Emergent c-axis magnetic helix in manganite-nickelate superlattices

G. Fabbris, N. Jaouen, D. Meyers, J. Feng, J. D. Hoffman, R. Sutarto, S. G. Chiuzbăian, A. Bhattacharya, and M. P. M. Dean

Phys. Rev. B 98, 180401 — Published 2 November 2018
DOI: 10.1103/PhysRevB.98.180401
Emergent c-axis magnetic helix in manganite-nickelate superlattices

G. Fabbris,1,2 N. Jaouen,3 D. Meyers,1 J. Feng,4 J. D. Hoffman,5,6 R. Sutarto,7 S. G. Chiužbáian,4,3 A. Bhattacharya,5,6 and M. P. M. Dean1

1Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
2Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
3Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
4Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
5Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
6Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
7Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada

(Dated: October 10, 2018)

The nature of the magnetic order in (La2/3Sr1/3MnO3)9/(LaNiO3)3 superlattices is investigated using x-ray resonant magnetic reflectometry. We observe a new c-axis magnetic helix state in the (LaNiO3)3 layers that had never been measured in nickelates, and which mediates the ~130° magnetic coupling between the ferromagnetic (La2/3Sr1/3MnO3)9 layers, illustrating the power of x-rays for discovering the magnetic state of complex oxide interfaces. Resonant inelastic x-ray scattering and x-ray absorption spectroscopy show that Ni-O ligand hole states from bulk LaNiO3 are mostly filled due to interfacial electron transfer from Mn, driving the Ni orbitals closer to an atomic-like 3d8 configuration. We discuss the constraints imposed by this electronic configuration to the microscopic origin of the observed magnetic structure. The presence of a magnetic helix in (La2/3Sr1/3MnO3)9/(LaNiO3)3 is crucial for modeling the potential spintronic functionality of this system and may be important for designing emergent magnetism in novel devices in general.

Interfaces between complex oxide materials exhibit remarkably rich physics driven by the interplay of various types of charge, orbital and spin couplings [1–3]. Particularly fascinating is their proven ability to host new types of emergent magnetic order that do not exist in either of the bulk constituents, representing a challenge to our understanding of electron correlations, as well as an opportunity for exploitation in spintronic devices [2–4]. In fact, complex magnetic phases are potentially common in transition metal oxide superlattices given the severe effects of interfacial symmetry breaking in localized 3d orbitals [5–10], but scrutiny over the microscopic magnetic interactions at such interfaces is often constrained by limited direct evidence of the resulting magnetic structure. Superlattices composed of manganites and nickelates are a paradigmatic venue for efforts to discover and understand emergent interface magnetism, motivated by the complex magnetic order and phase diagram of its bulk constituents [11,12]. In fact, this system harbors fascinating phenomena, such as exchange bias and interfacial electronic reconstructions [13–21]. Recently, a highly unusual magnetic coupling between ferromagnetic (LSMO)9 layers was observed in [001]-oriented (La2/3Sr1/3MnO3)9/(LaNiO3)n [(LSMO)9/(LNO)n, n = 1–9], in which the coupling angle between (LSMO)9 layers varies between zero and 130° as a function of n (Fig. 1) [22], an observation that, based on conceptual arguments, was suggestive of a magnetic helix in the (LNO)n layers. Despite the demonstrated ability of this system to be used as resistive memory devices [4], there is no experimental evidence for how or if the non-collinear magnetism of the (LSMO)9 layers is mediated through (LNO)n. Such lack of information critically hampers the ability to understand the physical mechanism driving the (LSMO)9 magnetic coupling, which consequently inhibits the design of new superlattices with optimized magnetic properties.

In this work we focus on the (LSMO)9/(LNO)3 superlattice because it displays the largest magnetic coupling angle between the manganite layers (γ ≈ 130° at 25 K [22]). We probe its magnetic and electronic structure using resonant soft x-ray techniques. The magnetic structure of both (LSMO)9 and (LNO)3 are studied using Mn and Ni L-edge x-ray resonant magnetic reflectivity (XMR). We find that the nickelate layers contain a magnetic helix in which the Ni moments are mostly confined to the basal plane and rotate around the c-axis. Such magnetic structure is not present in any simple perovskite nickelate nor manganite. The XMR ability to provide a precise description of the (LSMO)9/(LNO)3 magnetic ordering allows for a careful analysis of the magnetic interactions in this system. To this end, the nature of the Ni 3d and O 2p orbitals is probed through Ni L3-edge resonant inelastic x-ray scattering (RIXS) and O K-edge x-ray absorption spectroscopy (XAS) measurements. The RIXS spectra are composed of well defined orbital excitations, which are reproduced by a model of localized Ni 3d8 orbitals under the effect of an octahedral crystal field. Even though the Ni 3d orbital is predominantly localized, O K-edge XAS show a small Ni 3d - O 2p ligand hole concentration, indicating that the NiO2 planes are lightly hole-doped. While further work is
Resonant optical constants were obtained by combining the tabulated values with averaged XAS and x-ray magnetic circular dichroism measurements [28, 39].

Figure 2 displays a summary of the XRMR data collected on (LSMO)$_9$/(LNO)$_3$. The XRMR signal measured with circular light is primarily sensitive to components of the magnetization of each layer along the x-ray direction, while π polarization probes the transverse magnetization, and σ polarization is dominated by the lattice response [37, 38]. It is thus clear in Figs. 2(a) through (d) that magnetic peaks appear at 1/2 order positions in (LSMO)$_9$/(LNO)$_3$ at both Mn and Ni edges indicating that the magnetic structure unit cell along the c-axis has twice the length of the chemical repetition. This observation is further demonstrated by the disappearance of such magnetic peaks when a field of 0.6 T is applied.

High-quality 14×[(LSMO)$_9$/(LNO)$_3$] superlattices were grown on [001] single-crystalline SrTiO$_3$ substrates using molecular beam epitaxy as described previously [22, 28]. XRMR measurements were performed at the Ni and Mn L-edges [28] at the REIXS beamline of the Canadian Light Source [35] and at the SEXTANTS beamline of the SOLEIL synchrotron [36]. Data were collected using horizontal scattering geometry, as well as both linear (σ and π) and circular [left (CL) and right (CR)] x-ray polarizations (Fig. 1). Magnetic field was applied parallel to the sample surface and within the scattering plane using permanent magnets at REIXS and an electromagnet at SEXTANTS. In the former the data was collected at remanence after removing a 600 mT field, while in the later the sample was field cooled, and measured, under 1.2 mT. The temperature was kept at ~25 K throughout the experiments. Data analysis was performed with the Dyna [37] and ReMagX [39] softwares using the magnetic matrix formalism.

FIG. 1. Top & Middle: Possible magnetic structures of the LaNiO$_3$ layer in (LSMO)$_9$/(LNO)$_3$. The coupling angle γ corresponds to the angle between two (LSMO)$_3$ layers. Bottom: Experimental geometry used in both XRMR and RIXS measurements. XRMR was measured using circular and linear x-ray polarization with the magnetic field (H) applied along the sample’s a-axis. RIXS was measured using linear x-ray polarization with θ and 2θ fixed to 15$^\circ$ and 85$^\circ$, respectively.
FIG. 3. Fits to the XRMR signal at the Ni L2 (871.6 eV) [(a) & (c)] and Mn L3 [(b) & (d)] edges in (LSMO)9/(LNO)3. Different polarization channels CR/CL or σ/π are shown as blue/red points and are overlapped by orange/green lines representing the fit. Different channels are offset from one another for clarity. Panel (e) displays the XRMR asymmetry [(a) & (b)] models (Fig. 1). The XRMR data analysis very difficult. Despite its magnetic sensitivity, the XRMR signal is largely dominated by charge responses [Fig. 3(a)-d)]. In fact, the disagreements between simulation and experimental data seen at the Mn L3-edge are at least partially driven by the expected Mn1+/3+ valence modulation within the (LSMO)3 layer \[17, 22, 43\]. We can overcome this challenge by isolating the magnetic response using the XRMR circular polarization asymmetry shown in Fig. 3(e) [22]. It is clear that only the helical model is able to reproduce all features in the data, particularly at high-qz. Magnetic models with LNO spins away from the basal plane are not shown here but were also unable to reproduce the experimental data [22]. Modeling of both Mn and Ni edges is consistent with γ = 140(20)° in agreement with neutron reflectivity [22] [41]. The (LNO)3 c-axis magnetic helix result is surprising as such structures are uncommon in bulk transition metal oxides and have not previously been observed in nickelates. This demonstrates that in (LSMO)3/(LNO)3 the interfacial symmetry breaking and charge transfer drive an emergent form of magnetism, the underlying electronic structure of which we now explore.

We first address the character of the nickelate layer 3d orbital using Ni L3-edge RIXS. Data was collected at 30 K using the AERHA end-station of the SEXTANTS beamline at the SOLEIL synchrotron [8]. The experimental scattering geometry is detailed in Fig. 1. Figure 4 shows the RIXS spectra as a function of incident x-ray energy and linear polarization. The experimental data [Fig. 4(a)-b] is composed of narrow peaks that are consistent with dispersionless localized orbital excitations of 3d8 (Ni2+) ions [47, 49, 51]: a distinctively different broad diagonal feature is seen in RIXS spectra of bulk RENiO3 and hole-doped La2-xSr2NiO4 (for x ≥ 1/3) [17, 51, 52], in which the significant amount of extra holes in the NiO2 plane populate the hybridized Ni 3d - O 2p ligand hole states. This result is consistent with Ni L3-edge XAS data [22]. The RIXS spectra was simulated using the Kramers-Heisenberg equation combined with atomic multiplet calculations performed with the Cowan and RACER codes [45, 47]. These simulations [Fig. 4(c) & (d)] nicely reproduce the observed signal [28], confirming that these are orbital dd excitations, thus demonstrating the localized character of the Ni 3d state in (LSMO)9/(LNO)3. Furthermore, the excellent agreement between experimental data and simulation implies high-spin (S = 1) Ni 3d8 orbitals under a nearly octahedral crystal field with 10Dq = 1.1 eV and Δe_g = 0.05 eV [53].

While the RIXS results establish a predominantly lo-
calized Ni 3d orbital, it has minimal sensitivity to the potential presence of a small amount of Ni 3d - O 2p ligand holes. Figure 5 displays the pre-edge of the O K-edge XAS data collected in total electron yield mode at the REIXS beamline of the Canadian Light Source. The x-rays were incident at 15° and the sample was field cooled to 25 K under 0.6 T, but the magnetic field was removed prior to the data collection. The pre-edge is dominated by features related to Mn-O and Ni-O ligand holes. Comparing this data with the literature [54, 55], it is clear that the Mn-O states dominate the signal (red box). This result is consistent with the large response at the REIXS beamline of the Canadian Light Source.

We now discuss the consequences of the observed electronic configuration to the potential mechanisms driving the complex magnetic structure of (LSMO)$_9$/LNO$_3$. We start by noting that non-collinear magnetic order in transition metal oxides may derive from the Dzyaloshinskii-Moriya interaction [61, 62], but this interaction is inconsistent with the symmetry of the (LNO)$_3$ magnetic structure [22]. The interfacial electronic reconstruction in (LSMO)$_9$/LNO$_3$ induces magnetic frustration in the nickelate layer since the antiferromagnetic Ni$^{2+}$-O-Ni$^{2+}$ exchange energy is expected to be similar to the dominant ferromagnetic Ni$^{2+}$-O-Mn$^{4+}$ [18, 51, 63, 64]. However, while we cannot exclude frustration as the sole reason for the observed spiral, if we only consider first neighbor interactions, such frustration would arguably drive an antiferromagnetic structure that resembles the reversed helical model (see Fig. 1) since the adjacent NiO$_2$ planes would favor an antiferromagnetic coupling. Additionally, it is difficult to reconcile the magnetic structure LNO thickness dependence with a magnetic frustration model [22]. Emergent magnetic phenomena are often seen in systems that, much like (LSMO)$_9$/LNO$_3$, have 3d-2p ligand holes (negative charge transfer systems [63]), including certain cuprates [66], hole-doped La$_2$NiO$_4$ [51, 57], RENiO$_3$ [52], and CrO$_2$ [67]. In fact, it has been argued that double-

FIG. 4. Ni L$_3$-edge RIXS of (LSMO)$_9$/LNO$_3$. Data for π and σ polarized incident x-rays are displayed in panels (a)&(b), respectively. Panels (c)&(d) present simulations of the RIXS spectra for π and σ polarization using atomic calculations [45-47].

FIG. 5. (LSMO)$_9$/LNO$_3$ O K-edge XAS data. (a)&(b) show the pre-edge features of the XAS collected with circular and linear x-rays, respectively. The circular and linear dichroism are plotted in panels (c)&(d), respectively. While signal from hybridized Mn-O orbitals dominate the pre-edge features (red box), a signal that is consistent with Ni-O hybridization is seen around 527.4 eV (grey box).
exchange and superexchange can act together to create non-collinear canted structures in such systems [65–70], but it is not entirely clear how such canting would actually lead to a helix. Finally, we note that the electronic structure of (LNO)$_3$ closely mimics that of lightly hole-doped La$_2$NiO$_4$ [51, 57, 71, 72], which displays stripe-like spin density wave instabilities [73, 74], which in turn are known to foster non-collinear magnetic structures [75, 76]. Therefore, it appears that the (LNO)$_3$ magnetic helix emerges from the coupling of such SDW instability with the interfacial Ni-Mn interaction.

In conclusion, the presence of an emergent magnetic helical structure in the [La$_2$/3Sr$_1$/3MnO$_4$]$_9$/[LaNiO$_3$]$_3$ superlattice is demonstrated through XMR measurements. Such c-axis magnetic helix has not been shown to occur in any other nickelate system. Ni L_3-edge RIXS and O K-edge XAS experiments show that interfacial charge transfer results in NiO$_2$ planes with lightly hole-doped Ni 3d^8 atoms. We argue that such electronic structure likely drives SDW instabilities that may drive the helical magnetic structure, but further work is required to verify our arguments. Besides theoretical investigations, we believe that the role of octahedral rotations in this system need to be addressed as these are known to relevant to magnetic exchange. Nevertheless, the prospect of engineering spin density waves through interfaces to create novel magnetism is tantalizing, and, in principle, such approach should applicable to the various families of negative charge transfer transition metal oxides [65].

We thank Dr. Daniel Haskel for insightful discussions and Dr. Alessandro Nicolaou for support during the RIXS measurements at the SEXTANTS beamline. This material is based upon work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Award Number 1047478. Work at Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, under contract No. DE-AC-02-06CH11357. Part of the research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research. We acknowledge SOLEIL for provision of synchrotron radiation facilities. S.G.C. acknowledges the support of the Agence Nationale de la Recherche (ANR), under Grant No. ANR-05-NANO-074 (HR-RXRS).

a gfabbri@anl.gov
b Present address: CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang 315201 Ningbo, China
c Present address: Department of Physics, Harvard University, Cambridge, MA 02138, USA
d medean@bnl.gov

[20] Xingkun Ning, Zhanjie Wang, and Zhihong Zhang, “Fermi Level shifting, Charge Transfer and Induced Magnetic Coupling at La0.7Ca0.3MnO3/LaNiO3 Interface,” Scientific Reports 5, 8460 (2015).

[40] While we are unable to determine the magnetic structure within the NiO planes, x-ray magnetic circular dichroism sum rules analysis suggests a canted antiferromagnetic coupling [28].

[42] The XRMR asymmetry is defined here as the difference between right and left polarized XRMR times q⁴. [Physical Review B 77, 083046 (2015)]

[43] We estimate the uncertainty on determining the in- and out-of-plane magnetic moment angles to be ∼20° and ∼30°, respectively [28].

[52] Best agreement with the experimental data was obtained with ∆tdg = 0 and reduced Slater-Condon parameters: Fdd = 70%, Fpd = 85% and Gpd = 70%. We point out that the ∆e = 0.05 eV found here implies that ∆tdg is likely finite. However, it also suggests a ∆tdg < 0.01 eV, which is smaller than our sensitivity.

[62] Kenji Nakajima, Kazuyoshi Yamada, Syoichi Hosoya, To-

[72] Based on comparing the Ni L_2 edge XAS and L_3 edge RIXS with the literature [30, 31, 51], we roughly estimate an average \sim0.1-0.3 holes/Ni in the (LNO)$_3$ layers.

