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We explore the physics of the disordered XYZ spin chain using two complementary numerical
techniques: exact diagonalization (ED) on chains of up to 17 spins, and time-evolving block dec-
imation (TEBD) on chains of up to 400 spins. Our principal findings are as follows. First, we
verify that the clean XYZ spin chain shows ballistic energy transport for all parameter values that
we investigated. Second, for weak disorder there is a stable diffusive region that persists up to a
critical disorder strength that depends on the XY anisotropy. Third, for disorder strengths above
this critical value energy transport becomes increasingly subdiffusive. Fourth, the many-body local-
ization transition moves to significantly higher disorder strengths as the XY anisotropy is increased.
We discuss these results, and their relation to our current physical picture of subdiffusion in the

approach to many-body localization.

PACS numbers: 75.10.Pq, 71.23.An, 66.30.Xj

Introduction. Although quantum mechanics is over a
hundred years old, some of its most striking predictions
about macroscopic systems have been overlooked until
recently. Now, however, technological progress in isolat-
ing and controlling nano- and mesoscopic quantum sys-
tems [1, 2] has led to renewed interest in their funda-
mental properties. These newly available experimental
avenues, and the associated computational and analyti-
cal progress, are once again bringing questions about the
quantum mechanics of macroscopic systems to the fore.

One recent prediction is the typicality of a localized
phase in strongly disordered quantum systems, an effect
known as many-body localization (MBL) [3-7]. For non-
interacting systems, it has long been known from the
work of Anderson [8] (and the large amount of numerical
and analytical work that followed [9]) that, when the
disorder is sufficiently strong, transport stops. Examples
include impurity-band electrons in a semiconductor at
sufficiently low densities [10] and waves propagating in a
medium with an irregular dielectric constant [11].

Recent works aimed at determining what localiza-
tion means for interacting systems have shown the phe-
nomenology of these ‘transportless” MBL systems to be
quite rich. Their novel physics includes the slow but con-
tinued growth of entanglement measures due to dephas-
ing [12-16] and the emergence of integrability [17-20].
The latter has important implications for future tech-
nologies, in particular for quantum computation [21-23].

While there are ongoing debates about the differences
between one-dimensional chains and higher-dimensional
lattices [24-26], and about the existence or non-existence
of a transition in energy at fixed disorder strength [27—
29], the basic physics of the MBL phase is nonetheless

fairly well understood by now. By contrast, very little
progress has been made on the properties of the transi-
tion between the ergodic and MBL phases, and in par-
ticular the region immediately preceding it on the low-
disorder side. Numerics in the critical and pre-critical
regions of the isolated system scarcely converge, and the
critical exponents that emerge from a scaling analysis ap-
pear to be ruled out by general considerations [27, 30, 31].

It is thus useful to observe that one can access much
larger system sizes by considering open-system dynamics.
Previous papers have pursued this idea to characterize
transport in XXZ spin chains, where the z-projection of
the total spin is conserved: spin transport in [32-34], and
energy transport in [35] though with severely limited nu-
merics. To summarize the results of [32], there is a small
region of diffusive transport and a large, pre-critical re-
gion of subdiffusive transport.

In this paper we investigate the physics of the disor-
dered spin-1/2 XYZ chain. We choose this model be-
cause it is a quantum spin chain in which all conserva-
tion laws are violated except energy. In particular, the
U(1) symmetry of the XXZ model, which corresponds
in a fermionic picture to fermion number conservation, is
broken in the XYZ model. Our investigation employs two
complementary techniques. First, we time-evolve open
chains of up to 400 spins using time-evolving block dec-
imation (TEBD). This method, shown schematically in
Fig. 1(a), gives us access to the transport properties of
the system at weak-to-intermediate disorder strengths,
including the subdiffusive region. Second, we use exact
diagonalization (ED) on chains of up to 17 spins, which
gives us access to the spectral properties of the system
at strong disorder, including the MBL transition itself.
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FIG. 1. (a) A disordered spin-1/2 XYZ chain, with Lindblad
driving applied to the pair of spins at each end to impose a
temperature gradient. In our time-evolving block decimation
(TEBD) studies, we time-evolve such a system until it reaches
its non-equilibrium steady state (NESS). We supplement that
analysis by exact diagonalization (ED) studies on closed (and
much shorter) chains. (b) The resulting ‘phase diagram’ of
the disordered spin-1/2 XYZ chain, for an Ising anisotropy
of A = 1.2. Here n is the XY anisotropy of the exchange
interaction between the spins, and W is the strength of the
random-field disorder. In the left-hand panel, the dashed line
shows the border between diffusive and subdiffusive energy
transport determined from our TEBD studies, and the bars
are error estimates. The color scale shows the transport ex-
ponent « estimated via interpolation between the numerically
determined values, which are indicated by gray points. The
right-hand panel shows the location of the MBL transition,
determined by three different analyses of our ED results: the
crossover in level statistics from random-matrix to Poissonian,
r; the peak in the standard deviation of the Shannon entropy,
o(Ssn); and the peak in the standard deviation of the von
Neumann entropy, o(SyN).

Summary of main results. Our principal findings are
as follows:

First, we verify that in the absence of disorder (W = 0)
the transport is ballistic [36], in contrast with the classi-
cal model [37] where the non-linear interaction between
the spin modes causes spin waves to diffuse. We attribute
this behavior to the integrability of the quantum model
[38], as non-integrable or classical spin chains typically
show diffusive transport (see for example [39-41]).

Second, for weak but non-zero disorder (0 < W < 0.7)
there is a region in which energy transport is diffu-
sive. This diffusive region persists up to a finite criti-
cal disorder strength, W, (n), which depends on the XY
anisotropy 7 (i.e. on how strongly the U(1) symmetry of
the XXZ chain is broken).

Third, for increasing disorder strengths W > W.1(n)
energy transport becomes increasingly subdiffusive, while

increasing the XY anisotropy 7 counteracts this effect
and brings the system back towards the regime of diffu-
sive energy transport. We can follow this behavior up to
disorder strengths of W =~ 2.2, where we see subdiffusive
exponents up to y ~ 2.7.

Fourth, the system exhibits an MBL transition at a
disorder strength W,.o(n), which increases significantly
as the XY anisotropy 7 is increased. Due to the above-
mentioned lack of a U(1) symmetry in the XYZ chain,
this transition cannot be thought of as directly following
from the arguments for localization of [3]. It is, however,
in line with the most recent research on the topic which
relies less on the particle interpretation [42] and more on
non-proliferation of resonances. We determine W, via
ED analysis of chains with lengths up to L = 17 spins,
using the standard tests of the eigenstates and spectrum
of the Hamiltonian [4, 27, 43, 44].

A phase diagram summarizing these results is shown
in Fig. 1(b). In the remainder of this paper we present
the details of the model under study and the methods we
use, and then proceed to discuss each of these results in
turn.

Model.
chain is

The Hamiltonian of the disordered XYZ spin

L-1
H =" |1 m)sisin + (1= n)shst, + Asisi |
n=1

L
+ Z hnsg. (1)
n=1
Here s& = 10% are spin-1/2 operators (o are Pauli

matrices), n is the XY anisotropy of the coupling (the
parameter that breaks the U(1) symmetry of the XXZ
model), A is the Ising anisotropy, and h,, € [-W, W] are
uncorrelated disorder fields randomly drawn from a uni-
form distribution. The n — 0 limit of this model is the
well-studied XXZ spin chain;  # 0 introduces a term
equal to 0>, (s}, | + s, s,,1) /2, which violates the
conservation of the z-component of the total magneti-
zation. In the fermion language this corresponds to a
nearest-neighbor pairing term.

Methods. We use two complementary methods:
TEBD on open chains, and ED on closed ones. In our
TEBD studies we couple the ends of the chain to two
thermal baths at different temperatures, and describe
the time-evolution of the resulting open system using the
Lindblad equation [45]

dp

o= —i[H,pl+ £ {LL(p) + Lr(p)}. (2)

The first term on the right-hand side of (2) describes the
coherent dynamics; the Lindblad terms L1,(p) and Lg(p)
correspond to the left and right reservoirs respectively,
and k is the strength with which we couple them to the
chain. We apply a two-site thermal driving protocol that
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FIG. 2. The energy-transport exponent « in the disordered
spin-1/2 XYZ chain at weak to moderate disorder strengths,
as determined from our TEBD numerical results. All results
reported are for an Ising anisotropy of A = 1.2. (a) The expo-
nent 7 as a function of the XY anisotropy 7, for various values
of the disorder strength W. -~ = 1 corresponds to diffusive
energy transport; for v > 1, energy transport is subdiffusive.
(b) The exponent v as a function of the disorder strength W,
for various values of the XY anisotropy 1. The open symbols
in both panels indicate cases in which the chain was not long
enough to achieve fully diffusive behavior, and these points
should therefore be disregarded (see Fig. 3 and corresponding
text).

has been used in similar transport studies [46, 47], which
drives an isolated pair of spins to a thermal state with
temperature T, p o exp(—H/T). We drive the pair of
spins on the left-hand end of the chain towards a high
temperature 77, and the right-hand pair towards a lower
temperature Tg, as depicted in Fig. 1(a). For the remain-
der of this paper we use the target temperatures T, = oo
and Tr = 20.

We then solve (2) via TEBD to find the nonequilibrium
steady state (NESS) energy current in the chain, 52, for
various values of its length, L. The TEBD approach per-
mits us to reach very large system sizes of up to L = 400
spins, avoiding the severe finite-size effects described in
[32]. Details of our simulation can be found in the Sup-
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FIG. 3. Testing whether our chains are long enough for the
scaling limit to have been reached. In this example the XY
anisotropy parameter 7 = 0.4. (a) The numerical collapse of
the energy current j~ as a function of chain length L onto
a single curve under suitable scaling by the disorder strength
W . Note the typical crossover from ballistic behavior in short
chains to diffusive behavior — indicated by the dashed line —
in longer ones. (b) The ‘running exponent’ v(z), determined
from tangential power-law fits to the universal curve, showing
that v reaches the diffusive value of 1 above the critical length
scale ™ ~ 25 — 30.

plemental Material [48]. We then analyze the scaling of
j¥(L) with the length of the system L. In the delocal-
ized region preceding the MBL transition we expect the
current to scale as j¥ ~ L™, where v = 0 corresponds
to ballistic transport, v = 1 to diffusion, and v > 1 to
anomalous subdiffusive transport [32]. The results of this
analysis are shown in Fig. 2.

Because the convergence of our TEBD method worsens
at stronger disorder, we cannot use it all the way to the
MBL transition. Therefore, we also perform ED studies
on short, closed chains (up to L = 17 spins for the XXZ
model and L = 16 spins for the XYZ model) with peri-
odic boundary conditions. We identify the location of the
MBL transition using the crossover from random-matrix
to Poissonian statistics in the eigenenergy spectrum and
the peaks in the fluctuations of the Shannon entropy Ssp
and the half-chain entanglement entropy Syn. We eval-
uate these quantities using the 200 eigenstates closest
to the middle of the many-body energy spectrum, and
then average over disorder realizations. We then deter-
mine the location of the MBL transition by performing
a finite-size scaling analysis of the disorder-averaged re-
sults. The results of this analysis are shown in Fig. 4.

No disorder: ballistic energy transport. In the limit of
no disorder (W = 0), we find that the energy current



5F is independent of the length of the system, which sig-
nals that the energy transport is ballistic; this is consis-
tent with previous work on the XYZ model [36]. Ballis-
tic energy transport has been linked to the integrability
of quantum systems [49], a characteristic which is also
visible in the Poissonian statistics of the Hamiltonian’s
eigenenergy spectrum [50]. For 0 < A <2and0<n <1
we find that the average of r falls close to the Poissonian
value rp = In4 — 1 over the entire spectrum. Details of
this analysis can be found in the Supplemental Material
[48].

Weak disorder: stable diffusive phase. At weak but
non-zero disorder, 0 < W < W,1(n), the transport is
diffusive. This has previously been shown for spin and
energy transport in the XXZ chain (n = 0) [51], but
we report it here for the first time in the XYZ case.
The diffusive phase is not materially altered when the
XY anisotropy is increased, except insofar as it extends
to stronger disorder, i.e. W,i(n) increases with 7 (see
Fig. 2(b)). We explain in the Supplemental Material how
we obtain Wy (n) [48].

As in previous studies, we find severe finite-size ef-
fects in the results at weak disorder, with the asymp-
totic scaling behavior of j¥(L) observed only for values
of L exceeding a critical length L*, where L* increases
with decreasing W. For a ballistic-to-diffusive crossover,
it has been shown that this length scale should scale as
L* ~ W=2 [32]. If we apply our analysis naively to a
chain of length L < L* it yields an exponent v < 1, and
thus falsely suggests superdiffusive energy transport.

However, we can use the scaling properties of j¥(L)
to test whether the scaling regime has been reached in
any given case. In Fig. 3(a) we demonstrate that, by
scaling the data using x = LW and y = jEWo~7, it is
indeed possible to collapse all points onto a single univer-
sal curve. For the example shown, n = 0.4, the best em-
pirical scaling exponent is v =~ 1.87, in reasonable agree-
ment with the predicted value of 2. We also find that
v — 9 = 0.01, which is close to the predicted behaviour of
v =124 [32].

On the basis of this analysis, we indicate via open sym-
bols in Fig. 2 those cases where the scaling regime has not
been reached, and where we are therefore confident that
the reported value of v is not reflective of the thermo-
dynamic limit. Further details of how we identify these
points may be found in the Supplemental Material [48].

Intermediate disorder: subdiffusive energy transport.
We find that the disordered XYZ model exhibits subdif-
fusive energy transport at W > W,1(n). In contrast to
the diffusive region, in the subdiffusive phase the trans-
port exponent ~y varies continuously as a function of both
the disorder strength W and the XY anisotropy 7. This
variation shows two main trends. First, as shown in
Fig. 2(a), a larger n results in a smaller ~, i.e. break-
ing the U(1) symmetry pushes the system back towards
diffusive transport. Second, as shown in Fig. 2(b), in-
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FIG. 4. Locating the MBL transition via exact diagonaliza-
tion. This figure shows the (a) level statistics r parameter, (b)
the standard deviation of the entanglement entropy distribu-
tion, and (c) the standard deviation of the Shannon entropy
distribution, all as a function of disorder strength W for sev-
eral values of the XY anisotropy parameter 1. These results
were obtained from exact diagonalization of the Hamiltonian
for a disordered XYZ spin chain of length L. = 15 with pe-
riodic boundary conditions. The error bars are smaller than
the symbol size.

creasing disorder strength W leads to an increased value
of ~y for all values of 7, i.e. increasing disorder pushes the
system further away from the diffusive regime. While
we cannot follow this behavior all the way to the MBL
transition, the location of which we determine by other
means, we expect that v would diverge there.

Strong  disorder:  many-body  localization. The
disorder-averaged level statistics parameter 7, and
the standard deviations of two types of entropy fluc-
tuation o(Syn) and o(Ssy), are shown as a function
of disorder strength in Fig. 4. All three measures
demonstrate a pronounced increase of the critical
disorder strength for the MBL transition, W,.s, as the
XY anisotropy parameter 7 is increased. The phase
diagram in Fig. 1(b) shows the approximate position
of the MBL transition according to a scaling analysis
of these data. The scaling analysis was performed
by numerically collapsing the data for different chain
lengths to a function of the form g(LY/*[W — W),
where v and W, are fitting parameters, as in previous
work [27]. We note that, as found in similar studies, the
exponent v < 2, contrary to established predictions [30].

Discussion. In this paper, we have provided evidence
that there are four phases in the disordered spin-1/2 XYZ
chain: a ballistic phase at zero disorder; a diffusive phase
for a finite range of disorder from 0% to a critical value
We1(n); a subdiffusive phase for a finite range of disorder



from W, (n) to the MBL transition Wea(n); and a many-
body localized phase for disorders above Wea(n). Impor-
tantly, the model that we have studied takes us beyond
cases — such as the previously studied XXZ chain — that
can be thought of in terms of the strongly-interacting dy-
namics of a fixed number of particles. The XYZ model
breaks the U(1) symmetry in a controlled way, and this
allows us to observe the changing behavior of the system
as we interpolate from the XXZ chain to other models
(such as the transverse-field Ising model) which exist in
separate regions of parameter space.

The essential physics can be summed up in two short
phrases: disorder tends to localize; XY anisotropy tends
to delocalize. How should we understand the latter ef-
fect? One way is to think in the fermionic picture, in
which the XY anisotropy n appears as a pair-creation
(and of course a partner pair-annihilation) term. This
means that the system, in its time-evolution, can visit
sectors with other fermion numbers, which it could not in
the XXZ case. Barring significant phase-coherence effects
between the states in the N and N + 2-particle sectors
(which there seems to be no reason to expect), this opens
up new channels for energy transport, and thus would be
expected to enhance the delocalization of energy density
excitations. We plan to present further details of this
argument in a forthcoming publication [52].
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