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Abstract 

Since Peierls’ pioneering work, it is generally accepted that phonon-phonon scattering processes 

consist of momentum-conserving normal scatterings and momentum-destroying Umklapp 

scatterings, and that the latter always induce thermal resistance. We show in this work that 

Umklapp scatterings are not necessarily resistive – no thermal resistance is induced if the 

projected momentum is conserved in the direction of heat flow. This distinction is especially 

important in anisotropic materials such as graphite and black phosphorous. By introducing a 

direction-dependent definition of normal and Umklapp scattering, we can model thermal 

transport in anisotropic materials using the Callaway model accurately. This accuracy is 

physically rooted in the improved description of mode-specific phonon dynamics. With the new 

definition, we predict that second sound might persist over much longer distance than previously 

expected. 
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Introduction 

Phonons are major heat carriers in semiconductors and dielectrics. In crystalline solids, 

Peierls [1,2] attributed the origin of thermal resistance to the combination of anharmonicity and 

the discrete nature of crystal lattice. Anharmonicity results in interactions between the lattice 

vibrational waves, referred to as phonon-phonon scattering processes. However, anharmonicity 

alone cannot induce resistance as discussed by Peierls [2]—an infinite thermal conductivity is 

expected if all the phonon scattering processes conserve momentum. To explain the finite 

thermal conductivity, Peierls proposed that from the perspective of momentum, phonon-phonon 

scattering could be divided into two categories: normal scattering (N-scattering) [3] and 

Umklapp scattering (U-scattering). A N-scattering process conserves the phonon momentum and 

induce no thermal resistance by itself, and it merely redistributes momentum among different 

phonon modes. In comparison, Umklapp scattering is a momentum-destroying process that leads 

to thermal resistance [2,4–8].  More specifically, for a three-phonon absorption scattering 

process, the wavevectors of the three phonons satisfy the following constraint: ܙ ൅ ᇱܙ ൌ ᇱᇱܙ ൅ ۵,                                                                [1] 

where q and q′ are the wavevectors of the interacting phonons, q″ is the wavevector of the 

newly created phonon, and G represents a reciprocal lattice vector or zero vector. The 

conventional definition of N-scattering and U-scattering is illustrated in Fig. 1, where the first 

Brillouin zone (BZ) is depicted as a square for simplicity. If the wavevector of the new phonon q″ 

is within the first BZ, the three-phonon interaction conserves momentum and is considered as N-

scattering (Fig. 1(a)). However, if q″ is outside the first BZ (Fig. 1(b)), the phonon momentum is 

not conserved (G ≠0) and the process is categorized as U-scattering [5].  Proper treatment of N-

scattering and U-scattering holds the key to model phonon transport, especially to capture the 

collective drift motion of phonons [9,10], which characterizes phonon hydrodynamic 

transport [9,10]—in analogy to the hydrodynamic flow of molecules [11]. Many exotic 

phenomena of fundamental importance emerge in the hydrodynamic transport regime, such as 

phonon Poiseuille flow [12,13], Knudsen minimum [5], and second sound  [14–18].  

Major advances in first-principles computations over last decade have enabled solving 

the phonon Boltzmann transport equation (BTE) numerically without the distinction between N-
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scattering and U-scattering processes  [19–21]. However, the high computational cost limits the 

applicability of such exact solution processes to simple materials, where the number of atoms in 

a unit cell is within computational resource limits.  A more affordable approach appropriate for 

mesoscale structures is to model phonon-phonon interactions using the relaxation time 

approximation (RTA), which treats all the phonon scattering processes as U-scattering and 

represents them with a single lifetime [21–23]. However, the RTA significantly underestimates 

the thermal conductivity when strong N-scattering is present [24]. To correct for this discrepancy, 

Callaway proposed a new model to separate the effects of N-scattering and U-scattering on heat 

transport [8], which can be written as:  ܞ௚ · ݂׏ ൌ െ ௙ି௙బఛೆ െ ௙ି௙೏ఛಿ ,                                                     [2] 

where f and vg denote the phonon distribution function and group velocity, and τU
-1 and τN

-1 

represent the U-scattering and N-scattering rates, respectively. While the U-scattering processes 

relax the phonon distribution to the equilibrium Bose-Einstein distribution f0, the N-scattering 

processes facilitate the establishment of a displaced distribution fd, which can be written as: 

ௗ݂ ൌ ଵୣ୶୮൤԰ሺഘషܝ·ܙሻೖಳ೅ ൨ିଵ.                                                              [3]                           

Here, , ω, q, kB and T denote the reduced Planck constant, phonon frequency, phonon 

wavevector, the Boltzmann constant, and temperature, respectively. The collective phonon drift 

velocity u is discussed in Ref. [25] and can be determined from the conservation of momentum 

in N-scattering processes [9]: ∑௙ି௙೏ఛಿ ԰ܙ ൌ ૙,                                                         [4] 

where the summation is over all phonon modes (same below unless specified). The displaced 

distribution function is analogous to the BGK approximation for rarefied gas flow. [26] 

The Callaway model preserves the efficiency of the RTA while significantly approaches 

the accuracy of the exact solution schemes and has been truly instrumental to phonon transport 

studies since it was proposed in 1959. Its effectiveness was first demonstrated for modeling 

thermal conductivities at low temperatures [8,27], especially for phonon hydrodynamics  [28,29], 

such as phonon Poiseuille flow [12], Knudsen minimum  [12,30], and second sound  [29]. In past 
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studies, all umklapp scattering processes are grouped into τU, i.e., assumed to create resistance to 

heat flow.  

However, not all U-scatterings as conventionally defined (Fig. 1) create thermal 

resistance. In fact, a U-scattering process does not really cause any thermal resistance if the 

projection of the phonon momentum involved in the scattering is conserved in the heat flow 

direction. For example, the U-scattering event shown in Fig. 1(b) only induces resistance to heat 

flow in the x-direction, but not in the y-direction. We will show later that this distinction is 

especially important for anisotropic materials.  We hereby propose that a proper classification of 

N-scattering and U-scattering should be based on the projected phonon momentum in the heat 

flow direction. A scattering process should be considered N-scattering as long as the phonon 

momentum is conserved in the direction of heat flow. With this understanding, Eq. (1) should be 

rewritten as:   ܙ௝ ൅ ௝ᇱܙ ൌ ௝ᇱᇱܙ ൅ ۵௝,                                                         [5] 

where j represents the heat transport direction, jq  and jG  represent the projections of vectors q 

and G along j . A scattering event is N-scattering as long as Gj = 0, which holds when G = 0 or 

G is a reciprocal lattice vector orthorgonal to j. Therefore, all the conventional N-scattering 

processes remains N-scattering with the new definition, but some scattering processes originally 

catergorized as U-scatteirng are now classified as N-scattering. To avoid confusion, we denote 

the heat transport direction-dependent N- and U-scattering processes as Nj- and Uj-scattering. In 

what follows, by comparing with the exact solutions of the phonon BTE, we demonstrate that the 

proposed new classification of N-scattering and U-scattering processes leads to much more 

accurate predictions of thermal conductivity using the Callaway model. We then conclude with a 

discussion of the significant consequence of the new definition on the propagation length of 

second sound in the phonon hydrodynamic transport regime.  

 

Results and discussions 

Thermal conductivity 
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We use black phosphorus (BP) and graphite as the prototypical materials to demonstrate how our 

new definition can improve the performance of Callaway model. These two materials are chosen 

because they are representative of anisotropic two-dimensional (2D) and 3D materials with one 

primitive vector orthogonal to the others. The atomic structures of the two materials are shown as 

insets of Fig. 2. The computed thermal conductivity of BP along the zigzag (ZZ) direction and 

graphite in the basal plane direction are plotted in Fig. 2 as a function of temperature. We focus 

on transport in these directions because the transport property in the armchair (AM) direction of 

BP and the cross-plane direction of graphite is insensitive to the treatment of N- and U-scattering 

(Fig. S1). Here we compare the thermal conductivities predicted using four different methods: (1) 

iterative numerical soluton to the BTE which is exact and serves as the reference, (2) Callaway 

model with the new definition of N- and U-scattering, i.e. Nj- and Uj-scattering, (3) Callaway 

model with the original definition of N- and U-scattering, and (4) RTA. All the scattering rates 

were obtained from first-principles calculations. The details for computing thermal conductivity 

using RTA, Callaway, and the iterative method can be found in Ref.  [31]. One can see that both 

the RTA and the Callaway model with the original definition of N- and U-scattering rates 

underestimate the thermal conductivity across the wide temperature range considered (100 K - 

500 K). With the new definition, the performance of the Callaway model improves significantly 

at all temperatures. For graphite in particular, the calculated thermal conductivity using Callaway 

model with the new definition is less than 3% smaller than the exact value. In addition, the 

kinetic collective model (KCM) proposed by Guyer and Krumhansl [9,32] has been successfully 

used to predict the thermal conductivity of several materials [33,34]. Similar to Callaway model, 

the accuracy of KCM also depends on the accuracy of N- and U-scattering rates and improves 

with the new definition (Fig. S2). This further demonstrates the validity of our new definition. 

 

Effective phonon lifetime 

For a more detailed picture, we define an effective phonon lifetime as ߬ ൌ ௙ି௙బങ೅ങೣങ೑బങ೅ ௩ೣ,                                                                [6] 

where f is the phonon mode distribution obtained by solving BTE with a temperature gradient 

T x∂ ∂ in the x-direction. With this effective lifetime, one can readily obtain thermal conductivity 
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via the phonon gas model. In Fig. 3, we can see that the RTA and the Callaway model with the 

original definition of N- and U- scattering not only underestimate the effective phonon lifetime, 

but also leads to effective lifetime distributions that are dramatically different from the exact 

solution. In contrast, the performance of the Callaway model substantially improves when 

combined with the Nj- and Uj-scattering rates. In particular, we highlight the region enclosed by 

the white semi-circle. Phonons in this region is most strongly affected by our modification of the 

definition of N- and U-scattering. Based on the conventional definition of U-scattering, phonons 

with wavevectors near the zone boundary are prone to U-scattering with G ≠ 0 in Eq. [1]. 

However, our new definition treats a phonon scattering event as Nj-scattering as long as the 

projection of G in the heat transport direction j is zero. For example, in BP a phonon with large 

qy is prone to U-scattering with G = Gy in Eq. [1], where Gy is the lattice vector in the reciprocal 

space along the ky-direction. However, this process should be considered as Nj-scattering if heat 

transport along the x-direction is of interest, as the momentum in the x-direction is conserved (Gj 

= 0 in Eq. [5]). Such difference is clearly observed in the distribution of U-scattering percentage 

in the reciprocal space shown in Fig. 4. For phonons with small qy, the percentage of U-

scattering rates remains almost unchanged with the modification of definition, while the 

percentage of U-scattering rates significantly reduces for phonons with large qy (Fig. 4). A 

similar analysis was also performed in graphite for phonons with large qz (Fig. 3 (e-h) and Fig. 

S3).  

 

Second sound propagation length 

Beyond diffusive transport, phonon hydrodynamic transport has been of great fundamental 

interest for decades and has recently drawn much revived attention  [28,35–37]. The Callaway 

model has been widely employed to investigate many of the characteristic phenomena in 

hydrodynamic transport such as phonon Poiseuille flow  [12,35], second sound  [28,29,37], 

phonon Knudsen minimum  [12,30] and phonon viscous flow  [38].  Second sound refers to the 

propogation of heat in a phonon gas, in analogy to the propogation of ordinary sound waves in  

solids  [39,40]. Second sound is of particular interet  [40] in thermal transport since it is the most 

direct demonstration that heat can travel as waves, in contrast to the diffusion process underlying 

the Fourier heat conduction law. This phenomenon results from the collective phonon motion 
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established by N-scattering when it dominates over U-scattering. Second sound has been 

experimentally observed at cryogenic temperatures by first applying a heat pulse on one end of a 

sample then measuring the transient temperature response on the opposite end  [16,18,41,42]. 

The velocity and propagation length of second sound are two critical characteristics for 

experimental observations. Following Ref.  [43,44], and using the energy and momentum 

conservation equations derived from BTE, the second sound velocity v and propagation length l 

in the x-direction can be written as  [45]: 

ଶݒ ൌ ቀ∑಴೜೜ೣೡೣഘ ቁమ∑಴೜೜ೣమഘమ ∑஼೜,                                                          [7] 

݈ ൌ ଶ௩∑಴೜೜మೣഘమ∑಴೜೜మೣഘమഓೆ ,                                                           [8] 

where Cq is the mode heat capacity. The propagation lengths of second sound in BP and graphite 

predicted using both the original and the new definition are shown in Fig. 5. One can see that 

using our new definition, the predicted propagation lengths in both BP and graphite are almost an 

order of magnitude larger, which indicates the necessity of our new definition in studying 

phonon hydrodynamic transport 

 

The role of anisotropy 

The new interpretation regarding whether a phonon scattering process should be viewed as a U-

scattering process is particularly critical in anisotropic materials, where phonons dispersion along 

one direction (denoted as “soft” axis) is much softer than the other directions (“stiff” directions). 

For example, in graphite, the weak inter-layer Van der Waals interactions lead to nearly flat 

dispersion along the cross-plane direction. In such case, if one consider heat flow along stiff  axis 

(e.g. in-plane direction for graphite), there will be significant phonon scatterings involving 

phonons along the “soft” axis, due to the large scattering phase space provided by the flat 

phonon band along this axis  and their high phonon occupations resulting from the low phonon 

frequencies. Therefore, phonons as shown in Fig. S4 (b), suffer from a large amount of 

scatterings with G = Gcross (see Eq. [1], where Gcross is the lattice vector in the reciprocal space 

along the cross-plane direction), which are regarded as a Umklapp scattering process based on 
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the conventional wisdom, but have no effect on heat flow along the “stiff” direction in our 

revised picture.  

Conclusion 

 In summary, we have shown that, contrary to conventional wisdom pioneered by Peierls, 

not all U-scattering processes are resistive. Whether or not a U-scattering event contributes to 

thermal resistance depends on its projection to the heat flow direction. A U-scattering process 

causes thermal resistance only when the projected momentum is not conserved. This distinction 

is crucial in anisotropic materials. Using the new definition of N-scattering and U-scattering, we 

show that the Callaway model combined with the first principles calculations gives a much more 

precise prediction of the total thermal conductivity and the mode-specific properties as well. By 

showing its substantial effects on second sound propagation length, we also highlight the 

potential impact of our new definition on the study of phonon hydrodynamic transport.   

 

Methods 

Computational Details.   

The computational details for BP and graphite follows those in Ref.  [47] and Ref.  [12], 

respectively. Briefly, for BP, calculations were carried out using the Quantum ESPRESSO 

package  [48]. The ultrasoft pseudo-potential with Perdew–Burke–Ernzerhof (PBE) exchange–

correlation functional was employed to describe the interactions between the phosphorus atoms. 

For graphite, computations were performed by using the Vienna Ab Initio Package (VASP)  [49–

51] with projector-augmented-wave (PAW) pseudopotentials and local density approximation 

(LDA) for the exchange-correlation energy functional. To include the van der Waals (vdW) 

interactions between layers in graphite, we used an explicit nonlocal functional of density named 

optB88 functional  [52,53]. In addition, the third-order force constants of BP were calculated 

using a real space supercell approach with a 5×4×1 supercell and a 2×2×1 k-grid, considering the 

5th nearest neighbors. 

 

N-scattering and U-scattering rate 
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The phonon-phonon scattering rate due to anharmonicity is given by  [54]: 

 Γఒఒᇲఒᇲᇲേ ൌ ԰గସே೛ ௙బᇲט௙బᇲᇲାଵ/ଶטଵ/ଶఠഊఠഊᇲఠഊᇲᇲ ห ఒܸఒᇲఒᇲᇲേ หଶߜሺ߱ఒേ߱ఒᇲെ߱ఒᇲᇲሻ                             [9] 

 

where λ represents (n, q) with n being the branch number and q the phonon wavevector,  “+” and 
“-” correspond respectively to phonon absorption and emission, ଴݂ᇱ stands for ଴݂ሺ߱ఒᇲሻ, and Np is 
the total number of grid points. Energy conservation is enforced by the Dirac delta function. The 
three-phonon scattering matrix ఒܸఒ‘ఒ‘’േ ൌ ܸሺ݊, ;ܙ ݊ᇱ, േܙᇱ; ݊ᇱᇱ,  :ᇱᇱሻ is given by  [54]ܙ

ܸሺ݊, ;ܙ ݊ᇱ, ;ᇱܙ ݊ᇱᇱ, ᇱᇱሻܙ ൌ෍෍ ෍ ෍Φఈఉఊ଴,௞;௟ᇲ,௞ᇲ;௟ᇲᇲ,௞ᇲᇲ݁௜ܙᇲ·ࡾ೗ᇲఈఉఊ௟ᇲᇲ௞ᇲᇲ௟ᇲ௞ᇲ௞ ݁௜ܙᇲᇲ·ࡾ೗ᇲᇲ ఈ௞௡ߦ ሺܙሻߦఉ௞ᇲ௡ᇲ ሺܙᇱሻߦఊ௞ᇲᇲ௡ᇲᇲ ሺܙᇱᇱሻඥ݉௞݉௞ᇲ݉௞ᇲᇲ  

[10] 

where ࡾ௟ᇲ is the lattice vector, and ݉௞ is the mass of the kth atom，Φఈఉఊ଴,௞;௟ᇲ,௞ᇲ;௟ᇲᇲ,௞ᇲᇲ is the third-
order force constant and ߦఈ௞௡ ሺܙሻ is the α component of the eigenvector of phonon branch n with 
wavevector q.  

The phonon-phonon scattering rate can be calculated as: 

 ߬ఒ,ே/௎ିଵ ൌ ∑ ቀΓఒఒᇲఒᇲᇲା ൅ ଵଶ Γఒఒᇲఒᇲᇲି ቁఒᇲఒᇲᇲאௌಿ/ೆ                                 [11] 

 

The summation is over all phonon mode indices ߣᇱ,  :ᇱᇱ satisfyingߣ

ఒܙ  േ ఒᇲܙ ൌ ఒᇲᇲܙ ൅ ۵                                                     [12] 

 

where “+” and “-” correspond to constraint for Γఒఒᇲఒᇲᇲା  and Γఒఒᇲఒᇲᇲି  accordingly and G represents a 
reciprocal lattice vector. If G = 0, the summation gives N-scattering rates, while Umklapp 
scattering rates is obtained if we set G ≠0. In our new definition, Gj, the projection of G along 
the heat transport direction is used instead. If Gj = 0, the summation gives N-scattering rates, 
while Umklapp scattering rates is obtained if we choose Gj ≠ 0.  
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Figure 1.  Schematic illustration of normal scattering (N-scattering) and Umklapp scattering (U-
scattering) processes, as conventionally defined. (a) N-scattering does not induce thermal 
resistance in either x- or y-direction, while (b) U-scattering induces resistance in x-direction but 
not in y-direction.  
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Figure 2.   Thermal  conductivity of (a) BP in the zigzag direction and (b) Graphite in the basal direction. 
Insets show atomic structures of BP and graphite, as well as the reciprocal space for graphtie. 
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Figure 3.  Effective lifetime at 300 K under a tempearature gradient in the x-direction obtained for BP (a-
d) and graphite (e-h) based on (a,e) exact iterative solution; (b,f) the Callaway model with new definition 
of N- and R-scattering rates; (c,g) the Callaway model with orignal definition; and  (d,h) the RTA model. 
For phonons enclosed by the white semi-circle at the zone boundary in the y-direction, conventional U-
scattering events can readily take place. However, these scatterings are considered N-scatterings based on 
the new definition. 
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Figure 4. Distribution of U-scattering percentage in the reciprocal space for BP with (a) new definition 
and (b) original definition of N- and U-scattering at 300 K, under a temperature gradient in the x-direction.   
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Figure 5. Propagation length of second sound as a function of temperature computed using the Callaway 
model with different definitions of N-scattering and U-scattering in (a) BP and (b) graphite. 

 


