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We apply a result from graph theory to prove exact results about itinerant ferromagnetism.
Nagaoka’s theorem is extended to all non-separable graphs except single polygons with more than
four vertices by applying the solution to the generalized 15-puzzle problem, which studies whether
the hole’s motion can connect all possible tile configurations. This proves that the ground state
of a U — oo Hubbard model with one hole away from the half filling on a 2D honeycomb lattice
or a 3D diamond lattice is fully spin-polarized. Furthermore, the condition of connectivity for N-
component fermions is presented, and Nagaoka’s theorem is also generalized to SU(N)-symmetric

fermion systems on non-separable graphs.

Introduction. — The origin of itinerant ferromagnetism
based on Fermi surface splitting rather than the ordering
of local spin moments is a difficult question in condensed
matter physics’24. As illustrated by Stoner’s criterion,
itinerant ferromagnetism arises from Fermi statistics —
parallel spin alignment leads to the antisymmetrization
of electron spatial wavefunctions, which reduces the re-
pulsive interaction energy®. However, spin polarization
suffers from a kinetic energy cost, which often domi-
nates the gain of the exchange energy. As a result,
electrons typically remain unpolarized even in the pres-
ence of strong interactions, developing highly correlated
wavefunctions to reduce interaction energy. Hence, non-
perturbative results and exact theorems in particular are
desired for the study of itinerant ferromagnetism to set
up reliable benchmarks. Known theorems include Na-
gaoka’s theorem? and its various generalizations!'!12:25
and flat-band ferromagnetism'®'®. Inspired by the or-
bital activity characterized by Hund’s coupling in most
ferromagnetic metals, a set of theorems of itinerant ferro-
magnetism in orbital band systems driven by Hund’s cou-
pling have been recently proven??2°, identifying phases
of ferromagnetism with a large range of electron fillings
and finite band width2°.

Nagaoka’s theorem, the first exact result showing itin-
erant ferromagnetism?, proves the existence and unique-
ness, up to spin degeneracy, of the fully polarized ground
state for the single-band Hubbard model. It applies
for the case with a single hole away from half-filling
in the limit of U — oo, in which the only energy is
the hole’s kinetic energy. Intuitively, the hole’s mo-
tion is fully coherent in the background of a fully po-
larized spin configuration, while it becomes incoherent
if spins are unpolarized. Hence, the kinetic energy is
optimized with a configuration of the maximum total
spin. The proof of Nagaoka’s theorem was simplified by
Tasaki'! through use of the Perron-Frobenius theorem,
which has two key conditions—non-positivity and con-
nectivity. Non-positivity means that all the off-diagonal
matrix elements of the many-body Hamiltonian are neg-
ative or zero, which is feasible for a single hole under a
suitably defined basis but generally not for more than

one hole due to fermionic statistics. Connectivity means
that the hole’s motion can connect all configurations of
spins and holes.

The connectivity condition is typically difficult to ver-
ify on a general lattice. It has been shown to hold on
lattices composed of loops of size three or four!'!'2.In
this case, the hole’s hopping around each loop generates
arbitrary permutations of spins. The 2D square and tri-
angular lattices and the 3D cubic lattices satisfy this con-
dition, and Nagaoka’s theorem applies to them. However,
for lattices consisting loops of more than 4 sites, such as
the 2D honeycomb lattice and 3D diamond lattice, it
remains unclear from previous work whether Nagaoka’s
theorem holds. It is thus interesting to ask whether nec-
essary and sufficient conditions can be determined under
which connectivity is satisfied.

Graph theory has been a useful tool in solving physi-
cal problems. A celebrated example is the diagrammatic
expansion of field theory, in which graph theory is used
to guide the loop expansion and the one-particle irre-
ducible vertex expansion®”. In the 1/N expansion of the
large N-method, Feynman diagrams are sorted based on
their degree of planarity, and the leading-order contri-
bution comes from the planar diagrams?®. Graph the-
ory also plays an important role in the study of poly-
mer configuration??, phase transitions in Ising and Potts
models®®, and electric network designs®!. Physical prob-
lems defined on graphs have also attracted consider-
able attention, including random walks®?, field theory33,

phase transitions®*, and dynamic processes3®.

In this article, we find an interesting connection be-
tween the study of itinerant ferromagnetism and the cel-
ebrated 15-puzzle problem of graph theory. In its original
form, the 15-puzzle consists of a 4 x 4 grid of tiles num-
bered from 1 to 15, with the 16th cell on the grid being
the hole. The hole can be transposed with neighboring
tiles, and the goal is to permute a scrambled configura-
tion to put the tiles in order, as shown in Fig. 1. The gen-
eralized version of the 15-puzzle problem was examined
on arbitrary graphs in Ref. [36]. By relating the connec-
tivity condition of lattices to the 15-puzzle problem, we
find that connectivity holds for spin—% electrons if and



'1]2(3]4
'5/6|/7|8
'9|10[11(12

13/14/15

a) b) c)

FIG. 1. (a) The solved configuration of the original 15 puzzle.
The goal of the puzzle is to return to this configuration from
any scrambled starting one. (b) For the 15-puzzle analogous
to spin-1/2 particles, there are only two labels. A sample
configuration on a 4 x 4 grid is shown here with + for spin-up
and — for spin-down. It is mapped to a spin configuration
with a single hole in a square lattice in (c).

only if the lattice (graph) is non-separable and not a sin-
gle polygon larger than a quadrilateral. This generalizes
Nagaoka’s theorem to a large class of lattices including
the honeycomb lattice and the diamond lattice for which
Nagaoka’s theorem has not been previously proven. We
also provide criteria for the connectivity condition for
SU(N) fermions in the fundamental representation, lead-
ing to a generalized SU(IN) Nagaoka’s theorem.

In what follows, we refer to a“graph” instead of a “lat-
tice” since the results require a finite number of sites and
do not depend on a regular lattice structure. Consider a
spin—% Hubbard model on a general graph,

H = Z tijclycio +U Z NNy, (1)
K3

4,J,0

where o is the spin index, n;, = c}acw, and #;; is a
symmetric matrix of hopping amplitudes that encodes
the graph structure. If sites ¢ and j are connected, then
t;j > 0, otherwise t;; = 0. In the limit of U — oo, states
with doubly occupied sites are projected out, and every
site has exactly one electron apart from the site with a
hole. On a bipartite graph, the overall sign of ¢;; does
not influence physical properties, since the sign can by
changed by a gauge transformation ¢;, — —c¢;, on all
sites ¢ in one of the two subgraphs.

In order to consider a general graph structure, we now
summarize Tasaki’s proof of Nagaoka’s theorem!!. Since
the Hamiltonian of Eq. (1) is SU(2) symmetric, the
Hilbert space decomposes into sectors labeled by the z-
component of total spin S, ;. Without loss of general-
ity, consider the sector where S, ;s = 0 or 1/2 for cases
with an even or odd number of spins, respectively, since
any SU(2) multiplet has a component in this sector. The
basis is defined as

7 {o}) = (= th (r:)[0), (2)

where cT _is ordered following an arbitrary but fixed
sequence of the vertex indices, h is the index of hole’s
location, and the primed product excludes the creation

operator at the hole’s vertex. In this basis, the Hamilto-
nian matrix satisfies a non-positivity condition in that its
elements are all 0 or —t;;. Suppose that the Hamiltonian
additionally satisfies a connectivity condition, which re-
quires that there exists a positive integer power N for
any two basis elements |h, {c}) and |/, {o’}) such that

(n' {o"H"|h,{o}) #0. 3)

This connectivity condition intuitively means that any
configuration of the spins and hole in the S, sector can
be converted into any other configuration through a se-
quence of hole hopping.

According to the Perron-Frobenius theorem, if both
non-positivity and connectivity are satisfied, Eq. (1) has
a unique ground state,

gy = > an(oylh.{o}), (4)
h,{o}

with a positive-definite wavefunction, meaning ay, (5} >
0 for all states in the selected S, sector. To determine
the total spin of |¢,), a trial state |¢;) is constructed
by summing over all states in the S, sector with equal
weight, [¢) = 32 5y |1, {o}). Such a state is fully sym-
metric under permutation of spin configurations and is
thus fully spin polarized. Since (14|¢1) > 0, |¢b,) shares
the same quantum numbers as |1);), meaning the ground
state must also be fully spin polarized.

In order to determine conditions under which the con-
nectivity condition holds, it is useful to consider the gen-
eralized 15-puzzle problem, which was examined on arbi-
trary graphs in Ref. [36]. Through induction on the num-
ber of loops in the graph, it is proven that, apart from two
classes of exceptions, any permutation can be performed
on a non-separable, non-bipartite graph, and any even
permutation can be performed on a non-separable, bipar-
tite graph. Here “non-separable” means that the graph
remains path-connected if any single vertex is removed.
The first class of exceptions consists of single polygons
larger than a triangle, and the second class consists of
the so-called 6y-graph which is a single hexagon with an
extra vertex in the middle that connects two opposite
hexagon vertices as shown in Fig. 3 in the Supplemental
Material (S. M.) I37.

We can now relate the connectivity condition to the
generalized 15-puzzle problem. Each electron is labeled
by “+” or “—” according to its eigenvalue S, = j:% and
electrons of the same label are indistinguishable. For
example, Fig. 1 (b) illustrates a 4x4 lattice, in which each
square plaquette represents a vertex of the corresponding
graph. The basis elements Eq. (2) correspond to an
assignment of 4+, —, or the hole to each location. The
connectivity condition is satisfied if any configuration of
labels can be converted to any other with the same total
numbers of + and — by a sequence of transposing the
hole with neighboring labels. On a general graph, this
takes the form of the generalized 15-puzzle with only two
distinct tile labels. Based on the solution to the general
15-puzzle problem3%, we have the following theorem.



Theorem 1 The Hamiltonian in FEq. (1) on a graph G
satisfies the connectivity condition of Eq. (3) if and only
if G is non-separable and G is not a polygon with V- > 5
vertices. The ground state of the model in Eq. (1) is
then fully spin-polarized and unique up to spin degeneracy
when U — oo and there is exactly one hole.

Proof: We first prove sufficiency. The connectivity con-
dition can be verified if G is a single triangle or quadri-
lateral simply by cycling the hole around the loop and
noting that at least two spins are identical in the quadri-
lateral case since there are only two distinct spin labels.
Connectivity also holds on the 6p-diagram, as shown in S.
M. I?7. For the remaining non-separable, non-polygonal
graphs, we note that since spin only has two labels, the
permutations of the spins and hole are a subset of the pos-
sible permutations in the corresponding 15-puzzle prob-
lem where every vertex has a distinct label. Hence, for
the non-bipartite graphs, where all permutations can be
performed in the 15-puzzle problem with all labels dis-
tinct, the connectivity condition is immediately satisfied.
For the bipartite graphs, the vertex number is larger than
4, and there are thus at least two vertices occupied by
the same spin label. Since exchanging these two identical
spin labels is an identity operation, any odd permutation
can be composed with an exchange of two identical spin
labels to produce an even permutation with the same ef-
fect on the labels. Hence generating all the even permu-
tations on the bipartite graph is equivalent to generating
all permutations when there is a repeated label. Since
the 15-puzzle problem on the bipartite graphs allows for
any even permutation, connectivity is satisfied.

Next we prove necessity by demonstrating that the
connectivity condition is satisfied for neither polygons
with vertex number V' > 5 nor for separable graphs. For
the polygons with V' > 5, permutations leaving the hole
fixed are cyclic permutations, all generated by a single
V — 1-cycle, on the spin labels and thus cannot connect
all configurations in the S, sector in general since these
cyclic permutations cannot exchange neighboring spins
unless every spin but one has the same label. This can
also be seen by counting the number of configurations in
the S 10t = 0 or 1/2 sector, where the total configuration
number is N = V1/[m!{(V —m — 1)!] where m = Y1,
or, % for odd or even V, respectively. Cycling the
hole around the polygon can at most generate V(V — 1)
configurations, which is less than N, for V' > 5. For
the separable graphs, we only need to consider a general
connected but separable graph, which can be divided into
two subgraphs A and B with a single vertex O connecting
them. A and B are thus disconnected, and the overall
graph is disconnected, if O is removed. If the hole is ini-
tially at O, then if the hole moves to A, it cannot enter
B without passing O, and vice versa. As a result, the
hole’s motion cannot be used to move spins between A
and B, and permutations can only be performed within
A and O, or B and O, but not between A and B.

Theorem 1 ensures Nagaoka ferromagnetism for all
regular lattices, which goes beyond the previous results
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FIG. 2. (a) A 3-cycle for any adjacent three vertices 1, 2, and
3 can be performed in a hexagon loop with concrete steps
given in S. M. I137. (b) Vertices 1 and 2 are occupied by spin-
1 and |. Apply (123) or (132) when 3 is 1 and |, respectively,
then spins on 1 and 2 are exchanged without affecting other
vertices as shown in (c).

in literature applying for graphs composed of triangles
and quadrilaterals'’>!'2. For example, this demonstrates
Nagaoka ferromagnetism on lattices where the minimal
loops are hexagons. To our knowledge, this was previ-
ously an open problem.We thus have the following corol-
lary.

Corollary Nagaoka ferromagnetism applies to both the
2D honeycomb lattice and the 3D diamond lattice.

We can explicitly demonstrate connectivity in the hon-
eycomb lattice using 3-cycles, and the same method ap-
plies to the diamond lattice as well. Fig. 2 (a) presents
that a 3-cycle for any three adjacent vertices in a hexagon
loop can be performed for the 15-puzzle problem with-
out affecting other vertices, and a construction of such a
3-cycle is given in S. M. II37. For the case of spins, two
opposite labels on any edge can be exchanged without
affecting other vertices as shown in Fig. 2 (b). Without
loss of generality, assume vertices 1 and 2 are occupied
with spin labels 1 and |, respectively. If site 3 has spin-
1, then simply applying the cycle (123) will be exchange
the spins at sites 1 and 2. Otherwise, if site 3 has spin-T,
performing the cycle twice, or (321), will exchange the
spins. Next, consider any two vertices 1’ and 2’ with
opposite spin labels. We can choose a path connecting
them. If the hole is not on the path, it is straightforward
to show that by successively applying exchanges between
adjacent vertices along the path can exchange 1’ and 2’
without affecting other vertices. If the hole is on the
path, move it away, and after the exchange is performed,
reverse the hole’s motion. Since all the permutations of
spins can be generated by exchanges, they can also be
performed. In other words, the 3-cycles of adjacent ver-
tices generate all 3-cycles on the lattice. This establishes
connectivity on the honeycomb lattice.

The above demonstration of Nagaoka ferromagnetism
on the honeycomb and diamond lattices can serve as a
starting point for further studies. An interesting question
is the stability of the fully polarized Nagaoka state in
the presence of multiple holes. Following the method in
Refs.?83% we have shown in S. M. III37 that the ground
state energy F, satisfies the bounds of

Ey < E, < Ey +tO(N/* /M), (5)



where Eny = —zNjt with Nj the number of holes, z
the coordination number, M the total number of sites,
and a = 1/2 and 2/5 for the honeycomb and diamond
lattices, respectively. When Nj scales with M more
slowly than M, the upper and lower bounds meet in
the thermodynamic limit and the Nagaoka state is de-
generate with the ground state. The stability of the Na-
gaoka state against finite hole densities has been studied
by analytic estimations?® and a recent numeric density-
matrix-renormalization-group simulation'?. It would be
interesting to further explore exact results at finite hole
density in the thermodynamic limit.

Extensions — Recently, SU(N) symmetric fermionic
systems have attracted considerable attention in the con-
text of cold atom physics, where they can be realized by
alkaline earth fermions*43. Consider the SU(N) Hub-
bard model

N
U
H = Z tijcj’acj,a + 5 an(nl - 1)a (6)

ij,a=1

where 1 < a < N labels the fermion component, n; is the
number operator n; = cz’aci,(,, and t;; > 0 for con-
nected sites ¢ and j with ¢;; = 0 otherwise. In the U — oo
limit with one hole away from 1/N filling, where every
site but one has exactly one fermion, Nagaoka’s theo-
rem was previously generalized to this SU(N) system on
triangular, Kagome, and hypercubic lattices**. Without
loss of generality, below we only consider the case where
N is less or equal to the particle number, i.e., N <V —1.
The fermions considered here are in the fundamental rep-
resentation of SU(N), yielding N-component fermions.

It is natural to generalize Nagaoka’s theorem to the
SU(N) case on general graphs with the help of the 15-
puzzle problem. The non-positivity of the Hamiltonian
matrix of Eq. (6) can be established under a many-body
basis constructed similarly to Eq. (2). For the con-
nectivity condition, consider the non-separable graphs
other than the 6y-graph and polygons. For non-bipartite
graphs, the connectivity condition holds even when all
the occupied vertices have different fermion components,
which places no further requirements on N. For bipartite
graphs, since only even permutations can be performed,
at least two vertices must be occupied by fermions in the
same component to allow a 3-cycle involving two identi-
cal fermions to behave as an odd permutation. Satisfy-
ing connectivity thus requires V' > N + 2 for bipartite
graphs. For polygons, connectivity only holds on trian-
gle and quadrilateral for the SU(2) case, and it does not
holds on any polygons with V' > 4 for N > 3. For the 6y
graph, connectivity holds only for N = 2. Summarizing
the reasoning above, we have the following theorem.

Theorem 2 Consider the SU(N) Hamiltonian Eq. (6)
for N > 2 on a graph G with vertex number V.> N + 1
in the limit of U — +o00 with a single hole. The connec-
tivity condition is satisfied for G a non-separable graph
other than the Oy-graph and polygons with V > 4, with
an additional condition that V> N + 2 for G bipartite.

Then the ground state is in the fully symmetric one-row
SU(N ) representation and is unique up to the SU(N ) de-
generacy.

We can also generalize the ferromagnetism to hard-core
bosons with the same Hamiltonian Eq. (6). The Perron-
Frobenius theorem together with the 15-puzzle problem
can be used to prove a fully spin-polarized ground state.
For bosons, the hopping amplitudes need to be t;; < 0
for links to satisfy the non-positivity of the Hamiltonian
matrix elements. As opposed to the fermion case, ex-
tension to multiple holes is possible since bosons do not
suffer from the minus sign when switching two holes, al-
lowing non-positivity to hold. Connectivity continues to
hold for non-separable graphs other than single polygons
larger than a triangle and the y-graph, since a single
hole can still be used to solve the 15-puzzle and the re-
maining holes can be considered labels. When there are
at least two holes, connectivity holds on 6y as well, as
shown in S.M. IV. This yields Theorem 3.

Theorem 3 Consider the Hubbard model of Eq. (6) for
SU(N ) hard-core bosons in the U — ~+o0 limit on a graph
G. The connectivity condition for N > 2 is satisfied for
any number of bosons N, < V — 1 if and only if G is
a non-separable graph other than 6y and polygons with
V > 4 with an additional condition that V> N + 2 in
the case of only a single hole in a bipartite graph. If
there are at least two holes or N < 2, connectivity holds
if G is 0y as well. Then the ground state is in the fully
symmetric, one-row representation of SU(N ), which is
unique up to SU(N ) degeneracy.

Conclusions. — The graph theorem of the general-
ized 15-puzzle problem has been applied to establish the
Nagaoka ferromagnetic state of the infinite-U Hubbard
model on general graphs with a single hole away from
half-filling. We have found that for the SU(2) case, the
Nagaoka state is the unique ground state up to spin de-
generacy for all non-separable graphs other than single
polygons with vertex number V' > 5, as established by
Theorem 1. This extends Nagaoka’s theorem to the 2D
honeycomb lattice and the 3D diamond lattice, whose
minimal loops contain 6 vertices and are hence beyond
previous results in literature. Furthermore, Nagaoka’s
theorem can also be extended to the case of a single hole
in an otherwise 1/N-filled SU(N) Hubbard model. In the
SU(N) case, the result is valid on non-separable graphs
other than the fp-graph and single polygons with an ad-
ditional condition of V' > N + 2 for bipartite graphs, as
established by Theorem 2. Similar results can also be
generalized to SU(NN) hard core boson systems. These
results are helpful for further analytic and numeric stud-
ies of the mechanism for itinerant ferromagnetism and
searches for novel ferromagnetic states in condensed mat-
ter and ultra-cold atom systems.
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