions to

FIG. 1. Schematic illustration of helical chiral magnet. The
spin wave propagates along the c axis (gray arrows), and or-
ange arrows are time-reversal counterparts of yellow ones.

be non-reciprocal in these systems.

In this paper, we examine theoretically the spin wave
dispersion in a chiral antiferromagnet Ba2NbFe3Si2O14

(BNFS) whose spin configuration forms the triangular-
helical chiral magnetic order [Fig. 2(b)]. This system
differs from the aforementioned chiral (anti)ferromagnets
in that its chiral magnetic structure arises from the com-
petition of symmetric exchange interactions3 instead of
the DMI. We demonstrate that even without the DMI,
the spin wave dispersion along the c-axis of BNFS be-
comes non-reciprocal and exhibits asymmetric energy
shift when an external magnetic field is applied along
the c-axis (parallel to k). In contrast, in the chiral anti-
ferromagnet α-Cu2V2O7

7 whose spin configuration relies
crucially on the DMI, the asymmetric energy shift ap-
pears when an external magnetic field is applied and is
perpendicular to k. We remark that in view of Ref.2,
which examines possible non-reciprocity based on sym-
metry considerations (or symmetry-operational equiva-
lence), the non-reciprocal spin waves in BNFS (our work)
and α-Cu2V2O7

7 correspond to two distinct cases (Figs.
3(c) and 3(d) of Ref.2, respectively), where the non-
reciprocity is allowed by symmetries. In addition, we
mention that there is a distinct difference between non-
reciprocal spin wave propagation and non-reciprocal light
propagation9,10; Light wave propagates with polariza-
tion, but spin wave has no polarization. Due to this
difference, the physics of the spin wave non-reciprocity
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FIG. 2. (a) Magnetic exchange paths (dashed arrows)
in Ba2NbFe3Si2O14 along the c axis (top), and in the ab
plane (bottom). We only depict Fe3+ triangles. The posi-
tion vectors aj and Rj are satisfied with

∑3
j=1 aj = 0 and∑3

j=1 Rj = 0, respectively. R indicates a reference point. (b)

(Left) Equilibrium spin configuration in BNFS with B = 0 is
helical spin arrangement. (Right) An external magnetic field
B is applied along the c axis. The ground state spin configu-
ration in the presence of B is conical spin arrangement.

differs from the physics of the light non-reciprocity.
The paper is organized as follows. In Section II, we

introduce the spin Hamiltonian for BNFS with the ex-
ternal magnetic field, and obtain low energy spin wave
excitations by the Holstein-Primakoff transformation. In
Section III, we provide our numerical calculation results,
and discussions. Finally, the paper is summarized in Sec-
tion IV. The detailed form of Hamiltonian is given in
Appendix.

II. MODEL HAMILTONIAN

In order to obtain spin wave dispersion, we start with
spin Hamiltonian for BNFS11–15. This material crystal-
izes in noncentrosymmetric trigonal space group P321.
Figure 2(a) shows that magnetic Fe3+ ions in BNFS with
S = 5/2 form a triangle lattice on ab plane, and the ex-
change paths J1 ∼ J5 are presented. Below TN = 27 K,
the magnetic spin order occurs as shown in Fig. 2(b)11.
The magnetic spin order within each triangle follows 120◦

arrangement, and spin arrangement is identical in all tri-
angles within the same plane. But along the c-axis, spin
arrangement gets progressively tilted and forms a spin he-
lix whose period is about 7 layers. BNFS has two kinds of
chiralities. One is the helical chirality (εH = ±1), which
represents the helical winding direction of spin as one
moves along the c axis, and the other is the triangular
chirality (εT = ±1), which represents the winding direc-
tion of spin within each triangle. The neutron scattering
study14 on BNFS reports εH = 1 and εT = −1.

According to Ref.13, physical phenomena in BNFS can

be described through symmetric Heisenberg exchange in-
teractions without invoking the DMI. We thus neglect the
DMI and consider symmetric exchange interaction only.
For the structure depicted in Fig. 2(a), the intra-layer

spin exchange interaction H(l)
intra within the layer l, and

the inter-layer spin exchange interaction H(l)−(l+1)
inter be-

tween the layer l and l + 1 are as follows:

H(l)
intra =

∑
α6=α′,β

[
J1Sl,α · Sl,α′ + J2Sl,α · Sl,β

]
, (1)

H(l)−(l+1)
inter =

∑
α,β 6=β′

[
J4Sl,α · Sl+1,α + J5Sl,α · Sl+1,β

+ J3Sl,α · Sl+1,β′

]
, (2)

where J1, J2, · · · , J5 are exchange parameters [Fig. 2(a)],
and spin operator Sl,α represents the magnetic moment
at l, α site. l represents plane index, and α, β represent a
position vector within the ab plane. Strictly speaking, α
denotes R + aj , where aj is a lattice vector within each
Fe3+ triangle, R is a reference point. Also β denotes
R + Rk + aj , where Rk (k = 1, 2, 3) is a inter-triangle
position vector. When an external magnetic field B is
applied, there appears the Zeeman interaction,

H(l)
z = J0

∑
α

Sl,α ·B. (3)

where J0 = 2µB , and µB is the Bohr magneton. We
assume that B is along the c axis, that is, B = Bz ẑ,
where ẑ denotes the c axis direction [Fig. 2(b)]. Then,
the total spin Hamiltonian can be obtained by adding up
l,

Htotal =
∑
l

(
H(l)

intra +H(l)−(l+1)
inter +H(l)

Z

)
. (4)

To facilitate subsequent analysis, it is convenient to
introduce local coordinate systems whose coordinate axes
vary from atomic site to site and are aligned along the
local equilibrium spin directions. At the site l, α, the
unit vectors for the local coordinate system are

x̂′l,α = x̂ cos θl,α cosφl,α + ŷ cos θl,α sinφl,α + ẑ sin θl,α,

ŷ′l,α = −x̂ sinφl,α + ŷ cosφl,α, (5)

ẑ′l,α = −x̂ sin θl,α cosφl,α − ŷ sin θl,α sinφl,α + ẑ cos θl,α,

where φl,α, θl,α are, respectively, azimuthal and polar an-
gles of the equilibrium spin direction at l, α. We assume
that θl,α is independent of l and α, that is, θl,α = θ. We
also assume that φl,R+aj

follows the helical pattern, that

is, φl,R+aj
= εH(τ l + εT j2π/3)11, where τ is a helical

period along c axis. Values of θ and τ will be determined
below by minimizing the equilibrium energy.

Applying the Holstein-Primakoff transformation, the
spin operators along local coordinate axes are written

as Sx
′

l,α = S − b†l,αbl,α, Sy
′

l,α =
√
S/2(b†l,α + bl,α), Sz

′

l,α =
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i
√
S/2(b†l,α − bl,α), where b, b† are bosonic annihilation

and creation operators, respectively. Then, the total
Hamiltonian can be expanded in powers of b, b†.

Htotal = H(0)
total +H(1)

total +H(2)
total

+O(3rd order terms in b, b†), (6)

where H(n)
total denotes n-th order terms. First of all, H(0)

total
reads

H(0)
total =

∑
l

[
S2(J1 + 2J2)

(
−1

2
cos2 θ + sin2 θ

)

+

2∑
ν=0

S2J3+ν

(
cos(τ + εTϕν) cos2 θ + sin2 θ

)]
, (7)

where ϕ0 = 2π/3, ϕ1 = 0, ϕ2 = 4π/3. Since

H(0)
total amounts to the equilibrium energy, we minimize

it with respect to θ and τ . From ∂H(0)
total/∂τ = 0 and

∂H(0)
total/∂θ = 0, one obtains,

2∑
ν=0

J3+ν sin(τ + εTϕν) = 0, (8)

sin θ = − J0Bz/S

3(J1 + 2J2) + 2
∑
J3+ν

(
− cos(τ + εTϕν) + 1

) .
(9)

τ in Eq. (8) agrees with the helical period along the c axis
reported in Ref.13. On the other hand, Eq. (9) indicates
that θ = 0 when Bz = 0 and thus equilibrium spins lie
within the ab plane. When Bz is applied, however, the
equilibrium spins deviate from the ab plane [Fig. 2(b)].
Using the measured parameters in Table II13 that will be
used henceforth, we predict θ = 2.2◦ at Bz = 6.8 T. This
value is similar to the value reported in Ref.16. Also, the
first order term is

H(1)
total = i cos θ

√
S3

2

∑
l

[
sin θ

{
3(J1 + 2J2)

+2
2∑

ν=0

J3+ν

(
− cos(τ + εTϕν) + 1

)}
+
J0Bz
S

]
(b†l − bl).

(10)

This square bracket becomes zero for the value of θ that

minimizes H(0)
total.

The next order term is H(2)
total. In order to analyze

H(2)
total, it is convenient to introduce the Fourier trans-

formed bosonic operator bkj , which is related to bl,R+aj

as follow

bl,R+aj
=

1√
N

∑
k

exp
[
ik · (laz ẑ + R)

]
bkj , (11)

where N is a number of layers, and az is the inter-layer
spacing. In terms of the Fourier transformed bosonic

operators, one obtains

H(2)
total =

∑
k

∑
j,j′

c†kj

(
αk,jj′ βk,jj′
βk,jj′ δk,jj′

)
ckj′ , (12)

where ckj =
(
bkj b†

k̄j

)T
and αk,j′j = δk̄,jj′ , βk,j′j =

βk̄,jj′ . Here, k̄ denotes −k, and the values of the
αk,jj′ , βk,jj′ are given in Appendix. With these val-
ues, it is straightforward to verify that Eq. (12) is her-
mitian. The equation of motion approach17,18 is a com-
monly used technique to obtain eigenvalues of the bosonic
quadratic Hamiltonian [Eq. (12)]. To utilize this ap-
proach, we transform Eq. (12) into a standard form of
boson quadratic Hamiltonian in Ref.18 by extending the

boson basis ckj into dkj =
(
bkj bk̄j b†kj b†

k̄j

)T
. Then,

Eq. (12) can be rewritten as follows:

H(2)
total =

1

2

∑
k

∑
j,j′

d†kj

(
ATk,jj′ Bk,jj′

B∗k,jj′ Ak,jj′

)
dkj′ , (13)

which is in the standard form of the boson quadratic
Hamiltonian. Here, 6× 6 matrices Ak, Bk are

Ak =

(
αTk 0
0 δk

)
, Bk =

(
0 βk
βk̄ 0

)
, (14)

where αk and βk are 3× 3 matrices with αkjj′ and βkjj′
as their matrix elements, respectively. Then, one obtains
the following associated matrix18 Mk

Mk =

(
Ak −B†k
Bk −A∗k

)

=


δk̄ 0 0 −β†

k̄

0 δk −β†k 0

0 βk −α†k 0

βk̄ 0 0 −α†
k̄

 . (15)

The eigenvalues of this 12 × 12 matrix Mk consists of
E(k), E(−k), −E(k), and −E(−k) for three spin wave
branches.

III. RESULT AND DISCUSSION

We investigate the spin wave dispersion of BNFS by
numerical calculation. The spin wave dispersion as a
function of L = kaz/2π, and B = Bz ẑ is shown in
Fig. 3(a). Here we assume that k = (0, 0, k). The dif-
ferent colors indicate different values of Bz. For B = 0
(black solid lines), there are three branches of spin wave
excitations. Each of them becomes gapless at L = 0 (c-
mode), L = +τ/2π (w1-mode), and L = −τ/2π (w2-
mode), where τ/2π ' 0.14. Note that for B = 0,
Ec(k) = Ec(−k) and Ew1

(k) = Ew2
(−k). Thus the dis-

persion relations are symmetric. As Bz increases from
0, Ec(k) remains essentially unchanged, but Ew1

(k) and
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Ew2
(k) are progressively modified. For both Ew1

(k) and
Ew2

(k), gapless points disappear and are replaced by
quadratic dispersions. Note that the resulting energy gap
is significantly bigger for the w1-mode than for the w2-
mode. Thus the relation Ew1

(k) = Ew2
(−k) becomes

broken and the dispersions for the w1- and w2-modes
become asymmetric, acquiring the non-reciprocity. In
addition, we remark that the sign of the non-reciprocity
[Fig. 3(a)] can be reversed when the sign of Bz is reversed.
The sign of the non-reciprocity can be also reversed when
the sign of the magnetic chirality εT εH is reversed, al-
though the magnetic chirality reversal is difficult to real-
ize in experiments because this reversal requires energy
costs.

To understand this result, it is useful to consider the
nature of spin wave “vibrations”. Figure 3(b) shows
schematically the spin vibration patterns for the c-
mode excitation (left), and the w1/2-mode excitation

within a Fe+3 triangle. In the c-mode, all spins vibrate
without altering their net in-plane component, hence∑3
j=1 δS

‖
l,R+aj

= 0 within the triangle. Here, ‖ de-

notes in-plane components. For this mode, the system
has the rotation symmetry around the c axis regardless
of whether Bz is applied. Thus Ec(k = 0) for arbitrary
Bz, since this particular mode amounts to the Goldstone
mode for the symmetry. In case of w1/2-modes, on the
other hand, the spins vibrate without alternating their
net c component, hence

∑3
j=1 δS

⊥
l,R+aj

= 0 within the

triangle. Here, ⊥ denotes out-of-plane components.
The blue plane in Fig. 3(b), which is defined by con-

necting the end points of the vibrating spins, shows
the out-of-plane vibration clearly. In the w1- and w2-
modes, the normal vector to the blue plane precess
around the c axis anticlockwise and clockwise, respec-
tively. If B = 0, the anticlockwise and clockwise preces-
sions share the same vibration frequencies, resulting in
Ew1

(k) = Ew2
(−k) [black solid line in Fig. 3(a)]. For

Bz 6= 0, on the other hand, the field itself tends to in-
duce the precession of the normal vector in one particular
direction, thus introducing the different between the an-
ticlockwise and clockwise precession frequencies. This
explains the non-reciprocity, Ew1

(k) 6= Ew2
(−k) in the

w1- and w2-modes. Figure 3(d) shows that the differ-
ence Ew1

(k = τ/az ẑ)−Ew2
(−k = −τ/az ẑ) between the

energy gaps of the w1- and w2-modes increases with in-
creasing Bz. For Bz = 6.8 T, the energy gaps for the w1-
and w2 modes are 0.36 meV, and 0.07 meV, respectively.
Then, one obtains the gap size difference of 0.29 meV.

In some respect, our result is similar to Ref.7 that re-
ports the non-reciprocal spin waves in a chiral antiferro-
magnet α-Cu2V2O7 with B. However, there are distinc-
tions between BNFS and α-Cu2V2O7 systems. In BNFS,
the chiral antiferromagnetic order arises from competi-
tion between symmetric exchange interactions whereas
in α-Cu2V2O7, it arises from the DMI. Another im-
portant difference is the spin wave propagation direc-
tion. In BNFS, spin waves propagating parallel to the
external magnetic field are non-reciprocal where in α-

FIG. 3. (a) Spin wave dispersion relation with the external
magnetic field along the c axis. The horizontal axis L is L =
k · a/2π, where k is parallel to the c axis and a is the lattice
vector along the c axis. When an external magnetic field B =
Bz ẑ is turned on, the gap asymmetry occurs. (b) Schematic
illustrations of spin wave excitation without B. For the c-
mode excitation (left), the summation of the three spins in
a Fe+3 triangle vanishes within the plane and survives only
along the out-of-plane direction. For the w1- and w2-modes
(right), on the other hand, the summation of the three spins in
a Fe+3 triangle vanishes along the c axis and survives within
the plane. The transparent arrows denote equilibrium spins.
Here, ‖ (⊥) denotes in-plane (out-of-plane) components. (c)
Eigen value spectrum of Mk for Bz = 6.8 T. It shows that
the positive and negative energies are origin symmetry. (d)
The energy gap difference between the w1- and w2-modes as
a function of Bz.

Cu2V2O7, spin waves propagating perpendicular to the
external magnetic field are non-reciprocal.

Let us investigate the structure of Eq. (15) more
closely to better understand reciprocal (non-reciprocal)
spin wave without (with) Bz. First of all, we remark that
eigenvalues of Mk are real even though Mk is not her-
mitian. Given this information, we can understand the
reciprocity (non-reciprocity) as follows. The characteris-
tic equation det

[
Mk − xI

]
= 0 is rewritten as∣∣∣∣∣δk̄ − xI −β†

k̄

βk̄ −α†
k̄
− xI

∣∣∣∣∣×
∣∣∣∣δk − xI −β†k

βk −α†k − xI

∣∣∣∣ = 0, (16)

where I is 3× 3 identity matrix, x is a real eigenvalue of
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FIG. 4. Connection between spin waves with +k and −k
through symmetry operations. (a) When B (or a magnetiza-
tion M) is applied along the c-direction, a spin wave propa-
gating along the a-axis (or the b-axis) becomes reciprocal, be-
cause the combined symmetry operation of the time-reversal
and rotation around the k direction links the two spin wave
cases. (b), (c) Because spin waves with ±k, which are per-
pendicular to the B direction, can be connected by a rotation
around B (or M) direction, we obtain reciprocal spin waves.
(d) When k and B (or M), which are in the ab plane, are
parallel to each other, there does not exist any symmetry op-
eration that links the two spin waves. Hence the spin wave
dispersion in this case can becomes non-reciprocal. The ro-
tations Rk(π), and RB(π) rotate around k, and B directions,
respectively. Note that k in (a), and B (or M) in (b), (c),
and (d) are parallel to the a-axis (or the b-axis).

Mk, and the first (second) determinant in the left hand
side is for −k (+k). When Bz = 0, matrix elements for
k and k̄ are related (see Appendix) as follows:(

δk −β†k
βk −α†k

)∗
=

(
δk̄ −β

†
k̄

βk̄ −α
†
k̄

)
. (17)

Then comparing the first and second determinants, and
recalling that x is real, one finds that the first (for −k)
and the second (for k) produce the same eigenvalues.
Thus the spin wave spectrum is reciprocal. When Bz 6=
0, on the other hand, the relation in Eq. (17) breaks
down since α∗k 6= αk̄, δ∗k 6= δk̄ while β∗k = βk̄. The
explicit expression for αk (= δT

k̄
) is given in Eq. (A.1),

and the last term of this expression breaks the relation.
Therefore, the low energy excitation spin wave spectrum
may become non-reciprocal, E(+k) 6= E(−k).

So far our analysis of BNFS has focused on the
non-reciprocity from symmetric exchange interactions
[Eq. (1) and (2)] and neglected the DMI. To be strict, the
DMI may also exist in BNFS since it is noncentrosymmet-
ric. According to19, the energy scale of the DMI is three
orders of magnitude smaller than J1, and about two or-
ders of magnitude smaller than J2, J3, J4, J5. Although
such small DMI can generate observable effects such as
energy gap opening19 to the w1- and w2-modes, it can
not significantly affect the degree of the non-reciprocity
(energy gap difference between the w1- and w2-modes)

FIG. 5. (a) Asymmetric spin wave dispersion relation for
Bz = 6.8 T. Inset indicates the direction of Lx, which
lies within the ab plane. (b) Energy difference ∆E(Lx) =
E(+Lx)−E(−Lx). Colors are introduced to identify the cor-
responding dispersions in (a).

simply because the DMI energy scale is much smaller
than those of J ’s.

Our examination of the non-reciprocal spin waves in
BNFS focused on the case when k and B are parallel to
the c-axis [Fig. 2(b)]. Figure 4 shows possible other con-
figurations of k and B, which are not examined in this
paper. For the three cases with k and B perpendicular to
each other [depicted in Figs. 4(a), 4(b), and 4(c)], one can
show by using simple symmetry argument2 that the non-
reciprocity is not possible. First, for the case in Fig. 4(a),
the spin waves propagating along the (+a)-axis and (−a)-
axis becomes reciprocal, because a combination of the
time-reversal and rotation operations can connect the
two spin-wave propagating directions. The same sym-
metry argument applies to the spin waves propagating
along (+b)-axis and (−b)-axis. However this argument
does not apply to the spin waves propagating along the
direction which deviates from the ±a or ±b directions,
even though the propagation direction lies within the ab
plane. For example, when k is parallel to (a + 2b)/

√
3,

the spin wave dispersion [Fig. 5(a)] shows much weaker
non-reciprocity than Fig. 3(a). Here an external mag-
netic field is along the c axis. In this case, each spin wave
branch is asymmetric. In order to show asymmetric spin
wave clearly, we provide the energy difference between
+Lx and −Lx as function of Lx [Fig. 5(b)]. Here the
non-reciprocal effect increases with increasing spin wave
propagation vector. However, this effect is strongly sup-
pressed in the vicinity of Lx = 0. Thus, we expect it to be
weak at least for the long wave length spin wave. Second,
when B is applied in the ab plane [Figs. 4(b) and 4(c)],
the actual calculation of spin wave excitations become
complicated since the ground state spin configuration is
not known for this case. But the symmetry analysis may
be still possible if a net magnetization in BNFS is par-
allel to B. Then, spin waves in Figs. 4(b) and 4(c) are
reciprocal, since spin waves with ±k can be connected by
a rotation around the B direction. We remark that this
symmetry argument becomes exact when B is parallel
to ±a-axis or ±b-axis. Finally, we consider the case in
Fig. 4(d), where k, B are parallel to each other, and these
are within the ab plane. In this case, two spin waves with
k ‖ B and −k ‖ B cannot be connected by any opera-
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tions, that is, this spin wave can become non-reciprocal.
Therefore, the spin wave in BNFS may be non-reciprocal
(reciprocal) when k and B are parallel (perpendicular)
to each other.

IV. SUMMARY

In summary, we have shown theoretically that the spin
wave in a chiral antiferromagnet BNFS becomes non-
reciprocal when an external magnetic field is applied
along the c-axis. Unlike other chiral ferromagnets or chi-
ral antiferromagnets, where DMI is crucial for the non-
reciprocity, the non-reciprocity in BNFS, which has very
small DMI, can arise purely from the competition be-
tween symmetric exchange interactions and an external
magnetic field. Thus our work demonstrates that the
DMI is not crucial for non-reciprocal spin waves. Our
work also widens material choice for non-reciprocal spin
waves.
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Appendix: Components of Eq. (12)

αk, βk are presented as below:

αk =

[
−1

2
J0Bz sin θ +

1

2
(J1 + 2J2)S(1− 3 sin3 θ)

−
2∑

ν=0

J4+νS

{
cos(τ + εTϕν) cos2 θ + sin2 θ

}]
I

+J1S

[
1

8
(1− 3 sin2 θ) Σ3x −

√
3

4
εHεT sin θ Σ3y

]
+J2S

[
1

8
(1− 3 sin2 θ) A+

3k −
√

3

4
εHεT sin θ A−3k

]
+
S

4
(1 + sin2 θ) B+

3k +
S

4
cos2 θ C3k −

S

2
εH sin θ B−3k,

(A.1)

βk = −3

8
S(1− sin2 θ)(J1Σ3x + J2A+

3k)

+
1

4
S(1− sin2 θ)(B+

3k − C3k)S, (A.2)

where

Σ3x =

0 1 1
1 0 1
1 1 0

 , Σ3y =

 0 −i i
i 0 −i
−i i 0

 , (A.3)

(A+
3k)lm =

∣∣êl × êm
∣∣ (eik·Rl + e−ik·Rm), (A.4)

(A−3k)lm = i(êl × êm) · ên (eik·Rl + e−ik·Rm), (A.5)

(B+
3k)lm = 2δlmJ

′
4 cos kzaz +

∣∣êl × êm
∣∣ J ′+ cos kzaz

+ i(êl × êm) · ên J ′− sin kzaz, (A.6)

(B−3k)lm = 2δlmJ
′′
4 sin kzaz +

∣∣êl × êm
∣∣ J ′′+ sin kzaz

− i(êl × êm) · ên J ′′− cos kzaz, (A.7)

and

(C3k)lm = 2δlmJ4 cos kzaz +
∣∣êl × êm

∣∣ J+ cos kzaz

+ i(êl × êm) · ên J− sin kzaz. (A.8)

Here, n 6= l,m, and l,m = 1, 2, 3. êl is a unit vector.
J± = J5 ± iJ6, J ′4+ν = J4+ν cos(τ + εTϕν), and J ′′4+ν =
J4+ν sin(τ + εTϕν). Since we assume that k = (0, 0, k),
Eqs. (A.4), (A.5) can be written as A+

3k = 2Σ3x, A−3k =
2Σ3y.
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