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We report a detailed analysis of the energy spectra, second- and high-order structure functions
of velocity differences in superfluid 4He counterflow turbulence, measured in a wide range of tem-
peratures and heat fluxes. We show that the one-dimensional energy spectrum Exz(ky) (averaged
over the xz-plane, parallel to the channel wall), directly measured as a function of the wall-normal
wave-vector ky , gives more detailed information on the energy distribution over scales than the
corresponding second-order structure function S2(δy). In particular, we discover two intervals of ky
with different apparent exponents: Exz(ky) ∝ k−mC

y for k . k× and Exz(ky) ∝ k−mF
y for k & k×.

Here k× denotes wavenumber that separate scales with relatively strong (for k . k×) and relatively
weak (for k & k×) coupling between the normal-fluid and superfluid velocity components. We in-
terpret these k-ranges as cascade-dominated and mutual friction-dominated intervals, respectively.
General behavior of the experimental spectra Exz(ky) agree well with the predicted spectra [Phys.
Rev. B 97, 214513 (2018)]. Analysis of the n-th order structure functions statistics shows that in
the energy-containing interval the statistics of counterflow turbulence is close to Gaussian, similar
to the classical hydrodynamic turbulence. In the cascade- and mutual friction-dominated intervals
we found some modest enhancement of intermittency with respect to its level in classical turbulence.
However, at small scales, the intermittency becomes much stronger than in the classical turbulence.

I. INTRODUCTION

Below the Bose-Einstein condensation temperature
Tλ ≈ 2.17K, liquid 4He becomes a quantum super-
fluid 1–3 with the vorticity constrained to vortex-line sin-
gularities of core radius a0 ≈ 10−8 cm and fixed circula-
tion κ = h/M 4. Here h is Planck’s constant and M is
the mass of the 4He atom. The superfluid turbulence is
manifested as a complex tangle of these vortex lines with
a typical inter-vortex distance ℓ ∼ 10−4 − 10−2 cm 5.

Large-scale hydrodynamics of such system is usually
described by a two-fluid model, interpreting 4He as a
mixture of two coupled fluid components: an inviscid su-
perfluid and a viscous normal fluid. The temperature
dependent densities of the components ρs(T ) and ρn(T )
define their contributions to the mixture. The total den-
sity of 4He ρ = ρs(T )+ ρn(T ) = ρ(T ) weakly depends on
the temperature. The tangle of quantum vortexes medi-
ates the interaction between fluid components via mutual
friction force 2,5–8.

There is a building evidence9–12 that the large-scale
turbulence in mechanically driven superfluid 4He is sim-
ilar to the classical turbulence. In this case both com-
ponents move with close velocities being coupled by the
mutual friction force almost at all scales. On the con-
trary, the turbulence generated in superfluid 4He by a
heat flux in a channel has no classical analogy. Here
the two components move in the opposite directions rel-
ative to the channel walls, with respective mean veloc-
ities Un and Us. In this way the counterflow velocity
Uns = Un − Us 6= 0, proportional to the applied heat
flux, is created along the channel, which can trigger the
creation of a tangle of vortex lines above a small critical
velocity.

Systematic experimental studies of counterflow turbu-
lence, pioneered by classical 1957-papers of Vinen7, were
long concentrated mostly on global characteristics of the
vortex tangle, cf. see Ref. 12 for a review. The statistics
of turbulent fluctuations was not accessible. Recently,
the turbulent statistics in the 4He normal component was
measured in the form of the cross-stream 2nd-order struc-
ture functions 13,14

S2(Y ) =
〈

|∆ux(Y, y, t)|2
〉

. (1a)

Here 〈. . .〉 denotes an ensemble average over many trials
and ∆ux(Y, y, t) is the streamwise velocity difference

∆ux(Y, y, t) = ux(y + Y, t)− ux(y, t) . (1b)

Other studies15,16 measured the statistics of the super-
fluid component.
Recent theoretical analysis 17 found that the energy

spectra in counterflow turbulence are not scale-invariant
and cannot be rigorously connected with apparent scal-
ing exponents of the second-order velocity structure
functions measured in Ref. 13 at modest values of the
Reynolds numbers. In this paper, we suggest a new
way to analyze the visualization data 13 that allows the
one-dimensional energy spectra to be determined so that
a direct comparison with theoretical predictions can be
made 17. In addition, we use higher-order structure func-
tions to assess the level of intermittency in counterflow
turbulence.
The paper is organized as follows:

The analytical background of the problem of statistical
description of superfluid counterflow turbulence is cov-
ered in Section II. It starts with Sec. II A, which is de-
voted to the second-order statistical characteristics of ho-
mogeneous turbulence. In Sec. II B, we suggest a new way
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of velocity data analysis that allows to directly extract
the one-dimensional energy spectra. The recent analytic
theory of counterflow turbulence17, required for our cur-
rent analysis, is summarized in Sec. II C. The main result
of the theory is the energy-balance Eq. (9) that allows to
find the normal-fluid and superfluid energy spectra in a
wide range of the problem parameters.

Our experimental results on the statistics of the
normal-fluid turbulence and their analysis are presented
in Section III. In Sec. III A, we briefly describe the exper-
imental techniques. The important cross-over wavenum-
bers for the current problem are estimated in Sec. III B.
Section III C is devoted to the second-order statistics of
counterflow turbulence: the velocity structure functions,
S2(δ) (see Sec. III C 1 and left column of Fig. 1), and the
energy spectra, E(k) (see Sec. III C 2 and middle col-
umn of Fig. 1). In particular, we demonstrate that the
counterflow energy spectra can be divided in two sub-
intervals: a cascade dominated interval and a mutual-
friction dominated interval, with the apparent scaling
exponents mC ≃ 2 and mF ≃ 3 (see Fig. 1, right col-
umn). An important question about the relationship be-
tween S2(δ) and E(k) is discussed in Sec. III C 3 and il-
lustrated in Fig. 2. We show in Sec. III D and Fig. 3 that
the theoretically predicted energy spectra are in good
agreement with the experimental energy spectra in the
cascade-dominated range of wavenumbers.

In Section III E, we concentrate on high-order velocity
structure functions:

S4(Y ) =
〈

|∆ux(Y, y, t)|4
〉

, S6(Y ) =
〈

|∆ux(Y, y, t)|6
〉

.
(1c)

In Fig. 4 we show that the flatness F4(Y ) and hyper-
flatness F6(Y ),

F4(Y ) = S4(Y )/S2
2(Y ) , F6(Y ) = S6(Y )/S3

2(Y ) , (2)

have two ranges of power-law behavior with an apparent

scaling of F4(Y ) ∝ Y x
(1),(2)
4 and F6(Y ) = S6(Y )/S3

2(Y ) ∝
Y x

(1),(2)
6 , respectively. For Y larger than some Y∗

that corresponds to the cascade- and mutual friction-

dominated subintervals of the energy spectra, x
(1)
4 ≃ 0.20

and x
(1)
6 ≃ 0.50, which are moderately larger than the

inertial range exponents in classical hydrodynamic tur-

bulence, i.e., x
HT

4 ≃ 0.14 and x
HT

6 ≃ 0.38. However,
as Y approaches the viscous scales (i.e., Y . Y∗), the

small-scale intermittency becomes stronger: x
(2)
4 ≃ 0.5

and x
(2)
6 ≃ 1.4. This behavior is similar to the intermi-

tency enhancement observed in the mechanically driven
4He18,19.

Final Sec. IV briefly summarizes our findings.

II. ANALYTICAL BACKGROUND

A. Second-order statistical characteristics of

homogeneous superfluid turbulence

The most general statistical description of the homoge-
neous superfluid 4He turbulent velocity field uj(r) at the
level of the second-order statistics can be done in terms
of the three-dimensional (3D) cross-correlation functions
of the normal-fluid and superfluid turbulent velocity fluc-
tuations in the k-representation:

(2π)3δ(k + k′)Fαβ
ij (k) =

〈

vαi (k)v
β
j (k

′)
〉

. (3a)

Here vj(k) is the Fourier transform of uj(r):

vi(k) =

∫

ui(r) exp(ik · r) dr , (3b)

Fj(k) ≡ Fαα
j (k), α, β = {x, y, z} are vector indexes, sub-

scripts “i,j” denote the normal-fluid (i, j =n) or the su-
perfuid (i, j =s) components, and k is the wave-vector.
The inverse Fourier transform is defined as follows:

ui(r) =

∫

vi(k) exp(−ik · r) dk

(2π)3
. (3c)

The visualization technique, to be discussed in more
details in Sec. III A, allows one to measure the streamwise
normal-fluid velocity across a channel, vxn(y, t). Hence-
forth, unless stated explicitly, we consider only this ve-
locity component, i.e i, j =n, α = β = x and omit these

indexes. For example, Fαβ
ij (k) ⇒ F xx

nn (k) ⇒ F (k).

More compact, but less detailed information on the
statistics of turbulence is given by one-dimensional (1D)
energy spectra E(k) averaged over all directions of vector
k:

Esp(k) =
k2

(2π)3

∫

F (k)d cos θ dϕ , (4a)

Here we used spherical coordinates, with polar and az-
imuth angles θ and ϕ. The polar angle is measured from
the direction of Uns .

In the isotropic case F (k) = F (k), i.e., is independent
of θ and ϕ. Thus

Esp(k) =
k2

2π2
F (k) , for spherical symmetry. (4b)

Some information about possible anisotropy of the 2nd-
order statistics of turbulence can be obtained by compar-
ison of the 1D (spherically averaged) function Esp(k),
Eq. (4c) with the 1D functions Exy(kz), Ezx(ky), and
Eyz(kx), averaged over xy, zx, and yz planes. These
functions depend only on the projections of k, orthogo-
nal to the corresponding planes. Understanding F (k) in
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T,

∣

∣ρn

ρ
α Q, Un, Uns, L, Ren k× kν k∗ kℓ n+ 1 〈m〉

10
mC mF

K
mW
∣

∣cm2

cm

s

cm

s

1

cm2

1

cm

1

cm

1

cm

1

cm

150 1.87 2.32 86300 37.9 37.2 149 294 1846 1.89 2.00 1.7 3.0

1.65 0.11 0.11 200 2.23 2.76 16200 46.2 58.8 224 402 2529 2.14 2.10 1.8 3.0

300 3.27 4.04 38200 84.9 94.5 354 618 3883 2.18 2.20 1.9 2.9

200 1.18 1.85 81100 53.2 43.8 249 322 1788 1.88 1.88 1.7 3.0

1.85 0.19 0.18 300 1.78 2.80 19800 94.2 70.1 539 502 2796 2.23 1.95 1.8 2.8

497 3.03 4.76 58500 165 123 755 863 4806 2.35 2.20 1.9 2.8

233 0.86 1.92 14100 84.7 73.3 455 418 2359 2.3 2.20 1.7 3.0

2.00 0.55 0.28 386 1.34 3.00 47300 131 158 690 765 4321 2.31 2.30 1.9 2.8

586 2.09 4.67 112000 223 240 1102 1178 6650 2.36 2.30 2.2 3.0

200 0.57 2.20 37300 107 170 588 612 3837 2.30 2.25 1.7 2.9

2.10 0.74 0.48 300 0.88 3.40 89800 159 264 958 951 5951 2.30 2.30 2.1 3.0

350 0.99 3.83 114000 211 298 1142 1071 6705 2.30 2.35 2.2 3.0

TABLE I: Columns ## 1-3 – The temperature and temperature-dependent material parameters of 4He ; Columns ## 4–7:
the experimental parameters of the flow. Column # 8: the estimates of the normal-fluid Reynolds number, Eq. (14b); Columns
# 7–12: the estimates of the characteristic wavenumbers: k×, kν , k∗ and kℓ, Sec. III B. Column #13 – the estimates of the
scaling exponents of the energy spectra via apparent scaling exponents of S2(Y ). Column #14 – the mean-over-decade scaling
exponents of the energy spectra 〈m〉

10
. Columns # 15 and # 16: the apparent scaling exponents of the energy spectra in the

cascade-dominated subinterval, mC and in the mutual-friction dominated subinterval, mF.

the Cartesian coordinates as F (kx, ky, kz), we define

Exy(kz) =

∫

F (kx, ky, kz)
dkx dky
4π2

,

Ezx(ky) =

∫

F (kx, ky, kz)
dkx dkz
4π2

, (4c)

Eyz(kx) =

∫

F (kx, ky, kz)
dky dkz
4π2

.

The total kinetic energy E of the system can be found
by respective integration:

E =

∫

Esp(k)
dk

2π
=

∫

Exy(kz)
dkz
2π

= . . . . (5)

In the case of spherical symmetry, all four 1D func-
tions Eq. (4b) and Eq. (4c) are proportional to each other
(i.e., differ only by numerical prefactors). If the angular
distribution of energy is not symmetric, the behavior of
different energy spectra will differ.

B. A new way of statistical analysis of the

visualization data

As we mentioned, the visualization technique allows
one to measure the streamwise velocity across a chan-
nel as a function of a wall-normal coordinate y for fixed
values of the time t0 and the spanwise and streamwise
positions z0 and x0:

u(y) ≡ ux(x0, y, z0, t0) . (6)

For simplicity, we choose t0 = 0 and z0 = x0 = 0, i.e.,
ux(0, y, 0, 0).
So far, the way to statistically analyze the data, i.e.,

Eq. (6), was to find the velocity differences ∆ux(Y, y, t)
defined in Eq. (1b) and calculate the structure functions
Sn(Y ) using Eqs. (1a) and (2). The theoretical analysis
of homogeneous turbulence is traditionally done in the
Fourier space, where different Fourier components are
statistically independent:

〈

vα(k)vβ(k′)
〉

= 0, if k 6= k′.
We will demonstrate in this paper that similar approach
(in the ky-space) to the data analysis of the visualiza-
tion data allows one to get additional information on the
statistics of counterflow turbulence that is hidden in the
approach based on S2(δ).
To this end, we define a 1D-Fourier transform, v(ky)

similar to its 3D-version Eq. (3b):

v(ky) =

∫ D/2

−D/2

u(y) exp(ikyy) dy . (7a)

Here y = 0 is the position of the centerline and D is the
channel width. Similarly to Eq. (3a), we define next the
1D energy spectrum

2π δ(ky + k′y)E(ky) =
〈

v(ky)v(k
′

y)
〉

, (7b)

which is nothing but Exz(ky), defined by Eq. (4c). To see
this, notice that integration over dkx/(2π) and dkz/(2π)
in Eq. (4c), according to Eq. (3c), results in ui(x =
0, y, z = 0).
Our expectation is that v(ky) [and respectively E(ky)]

better separates turbulent fluctuations with different
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scales than ∆u(Y, y) [and respectively S2(Y )]. To see
this, one may consider the relation between E(ky) and
S2(Y ). Using the inverse Fourier transform of Eq. (7a):

u(y) =

∫

v(ky) exp(−ikyy) dy , (7c)

in the definition of S2(Y ) [i.e., Eq. (1a)] and applying
Eq. (7b), one gets:

S2(Y ) =
2

π

∫

sin2
(kyY

2

)

Exz(ky) dky . (7d)

If this integral converges, it is dominated by the range
k ∼ 1/Y . Therefore, for the infinite extent of the inertial
interval S2(Y ) ∼ F2(1/Y )Y −1. For example, if F (k) ∝
k−m, then S2(Y ) ∝ Y n with n = m− 1. It is important
to note that integral Eq. (7d) also has contribution from
a wide range of k around 1/Y . Therefore, in a realistic
situation with a finite extent of available k-space, the
relation between Fn(ky) and Sn(Y ) is not so simple.
In any case, one expects, as we will demonstrate in this

paper, that direct measurement of the integrand Exz(ky)
gives more detailed information about the statistics of
counterflow turbulence than the measurements of the in-
tegral (Eq. (7d)) for S2(Y ).

C. Overview of the theory of counterflow

turbulence

Analytical theory of counterflow superfluid turbulence,
developed in Ref. 17, describes the energy spectra of the
normal-fluid and superfluid components of superfluid 4He
at scales r exceeding intervortex distance ℓ = 1/

√
L,

where L is the vortex density, i.e., total length of vor-
tex lines per unit volume. The theory is based on the
gradually-damped version20 of the coarse-grained Hall-
Vinen-Bekarevich-Khalatnikov(HVBK) equations, gen-
eralized in Ref. 21 for the counterflow turbulence. These
equations have a form of two Navier-Stokes equations for
the turbulent velocity fluctuations un(r, t) and us(r, t),
coupled by a simplified version of the mutual friction
force22

fns ≃ Ωs

[

un(r, t)− us(r, t)
]

, Ωs = α(T )κL . (8)

Here α(T ) is the temperature dependent parameter of
the mutual friction, listed in Table I, column #3.
These equations served as a starting point for deriva-

tion of the stationary balance equations for the 1D energy
spectra En(k) and Es(k) of the normal and superfluid
components

dεj(k)

dk
= Ωj

[

Ens(k)− Ej(k)
]

− 2 νjk
2Ej(k) , (9)

using simplifying assumption of the spatial homogene-
ity and isotropy of the counterflow turbulence statis-
tics. Here εj(k) is the energy flux over scales 1/k in

the normal-fluid (j =n) and superfluid (j =s) velocity
components, Ωn = Ωsρs/ρn, νn is the normal-fluid kine-
matic viscosity (normalized by the ρn), and νs is the Vi-
nen’s effective superfluid viscosity 5. The viscous-like en-
ergy sink term was added to HVBK equations in Ref. 20

to account for the energy dissipation at the intervortex
scale ℓ due to vortex reconnections, the energy transfer to
Kelvin waves, and similar effects. In Eq. (9), En(k) and
Es(k) are the 1D spherically averaged energy spectra [cf.
Eq. (4a)] of the normal-fluid and superfluid subsystems
and the cross-correlation function Ens(k) is related simi-
larly to Fns(k).
Eqs. (9) are exact (in the framework of HVBK equa-

tions), but not closed. To make them practically useful,
the closure approximations for εj(k) in terms of Ej(k)
were used.
The role of long-range (in the k-space) energy-transfer

terms was analyzed17, based on the integral closure for
ε(k) 23, and a new self-consistent closure was suggested:

ε(k) = C(k)k5/2E3/2(k) , C(k) =
4C

3 [3−m(k)]
. (10a)

in which m(k) should be understood as a local scaling
exponent of E(k):

m(k) =
d lnE(k)

d ln(k)
, (10b)

and the prefactor C(k) is chosen to reproduce the Kol-
mogorov constant C for the K41 scaling exponentm(k) =
5/3.
To complete the closure of Eqs. (9), the closure21 for

the cross-correlation function Ens was adopted. In a sim-
plified form, suitable for conditions of the visualization
experiments 13,14, it reads:

Ens(k) = D(k)E(0)
ns (k) , D(k) =

arctan[ξ(k)]

ξ(k)
, (11a)

ξ(k) =
k

k×
, k× =

Ωns

Uns
, Ωns = Ωn +Ωs = ακL ρ

ρn
, (11b)

E(0)
ns (k) =

[

ρnEn(k) + ρsEs(k)
]

/ρ . (11c)

Here D(k) is the Uns-dependent decoupling function and
En(k) and Es(k) are the Uns-dependent energy spectra,
found self-consistently by solving Eqs. (9) with Ens(k)
given by Eqs. (11).
Further simplification of the balance Eqs. (9), (10), and

(11) for the experimental conditions, results in decoupled
balance equations for the normal-fluid and the superfluid
energy spectra:

C(k)
d

dk
k5/2E

3/2
j (k) = Ej(k)

{

Ωj [D(k)− 1]

−2νjk
2
}

, (12)

in which C(k) and D(k) are given by Eqs. (10a) and
(11a). The solutions of these equations are compared
with the experimental spectra in Figs. 3.
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To summarize this overview, we note that analytical
theory 17 describes the main features of the large scale
normal-fluid energy spectra of counterflow turbulence,
observed in the visualization experiments, although it
does not account for the inhomogeneity and anisotropy
of the flow.

III. EXPERIMENTAL RESULTS AND THEIR

ANALYSIS

In this section we analyze the experimental data of
the normal-fluid turbulent velocity fluctuations u(y), ob-
tained for T = 1.65K, 1.85K, 2.00K, and 2.10K with
three values of heat fluxes Q at each temperature. Main
parameters of these experiments are given in Table I. This
table also collects the values of important characteristic
wavenumbers, estimated below in Sec. III B. The second-
order statistics[ i.e., the structure functions and the spec-
tra Ezx(ky)] are discussed in Sec. III C and the higher-
order statistics of the structure functions in Sec. III E.

A. Experimental techniques

The experimental apparatus is identical with that de-
scribed in Refs. 13,14. A stainless steel channel of 9.5 mm
square cross section with a total length of 300 mm is
attached to a pumped helium bath whose temperature
can be controlled within 0.1 mK by regulating the vapor
pressure. A planar heater (around 400 Ω) at the lower
end of the channel was used to drive a thermal coun-
terflow. When the heat flux is sufficiently large, both
the superfluid and the normal fluid components can be-
come turbulent. To probe the normal fluid turbulence,
our recently developed He∗2 molecular tracer-line track-
ing technique 24 was adopted. A 35-fs pulsed laser with
a repetition rate of 5 kHz and a pulse energy of about
60µJ was focused into the channel to produce a thin line
of He∗2 molecular tracers. This tracer line can be driven
to produce 640 nm fluorescent light by a pulse train from
an imaging laser at 905 nm (i.e., 5-6 pulses at a repeti-
tion rate of 500 Hz). The fluorescence was captured by
an intensified CCD (ICCD) camera, mounted perpendic-
ular to both the flow direction and the laser beam path,
to produce the images of the tracer line. In a typical ex-
periment, a straight baseline image is acquired to serve
as a reference. Then, the heater is turned on for at least
20 s so that a fully developed counterflow can establish
in the channel. After that, we produce a tracer line and
let the tracer line move with the normal fluid by a drift
time ∆t before the drifted line is imaged.
In order to extract quantitative velocity field informa-

tion, the center location of every line segment needs to
be accurately determined. In our previous research 13,14,
a simple Gaussian fit method was adopted. First, the
image of a tracer line was cut into many small segments
(i.e., typically 40-60 segments). Then, the fluorescence

intensity profile of each line segment was fit by a Gaussian
function such that both the center location and the width
of the line segment can be determined. The streamwise
velocity of the normal fluid at position y can be calcu-
lated as the displacement of the line segment divided by
the drift time ∆t. This method works well only when
the tracer-line image has good quality and high signal-
to-noise ratio. However, as the normal fluid velocity in-
creases, some line segments can distort and smear, which
can result in significant uncertainty in locating the cen-
ter of these segments using the Gaussian fit method. In
this research, we utilized a more sophisticated approach,
which is based on the algorithm proposed by Pulkkinen
et al. for finding curvilinear structures in noisy data 25.
There are two steps involved in the image analysis. First,
a tracer-line image is noise-filtered based on the intensity
of bright pixels using numerically inexpensive nearest-
neighbors searches. The basic idea is to remove those
bright pixels that are surrounded all by dark pixels and
hence are more likely created due to instrument or en-
vironmental noises 26. Subsequently, the algorithm of
Ref. 25 is applied to determine the ridge line of the en-
tire fluorescence intensity profile. The displacement of
the ridge line then allows us to calculate the streamwise
normal-fluid velocity regardless of the bad quality of some
local line segments.
Based on the obtained streamwise normal-fluid ve-

locity ux(y), we can evaluate the velocity difference
∆ux(Y, y) = ux(y+Y )−ux(y), between two line segments
that are separated by a distance Y . Then, the transverse
structure functions of the normal fluid turbulence can be
easily computed as Sn(Y ) = 〈|∆uy(y, Y )|n〉 , where the
angle brackets 〈. . .〉 denote an ensemble average over all
the images obtained under the same experimental condi-
tions (typically 30-100 images). The calculated structure
function profiles are found to be insensitive to the refer-
ence location y. The 1D-energy spectra, averaged over
x-z plane and parallel to the channel wall can also be
determined. In Fig. 1, we show the obtained structure
function and energy spectra curves at various tempera-
tures and heat fluxes. It should be noted that the results
for separation distance Y smaller than the thickness of
the tracer line (i.e., about 100-200 µm) can have large
uncertainties.

B. Estimates of the cross-over wavenumbers

1. Decoupling wavenumber k×

According to Ref. 21, the decoupling wavenumber k×,
for which the decoupling function D(k) = 1

2 , is estimated
as

k× ≃ 2Ωns/Uns ≃ κL/Uns . (13)

For typical values L ≃ 105 cm−2, Uns ≃ 1 cm/s and with
κ ≃ 10−3 cm2/s, this gives k× ≃ 100 cm−1. The particu-
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FIG. 1: The second-order statistics for different T and heat fluxes Q. The figures in the rows (top to down) correspond
to T = 1.65 K, 1.85 K, 2.0 K, and 2.1 K, respectively. Left column: The second-order structure functions, compensated by
K41 scaling, Y −2/3S2(Y ). The colored thin straight lines denote fits with exponents n (cf. TableI, Column #13). The fitting
range (according to Ref. 13) is denoted by black vertical thin lines. The black vertical dot-dashed line marks the outer scale of
turbulence, denoted as Y0. The colored vertical dot-dashed line (collectively marked as Y∗) denote the scales, corresponding to

the respective crossover wavenumbers k∗. Middle column: the energy spectra compensated by K41 scaling k5/3E(k). Dashed

lines of matching colors denote fits E(k) ∝ k−〈m〉10 in the wavenumber interval k ∈ [k0 to 10 k0], shown by black vertical
lines. Right column: the energy spectra, compensated by an individual scaling, kmCE(k), found by fitting each spectrum in
the cascade-dominated range. The compensation is emphasized by horizontal dot-dashed lines. The fits of the mutual-friction
dominated range, E(k) ∝ k−mF are shown by black dashed lines. The vertical lines, corresponding to the crossover wavenumbers
k×(dashed lines) and k∗(dot-dashed lines), are marked in the same color as the corresponding spectra. The legend indicate the
scaling exponents mC for the cascade-dominated range and mF for the mutual-friction dominated range. The outer scale of
turbulence k0 = 2π/Y0 is marked as a black solid thin line. Different heat fluxes Q (in mW/cm2) are color coded: green lines
denote the largest Q, red lines – intermediate Q and blue lines – the smallest Q. The color code is the same in all panels.
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lar values of k× for each of the 12 experimental sets are
presented in Table I, column #9 .

2. Viscous wavenumber kν

The viscous wavenumber kν , for which the viscous
damping becomes comparable with the energy transfer
over scales, can be estimated by comparison of the vis-
cous damping frequency νk2 with the eddy-turnover fre-
quency

√

k3E(k):

kν ≃ E(kν)/ν
2 . (14a)

Using K41-estimate for the energy spectrum EK41(k) ≃
u2

T
k
2/3
0 k−5/3 we get

kν
k0

≃
[ E(kν)

EK41(kν)

]3/8

Re3/4 , Re =
uT

k0ν
. (14b)

Here k0 ≃ 30 cm−1, estimated in Ref. 13 from the behav-
ior of S2(Y ). Our estimates of kν are given in Table I,
column #10.
Eq. (14b) is a generalization of the well known K41

relationship kν ≃ k0Re
3/4 for the spectra that differ sig-

nificantly from the K41 scaling EK41(k) ∝ k−5/3.

3. Mutual friction – viscous crossover wavenumber k∗

We know that the characteristic frequency, responsible
for the rate of energy dissipation by mutual friction in

the normal fluid component is α
ρs
ρn

κL, while the corre-

sponding frequency for the viscous dissipation is νnk
2.

Comparing these two frequencies, one finds a crossover
wave number k∗ for which the efficiencies of these two
dissipation mechanisms are equal:

k∗ =

√

α
ρs
ρn

κ

νn
L . (15)

Substituting the particular temperature dependent val-
ues of α, ρn and νn, we get the values shown in Table I,
rows #11. As we see, for T = 1.65K and T = 2.10K
k∗ ≈ 1.0

√
L, while for T = 1.85K and T = 2.00K

k∗ ≈ 1.1
√
L. This is smaller than the wavenumber

kℓ ≈ 2π
√
L , (16)

(cf. Table I, column #12), that separates the quasi-
classical and ultra-quantum regimes of superfluid turbu-
lence.

C. Second-order statistics of counterflow

turbulence

Fig. 1 summarizes the second order statistics of the
velocity fluctuations for different temperatures and flow

parameters. Both the structure functions (left column)
and the 1D energy spectra, are compensated by the K41

scaling: Y 2/3S2(Y ), k
5/3
y Exz(ky). In the right column,

we plot the energy spectra compensated in the cascade-
dominated range, see below.

1. Second-order structure functions

The structure functions in the counterflow share simi-
larity with the velocity structure functions in the classical
hydrodynamic turbulence. The expected inertial interval
of scales δmin ≈ 0.02 cm to δmax ≃ 0.2 cm are marked by
black thin vertical lines and correspond to that in Ref. 13.
Clearly, the structure functions are steeper than their
classical counterparts. The apparent scaling behavior in
this interval of scales may be characterized by exponents
n. These exponents were found in Ref. 13 and are re-
produced in Table I, column #13. The values of n for
T = 2.1K are slightly larger than in Ref. 13, likely due to
the improved image analysis and the fitting procedure.
Note that the values of n vary widely, depending on the
flow parameters: the temperature and the heat flux.
The dot-dashed vertical lines, colored as the structure

functions and collectively marked Y∗ , denote the scale
that delineate the ranges of dominance of two dissipative
mechanisms: the mutual friction (for Y > Y∗) and the
viscous dissipation (for Y < Y∗).
We should also note that simple analysis of Eq. (7d)

shows that the small scale behavior S2(Y ) ∝ Y 2 appears
if the energy spectrum E(k) decays as k−3 or faster (in-
cluding the exponential decay). Therefore, the apparent
Y 2-scaling cannot be uniquely connected with the viscous
dissipation of turbulent kinetic energy, as in the classical
turbulence. Moreover, the asymptotic slope S2(Y ) ∝ Y 2

at Y . Y∗ is not reached in our experiments due the
limited spatial resolution (cf. Fig. 4a).

2. Energy spectra of counterflow turbulence

One-dimensional energy spectra, compensated by K41
scaling k5/3E(k), are shown in Fig. 1, middle column.
We can easily identify several k-ranges with different
k-dependence of the spectra. The small wavenumber
(k . k0) behavior is clearly different from the rest of
the spectrum. A relatively short part of the spectra is
close to compensation by K41 while remaining steeper.
The large-k part of the spectra has a much larger slope,
extending over all remaining interval of scales. We will
now try to relate between these different types of be-
havior and various crossover wavenumbers introduced in
Sec. III B.
a. Energy-containing interval. The outer scale of

turbulence, k0 ≃ 30 cm−1, was taken according to
Ref. 13, where it was estimated as 2π/r0 with r0 ≃ 0.2 cm
close to the maximum of the structure functions. The
positions of k0 are marked in Fig. 1, middle and right
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FIG. 2: (a)Piecewise-linear model of the energy spectra E(k) ∝ k−mC for k < k× in the cascade-dominated interval and
E(k) ∝ k−mF ,mF = 3 in the mutual friction-dominated and (b) structure functions S2(Y ), computed using Eq. (7d). The
dashed lines of the matching colors correspond to Y mC−1. The black dot-dashed line corresponds to Y 2.
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FIG. 3: Comparison of the experimental compensated energy spectra k5/3E(k) with the theoretical predictions 17 (dashed
lines) for different temperatures T K and heat fluxes Q (in mW/s2). Vertical solid lines denote the outer scale k0.

.

columns, by vertical black thin solid lines. The range
k . k0 can be interpreted as an energy-containing in-
terval, where energy is pumped into the system due to
instabilities of mean flow in the channel and in which
the most of the flow energy is localized. As we see, this
value corresponds well to a boundary between the large-
scale behavior and the inertial-like scaling behavior of the
spectra for large heat fluxes, while for low heat fluxes and
low temperature, the energy-containing interval seems to
extend to higher wavenumbers.

b. Cascade-dominated interval. The next character-
istic scale, k× (cf. Table I, Column #9) estimates the
wavenumber for which the decoupling function D(k×) =
1
2 . For k . k×, D(k) > 1

2 , and the energy dissipation by
the mutual friction is relatively weak. In this k- range
the main mechanism, responsible for the energy trans-
fer over scales is the Richardson-Kolmogorov energy cas-
cade, similar to that in classical turbulence. Nevertheless
the energy dissipation by the mutual friction cannot be
fully ignored. Therefore the energy spectra in this range
of scales are steeper than the K41 scaling, as is clearly
seen in Fig. 1, middle column. All these motivate us to

name the wavenumber range k0 . k . k× as cascade-

dominated interval.
It was suggested in Ref. 17 to characterize the appar-

ent scaling of the otherwise not-scale-invariant spectra by
calculating a mean exponent over some interval of scales.
The theoretical mean exponents over a first decade 〈m〉10
were found to agree with the experimental exponents13

of the structure functions17. We calculate the mean ex-
ponents over a k-range k ∈ [30− 300] (a decade in k/k0)
and collect them in Table I, column #14. These values
are close to n+ 1, where n is apparent scaling exponent
of S2(Y ) ∝ Y n, defined by Eq. (7d). This means that the
idea to estimate 〈m〉10 via n+1 indeed works reasonably
well. The corresponding fits are shown in Fig.1 middle
column as dashed colored lines. However, although the
values of the mean exponents agree with the scaling of
the structure functions, the actual scaling of the spectra
is different.
To estimate the apparent scaling exponents mC of the

energy spectra E(k) ∝ k−mC in the cascade-dominated
interval, we plot the experimental spectra, compensated
by kmC and choose the value of mC so as to maximize
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the k-range where kmCE(k) ≈ const. The resulting plots
are shown in Fig. 1, right column, where the crossover
scales k× are shown by vertical dashed colored lines. It
is remarkable that, except for the low heat fluxes at T =
1.65 and 1.85K, the cross-over between different scaling
regimes of the energy spectra coincides well with k×.
c. Mutual-friction dominated interval. For k & k×,

where the decoupling function is small and mutual fric-
tion becomes important in the energy balance 17, the
slope of the energy spectra increases significantly from
mC ≈ 2.0 ± 0.2 to mF ≈ 2.9 ± 0.1. The transition be-
tween two types of behavior is not sharp, especially for
low heat fluxes, but clearly visible.
The power-law-like behavior E(k) ∝ k−mF qualita-

tively differs from the exponential decay of E(k), typical
for the viscous interval of k in the classical hydrodynamic
turbulence. Therefore, we consider this behavior as an
evidence that for k & k× the main mechanism of the
energy dissipation is the mutual friction. Upper limits
of the mutual-friction dominated interval k∗, are shown
in Fig. 1, right column, by vertical dot-dashed lines of
the corresponding colors. As a rule, the values of k∗
are about or above the largest available values of k. This
means that the viscous interval of wavenumbers is beyond
our spectral resolution. The corresponding Y∗ are shown
in the Fig. 1, left column, and are mostly smaller than
the implied boundary between the inertial and viscous
behavior13 (i.e., black vertical thin solid lines). There-
fore, only at the smallest scales, the viscous dissipation
becomes important, but it is still not dominant as we
show below.

3. More about connection between S2(Y ) and E(k)

To clarify the relation between the energy spectra in
a finite k-range and the structure functions, we plot in
Fig. 2 (a) a piecewise-linear model of the energy spectra,
consisting of E(k) = k−mC in the cascade dominated in-
terval k0 < k < k×, continuously connected with the
E(k) ∝ k−mF part in the mutual-friction dominated in-
terval k× < k < k∗. We used the typical values of mC,
and the same values of mF = 3.0, k× = 200 cm−1, and
k∗ = 1300 for all spectra. For simplicity, we adopt for
the energy containing interval the same behavior E(k) =
k−mC as in the cascade dominated interval. The struc-
ture functions, computed using Eq. (7d), are shown in
Fig. 2 (b) together with the expected slope S2(Y ) ∝ Y n

with n = mC − 1, shown by the dashed lines. As we see,
the actual range of scales, over which the original scaling
is recovered, is very narrow.
The slope S2(Y ) ∝ Y 2, typical for viscous exponential

decay of E(k) in the classical hydrodynamic turbulence,
and E(k) ∝ k−3, typical for the mutual friction domi-
nated interval in counterflow turbulence, are shown by
black dot-dashed line. As expected, for the finite scaling
interval of a modest extent, the resulting Y -dependence
of S2(Y ) demonstrates very smooth transition between

these regimes and does not reach the genuine asymptotic
behavior S2(Y ) ∝ Y 2.

D. Comparison of analytically predicted and

experimental energy spectra

It is instructive to compare directly the experimental
spectra with the spectra predicted by theory17. Remind
that the theory does not describe the largest scales mo-
tion in the energy-containing interval (for k < k0) and
has the energy influx for k = k0 [or the boundary con-
dition E0 = Eth(k0)] as an external parameter of the
theory.
The theory was developed for an idealized situation of

fully-developed, space homogeneous turbulence. Natu-
rally, the real physical situation in the experiments (i.e.,
wall-bounded, spatially- inhomogeneous channel flow for
relatively low Reynolds numbers) is more complicated
than assumed by the theory. Therefore, the comparison
is meaningful only for the experiment with relevant flow
conditions. In our case, we may take the Ren > 100
as a tentative criterion for the well-developed turbulence
in the channel. This leaves out the low temperature
data (T = 1.65K), as well as the lowest heat fluxes for
T = 1.85 and 2.0K. However we keep for completeness
all the data for T = 1.85K and 2.0K.
In Figs. 3 we compare the experimental (K41-

compensated) energy spectra for T = 1.85K, 2.0K and
2.1K (plotted as solid colored lines) with the predicted
energy spectra (denoted by dashed lines of the same
color), calculated for the same temperatures and the
same heat fluxes. The theoretical spectra were made di-
mensional and Eth(k0) was taken to ensure overlap in the
cascade-dominated k-range. For high heat fluxes, these
values agree well with Eexp(k0).
The immediate observation is a qualitative agree-

ment between the experimental and theoretical spectra
over large range of wavenumbers, covering most of the
cascade-dominated range. The deviations are mostly
limited to the spectra with the lowest heat fluxes for
T = 2.0K and T = 2.1K. At T = 1.85K, the agree-
ment is recovered for wavenumbers larger than k0, which
may indicate that the turbulence in these experiments
is not yet fully developed and the outer scale is smaller
than expected.
As mentioned above, the overall suppression of the

spectra compared to the classical behavior is well cap-
tured by the mean scaling exponents 〈m〉10, cf. TableI,
column #14.
On the other hand, the theory does not describe

the sharp drop of the spectra in the mutual-friction
dominated k-range, demonstrating only smooth decrease
of the current slope m(k) of the spectra for large k.
A possible reason is that the theory 17 does not take
into account the energy exchange between components,
that is most efficient in this range of scale. Other
flow conditions, which are not accounted for by the
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FIG. 4: Second- and higher-order statistics at different temperatures. The flow parameters are shown in the legend of panel (a).
Panel (a): the structure functions S2(Y ). Dot-dashed black line denotes the asymptotic viscous behavior for S2(Y ) ∝ Y 2. Panel
(b): Flatness F4(Y ) = S4(Y )/S2

2(Y ). Panel (c): Hyper-flatness F6(Y ) = S6(Y )/S3

2(Y ). The horizontal dot-dashed lines in
panels (b) and (c) denote the Gaussian values of F4(Y ) and F6(Y ). The approximate Y -dependencies of the flatness and
hyperflatness for Y & Y∗ are shown by dashed lines, marked Y −0.2 and Y −0.5, respectively. These values are slightly larger
than typical for the classical hydrodynamic turbulence, i.e., δ−0.14 and δ−0.38 in Ref. 27. However for Y . Y∗, the effective
slopes of F4(Y ) and F6(Y ) strongly increase and become much larger than the classical values, see the dashed lines, marked
as Y −0.5 and Y −1.4, respectively. The vertical thin lines in all panels denote positions of the outer scale Y0 and the crossover
scale Y∗.

theory, may contribute to this discrepancy. Also the
experimental data in the high k regime may not be
very reliable indeed. This is because the corresponding
separation scale is comparable or even smaller than the
width of the tracer line, which leads to large uncertainty.

E. Flatness, hyper-flatness and intermittency

To analyze higher order statistics and possible in-
termittency effects, we select one example at each
temperature, having similar Y∗, and plot in Fig. 4
the structure functions Y −2/3S2(Y ), the flatness
F4(Y ) = S4(Y )/S2

2(Y ), and the hyper-flatness F6(Y ) =
S6(Y )/S3

2(Y ).
In all panels, we mark the positions of the outer scale

of turbulence Y0 and the crossover scale Y∗. As is clearly
seen in Fig. 4a, the asymptotic behavior Y 2 is not reached
with our spatial resolution. However, Y∗ delineates dif-
ferent types of behavior of the S2(Y ). These different
regimes are even better exhibited by flatness and hyper-
flatness in Figs. 4(b) and (c).
For Gaussian statistics F4 = 3 and F6 = 15, shown in

Figs. 4 (b) and (c) as horizontal dashed lines. Clearly,
for large scales Y & Y0 , F4(Y ) and F6(Y ) are close to
the Gaussian values, indicating that the statistics of the
turbulent velocity field in the energy-containing interval
is indeed close to Gaussian. This is a common property
of classical hydrodynamic turbulence, independent of the
way of its excitation.
In a wide interval of scales Y∗ . Y . Y0, covering

scales corresponding to both the cascade-dominated and
mutual-friction dominated spectral ranges, both F4(Y )
[panel(b)] and F6(Y ) [(panel(c)] have a power-law-like

behavior Fn(Y ) ∝ Y −x(1)
n , with exponents x

(1)
4 ≃ 0.20±

0.02 and x
(1)
6 ≃ 0.5 ± 0.03. To compare these expo-

nents with their counterparts x
HT

n in the classical hydro-

dynamic turbulence, recall that x
HT

n = ζ
HT

n − nζ
HT

2 /2,

where ζ
HT

n is the scaling exponent of the n-order struc-
ture function in classical hydrodynamic turbulence. With

the most recent experimental values 27 ζ
HT

2 ≈ 0.72,

ζ
HT

4 ≈ 1.30 and ζ
HT

6 ≈ 1.78, this gives x
HT

4 ≈ 0.14 and

x
HT

6 ≈ 0.38. We conclude that the values x
(1)
4,6 are moder-

ately, but distinctly larger than ζ
HT

n . Notably, the struc-
ture functions and higher-order statistics are not sensitive
to the peculiarities of the energy spectra, in particular to
the existence of two significantly different scaling ranges.
However, at smaller scales Y . Y∗, the effective slopes

of F4(Y ) and F6(Y ) increase dramatically. The esti-

mates, shown in Figs. 4 (b) and (c), give x
(2)
4 ≃ 0.5± 0.1

and x
(2)
6 ≃ 1.4 ± 0.1 at these scales, which correspond

to the dissipative range with mixed contributions of the
mutual-friction and viscous dissipations. The statistics
become very intermittent. The fact that we do not ob-
serve saturation of F4(Y ) and F6(Y ), typical for the vis-
cous range in the classical turbulence, supports our con-
jecture that the viscous dissipation-dominant range is be-
yond our resolution.

IV. CONCLUSION

In this paper, we report a detailed analysis of the
energy spectra, second- and high-order structure func-
tions of velocity differences in the superfluid 4He coun-
terflow turbulence, measured in a wide range of temper-
atures and heat fluxes. In particular, we discover two
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ranges of wavenumbers ky with very different apparent
exponents of the one-dimentional energy spectra in the
cascade-dominated (for relatively small ky) and the mu-
tual friction-dominated subintervals, respectively. The
general behavior of the experimental spectra Exz(ky) in
the cascade-dominated range agrees well with the pre-
dicted energy spectra in Ref. 17.
The analysis of the statistics of the high-order struc-

ture functions shows that in the energy-containing in-
terval the statistics of counterflow turbulence is close to
Gaussian, similar to the classical hydrodynamic turbu-
lence. In the cascade- and mutual friction-dominated
intervals we found some modest enhancement of inter-
mittency with respect of its level in classical turbulence.
However, at small scales (but not yet viscous scales), the
intermittency becomes much stronger than that in the
classical turbulence.
In conclusion, we should remind that the theory, de-

veloped in Ref. 17, does not describe the experimental
observations reported here in all details. Besides the ob-
vious reason of spatial inhomogeneity, especially impor-
tant for modest available Reynolds numbers Ren, there
is one more possible reason for some disagreement even
in the Ren → ∞ limit. This is the anisotropy of statistics
of counterflow turbulence. Although we do not have yet
experimental information how strong the anisotropy of

turbulent statistics is, this effect is definitely there due
to presence of preferred Uns direction and strong depen-
dence of the cross-correlation function Ens(k) (between
the normal fluid and superfluid velocity components) on
the angle between Uns and k, predicted in Ref. 21. The
study the effect of anisotropy on the statistics of counter-
flow turbulence is in our nearest agenda. Nevertheless,
the reasonable agreement between our observations and
the theory 17, is encouraging. In particular, the crossover
scales between different regimes, predicted by the theory
using macroscopic parameters of the flow, and clearly ob-
served in the spectra and structure functions, makes us
believe that what we know so far contains an essential
part of the basic physics of the problem.
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