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Long-lived fluxon excitations can be trapped inside a superinductor ring, which is divided into an
array of loops by a periodic sequence of Josephson junctions in the quantum regime, thereby allowing
fluxons to tunnel between neighboring sites. By tuning the Josephson couplings, and implicitly the
fluxon tunneling probability amplitudes, a wide class of 1D tight-binding lattice models may be
implemented and populated with a stable number of fluxons. We illustrate the use of this quantum
simulation platform by discussing the Su-Schrieffer-Heeger model in the 1-fluxon subspace, which
hosts a symmetry protected topological phase with fractionally charged bound states at the edges.
This pair of localized edge states could be used to implement a superconducting qubit increasingly
decoupled from decoherence mechanisms.

I. INTRODUCTION

With recent advances in state preparation and mea-
surement techniques, circuit quantum electrodynamics
(cQED) architectures1,2 are becoming increasingly at-
tractive for quantum information processing and quan-
tum simulation.3 Other platforms for quantum simula-
tion include ultracold atoms in traps and optical lattices,4

trapped ions,5,6 Josephson junction arrays,7 or photonic
systems.8 One of the main efforts in quantum simulation
has been the implementation of interacting, strongly-
correlated models, which possess rich physics, but are
in general analytically intractable.

There is an increasing list of proposals based on the
cQED architecture, which notably includes analogues of
the seminal boson Hubbard model9 for the superfluid to
insulator transition of lattice bosons with repulsive con-
tact interactions,10–17 the fermion Hubbard model,18 or
topological order.19,20 Recently, several implementations
have successfully shown proof-of-concept quantum sim-
ulation of dissipative phase transitions,21 molecules22 or
fermionic tight-binding models,23 and the Rabi model in
the strong and ultrastrong coupling regimes,24–28 herald-
ing studies of spin-boson and Kondo physics.29

Microwave photons, the physical building block for
cQED quantum Hamiltonians, are nevertheless subjected
to intrinsic dissipation. One solution to circumvent the
limitations imposed by photon loss is to stabilize quan-
tum states using bath-engineering schemes for single
qubits,30,31 or qubit arrays.32–34

In this work, we propose an alternative way to simu-
late lattice models, where the ground state of the effective
Hamiltonian is unaffected by photon losses. Specifically,
we show how to engineer arbitrary one-dimensional tight-
binding models for quantum fluxons, i.e. 2π-kinks in
the superconducting phase, associated with strongly con-
fined Josephson fluxoids in a discretized extended junc-
tion with high kinetic inductance. Fluxons correspond to
remarkably stable quantized persistent currents Ip flow-
ing around superconducting loops containing Josephson

FIG. 1. Fluxon state preparation. The top row shows the
three possible configurations of the superinductor loop: a) no
persistent current Ip = 0, b) persistent current under external
flux, and c) m fluxons trapped inside of the loop with zero
external field. d) Circuit setup for insertion of fluxons un-
der external flux and drive. e) Protocol for drive amplitude
εd(t) (red) and external flux Φext(t) (black) for the insertion

of m fluxons. The drive frequency fd ≈ 1
2π

(LJ,inCS)−1/2 cor-
responds to the eigenmode of the radiofrequency (RF) res-
onator consisting of the input junction EJ,in and the shunt
capacitance CS. The corresponding persistent currents are
represented by the green arrows (see App. A).

junctions [Fig. 1a-c)]. In order to load a certain number
of fluxons m inside the ring, one can use a protocol very
similar to the one demonstrated in Ref.35 for the reset
of a superinductor loop to its ground state with m = 0
[Fig. 1d)-e)]. We expect this protocol to successfully im-
plement the desired m-fluxon state with a probability in
excess of 90%, stable for an extended duration of time,
on the order of hours or even days.35

In the classical regime, fluxons constitute the basis for
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rapid single flux quantum electronics,36 where current
biases close to the critical current prompt fluxon mo-
bility. The associated heating is low enough to make
them attractive for state-of-the-art classical information
processing,37 and notably in the recent design of a qubit
readout circuit.38

Fluxons obeying macroscopic quantum tunneling are
significantly more fragile. Following their first implemen-
tation a decade ago,39 their use in devices has remained
limited with few exceptions.40–42 One of the main chal-
lenges in the development of quantum fluxon electron-
ics was the absence of reliable superinductors, inductors
L with an RF impedance comparable to the resistance
quantum: Lω ≥ RQ = h/(2e)2 ≈ 6.5 kΩ. A superinduc-
tor needs to allow for large quantum fluctuations of the
phase, while preventing its macroscopic quantum tunnel-
ing.

The remarkable recent progress in superinductor de-
sign and fabrication,35,43,44 including their use in arti-
ficial crystals and molecules,45–47 renders possible the
physical implementation of the quantum fluxon platform
proposed here. Recently, it has been shown that granu-
lar aluminum wires of sub-micron width can implement
almost-perfect superinductors featuring state-of-the-art
coherence, and low nonlinearity.48,49

The key insight of our proposal is to implement a tight-
binding model for long-lived quantum fluxons trapped
inside a superinductor ring. The ring is divided into
smaller loops by a periodic sequence of quantum Joseph-
son junctions (see Fig. 2a), with EJ,i/E

−
C,i . 10, where

EJ,i is the Josephson coupling of the ith junction and
E−C,i = e2/[2(CJ,i +C0/2)] is the corresponding charging
energy. At the classical level, thanks to the large superin-
ductance on the surrounding ring, fluxons are confined
to single loops, in contrast to the case of long Josephson
junctions or isotropic Josephson junction arrays.50 The
charging energies allow fluxons to tunnel between neigh-
boring loops, with a tunneling amplitude whose spatial
dependence is modulated by the Josephson couplings.
The tunnel rates can either be predefined by fabrica-
tion, or tuned in situ using locally flux-biased SQUID
loops, which would also mitigate the inherent spread in
junction parameters. A wide class of 1D tight-binding
lattice models could be implemented and populated with
a stable number m of fluxons. Additionally, local fast-
flux lines would enable the use of the same platform for
quantum annealing.51

The remainder of this paper is organized as follows. In
Sec. II, we derive the circuit Hamiltonian and provide a
definition of a fluxon trapped in the system. In Sec. III,
we derive a low-energy effective theory for the dynam-
ics of a single fluxon, in terms of a tight-binding model,
and argue that this is indeed the correct low-energy de-
scription by numerically diagonalizing the circuit prob-
lem for small numbers of junctions. Finally, we conclude
in Sec. IV. We relegate substantial detail to the appen-
dices: Appendix A covers the protocol for fluxon inser-
tion. We provide the detailed derivation of the circuit

FIG. 2. Superconducting circuit implementation of an effec-
tive tight-binding model for fluxons. a) The circuit of Figure 1
generalizes to a superinductor ring encompassing loops sep-
arated by Josephson junctions. The fluxon “input” junction
is shown in blue, the “lattice” junctions EJ,i are depicted in
orange. b) Circuit representation of the simplified model of
Eq. (4); the branch fluxes ϕ−

i are the degrees of freedom de-
scribing fluxon dynamics through the one-dimensional array.
c) The equivalent tight-binding model for fluxons, where ev-
ery site corresponds to a loop in b); the on-site and tunneling
energy scales are the ones appearing in Eq. (8).

Hamiltonian in App. B. We have dedicated App. C to
numerical methods, and we have provided a discussion
of the effects of disorder in App. D.

II. CIRCUIT HAMILTONIAN

We now consider a simplified version of the circuit
(Fig. 2b) in which the fluxon insertion circuitry can be ne-
glected (LJ,in � L). The circuit consists of 2N supercon-
ducting islands denoted by indices α, i, with i = 1, ..., N
the longitudinal coordinate and α = 1, 2 the transverse
coordinate. The degrees of freedom are canonically con-
jugate pairs of superconducting phase and Cooper pair
number operators on the superconducting islands, obey-
ing [ϕα,i, nβ,j ] = iδαβδij . We introduce linear com-
binations corresponding to longitudinal and transverse
modes, respectively:

ϕ±i = ϕ1,i ± ϕ2,i, n
±
i =

n1,i ± n2,i

2
, (1)
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for which [ϕηi , n
η′

j ] = iδηη′δij for η, η′ = ±. The trans-

verse variables ϕ−i and n−i denote the branch flux, in
units of the superconducting flux quantum Φ0/(2π), and
Cooper pair number difference across the ith Josephson
junction, respectively.

Using the notation introduced in Eq. (1), the circuit
Hamiltonian separates as H = H+ +H− (see App. B for
the derivation). The fluxon Hamiltonian is H−, while
H+ describes the longitudinal “parasitic” modes of the
transmission line in Fig. 2a):

H+ =

N−1∑
i=0

4E+
C (n+

i )2 +

N−2∑
i=0

EL

2
(ϕ+
i+1 − ϕ

+
i − ϕext,i+1)2.

(2)

E+
C = e2/C0 are Coulomb charging energies, with C0

the capacitance to ground of each superconducting is-
land. EL = [Φ0/(2π)]2/(2L) are inductive energies, and
ϕext,i = 2πΦext,i/Φ0 is the external flux. Typical values
are C0 ∼ 40 aF and L ∼ 100 nH.35 Since there areN pairs
of superconducting islands, the plasma frequency charac-
terizing the excitations of the transmission line scales as

ω+ =
1

N
√
LC0

∼ 50

N
GHz. (3)

On the other hand, the typical energy scale of the an-
tisymmetric sector, H−, is set by the tunneling energies
ti [see Fig. 2c) and Eq. (8)] which are on the order of
∼ 1GHz. Given the symmetry of the circuit in Fig. 2,
these sectors are orthogonal, and, moreover, they are
spectrally isolated (ω+ & ti) for N . 50.

Secondly, H− describes the transverse modes [see
Fig. 2b)], which we express as

H− = T − + V−, (4)

whose terms are:

T − =

N−1∑
i=0

4E−C,i(n
−
i )2, (5)

with E−C,i = e2/[2(CJ,i +C0/2)] ' e2/2CJ,i the Coulomb
charging energy between the two superconducting is-
lands, and

V− =
EL

2
(ϕ−0 − ϕext,0)2 +

EL

2
(ϕ−N−1 + ϕext,N )2

+

N−2∑
i=0

EL

2
(ϕ−i+1 − ϕ

−
i − ϕext,i+1)2

+

N−1∑
i=0

EJ,i

[
1− cos

(
ϕ−i
)]
, (6)

the potential energy from the inductive and Josephson
elements.

Classical 1-fluxon states correspond to minima of the
potential energy V− with respect to flux variables ϕ−i ,

FIG. 3. Effective one-dimensional fluxon potential. a) The
classical potential for 1-fluxon dynamics has four degenerate
minima separated by Josephson energy barriers. The insets
show that in (ϕ−

0 , ϕ
−
1 , ϕ

−
2 ) space the variable ϕ̃ traverses the

edges of a hypercube between the four minima [see Eq. (7)].
b) The 1-fluxon state consists of a kink in the superconducting
phase. If the kink occurs between junctions j and j+1, in the
limit EJ � EL, the dominant current circulation (green ar-
rows) occurs on the loop delimited by the two junctions. The
circulating currents on the neighboring loops are suppressed
by a factor ∼ EJ/EL.

as shown for example in Fig. 3a) for N = 3, describ-
ing a single fluxon trapped inside the superinductor ring
surrounding the lattice in Fig. 2b). We are consider-
ing henceforth the situation in which one flux quantum
is threaded through the superinductor ring, by choosing
ϕext,0 = 2π, ϕext,i = 0 for 1 ≤ i ≤ N . This guaran-
tees that 1-fluxon states are global minima of V− (see
App. A). These states are the N+1 configurations of the
superconducting phase (k = 0, ..., N)

(ϕ−i )(k) ≈ 2π, for 0 ≤ i < k,

≈ 0, for k ≤ i ≤ N, (7)

corresponding to kinks in the expectation value of the
field ϕ−i as a function of i, as shown in Fig. 3b).

The expressions in Eq. (7) are not exact minima of the
potential energy V− due to the quadratic contributions of
the inductive energy terms ∝ EL. These deviations give
rise to single vortices of persistent current localized at the
position of the kink. The green arrows in Fig. 3b) show
the expectation values of currents Φ0

2π IJ,i = EJ,i sin(ϕ−i ),
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Φ0

2π I
−
i =

√
2EL(ϕ−i+1 − ϕ

−
i − ϕext,i+1). The confinement

of the persistent currents is essential to enable the local
control of the potential energy, and it follows from the
choice of energy scales EL � EJ in Eq. (6).

In the 1-fluxon manifold, the relevant variable is
the position of the kink. To parametrize this posi-
tion, we define the variable ϕ̃ along the curve in the
(ϕ−0 , ϕ

−
1 , ..., ϕ

−
N−1) space which contains the minima of

the potential energy, and their connections along classi-
cal instanton trajectories.52,53 For example, for N = 3,
the potential V−(ϕ̃) plotted in Fig. 3a) has degenerate
minima at points labeled 0,...,3, corresponding to four
classical 1-fluxon states along the curve ϕ̃ represented in
the inset. The minima are labeled by the position of the
kink, where “0” stands for no kink, and “1” for the kink
at the first junction etc. [Fig. 3b)].

III. TIGHT-BINDING DESCRIPTION

The charging energy T − gives rise to quantum tun-
neling between 1-fluxon states. Projecting H− into the
1-fluxon manifold yields a quantum tight-binding model

h− =

N−1∑
i=0

εi|i〉〈i| −
N−2∑
i=0

ti|i〉〈i+ 1|+ H.c., (8)

where |i〉 denotes the 1-fluxon state at i = 0, ..., N − 1.
We have retained in h− the next–neighbor contributions
only [see Fig. 2c)], as tunnel rates drop exponentially
with distance. The on-site energies are εi ≈ 1

2~ωi where

ωi =
√

8E−C,iEJ,i is the Josephson plasma frequency. The

tunneling rate52–55 (the splitting of the N−fold degener-
ate low-lying manifold of classical minima) is exponen-

tially small ti ∝ e
−
√

8EJ,i/E
−
C,i and becomes zero in the

classical limit EJ,i � E−C,i. Since the precise value of the
numerical prefactor depends on the shape of the poten-
tial, in the following we solve for the tunnel rates exactly
via numerical diagonalization.

The low-energy 1-fluxon manifold is separated from
the remainder of the spectrum by either a gap of or-
der (2π)2EL, corresponding to the creation of an addi-
tional fluxon or antifluxon in Eq. (6), which amounts to
a repulsive interaction, or by an energy scale correspond-
ing to the Josephson plasma frequency, which amounts
to an on-site excitation into a higher energy eigenstate
of the local potential well. If multiple fluxons are in-
serted into the array, it is expected that vortex dynamics
closely resembles that of a gas of hardcore bosons with
an exponentially-suppressed long-range repulsive inter-
action whose distance scale is the size of a single fluxon
and is roughly proportional to (EL/EJ)1/2.50 This state-
ment holds for energy scales comparable to the band-
width ti and far inferior to the gap. In particular, the
Mott insulating state of one fluxon per loop corresponds
to the band insulator obtained by occupying all states of
the (band) spectrum of Eq. (8) with εi = ε and ti = t.

a)

b)

FIG. 4. Low-lying spectrum and wavefunctions for the low-
est four states (represented ascendingly with respect to their
energy, in solid black, dashed red, solid blue, and solid black,
respectively) for a three-junction circuit with, EC = 10 and

EJ0 = EJ2 = 100 = ηEJ1 in units of EL = (Φ0/2π)2

2L
, with

η = 1 for a) and η = 10 for b). We show in orange dashed lines
the potential energy V−(ϕ̃) (left vertical axis). The wavefunc-
tions in arbitrary units are offset by their eigenenergies (right
vertical axis). For b), the first and second excited states are
intragap boundary-localized excitations of the 1-fluxon tight-
binding model. The points represent the values obtained from
numerical diagonalization, and the lines are direct connec-
tions.

Note that fluxon dynamics is dual to that of bosons on
a two-leg Josephson ladder, which have a rich ground
state phase diagram depending on external flux and bo-
son density.50,56–59

We validate our semiclassical arguments with an exact
numerical diagonalization. For this purpose, we consider
N = 3 junctions

H− = 4E−C
[
(n−0 )2 + (n−1 )2 + (n−2 )2

]
+ V−(ϕ−0 , ϕ

−
1 , ϕ

−
2 ).

(9)

To numerically diagonalize H− we consider the equiva-
lent eigenvalue problem and solve it by a finite-difference
method60 complemented by exact diagonalization (the
procedure is detailed in App. C). We plot the wave-
function ψ(ϕ−0 , ϕ

−
1 , ϕ

−
2 ), along the ϕ̃ coordinate, and the

eigenvalues of lowest-lying states in Fig. 4a). Due to the
action of the charging (Laplacian) terms, there is some
leakage of the wavefunctions along the coordinates per-
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pendicular to the curve parametrized by ϕ̃. This effect
is taken into account in the multidimensional numerical
diagonalization.

Tunneling amplitudes can be tuned to yield a topo-
logical bandstructure in one dimension. Here, we
discuss a fluxon analogue of the Su-Schrieffer-Heeger
model,61,62 originally proposed to describe the elec-
tronic structure of polyacetylene, which sustains a
symmetry-protected topological phase with fractionally
charged edge states.63–65 This is achieved in the 1-fluxon
model (8) by dimerizing the Josephson energy EJ,j =
EJ + (−1)j+1δ with EJ > δ > 0 and j = 0, ..., N − 1. A
pair of exponentially boundary-localized states is observ-
able for odd N ≥ 3. In Fig. 4b) we show the low-lying
energies and eigenstates for the minimal length of N = 3
junctions with EJ,0 = EJ,2 = 10EJ,1 and E−C = EJ,0/10.
The effect of enhanced tunneling on the middle junction
is to split the states corresponding to fluxons localized
on the two central loops, leading to a large energy gap.
The remaining two intragap states correspond to flux-
ons localized on the end loops. Their hybridization must
vanish exponentially for increasing N . As long as the
dimerization relation is preserved (i.e., the disorder does
not close the band gap), disorder in the tunneling rates
of the effective tight-binding model (8) does not induce
a significant splitting of the two bound states. On the
other hand, the degeneracy is vulnerable to flux noise,
which amounts to on-site disorder in Eq. (8) (see App. D
for a discussion of the effect of disorders).

The levels of the dimerized low-energy model can be
filled as fluxons are added to the system. When one in-
serts m = N+1

2 + 1 fluxons, the ground state has two

intra-gap boundary-localized excitations,62,65–67 which
could be used for the implementation of a superconduct-
ing qubit. This may offer an alternative to fault tolerant
quantum computation via topological protection, simi-
larly to the 0− π qubit.60,68–73

IV. CONCLUSION

We have presented an alternative path to perform
quantum simulation, moving away from the well-known
microwave photon architectures to a concept based on
fluxon dynamics in networks of Josephson junctions.
Unlike photons, fluxons can be individually trapped
inside superinductor loops, and their number m can
be stable for durations practically infinite compared to
the experimental timescales. The control and read-
out of the states could be performed using the stan-
dard tools of cQED. Dispersive quantum non-demolition
measurements74 could be adapted to access the local den-
sity of states in such circuits, by using locally coupled RF
antennas.

We have discussed the possible experimental limita-
tions of this platform and argued that the current quan-
tum fluxon model is robust for networks containing up
to ∼ 50 lattice sites, after which the transmission-line

modes of the circuit can interfere with the fluxon modes.
This limit could be increased by using more sophisticated
circuit fabrication technologies, which can remove most
of the backplane dielectric via etching, and thus decrease
the self capacitance.75

The power of quantum fluxonics is illustrated by an
implementation of the Su-Schrieffer-Heeger model in the
1-fluxon subspace. Probes of the Zak geometric phase76

classifying the topological state of a long circuit could be
devised, as exemplified for microwave photons in a dimer-
ized one-dimensional quantum LC array.77 The purpose
of this proposal is not to introduce a quantum simulator
for a specific model, but rather an entirely novel platform.
Finally, we note that, beyond the scope of quantum sim-
ulation, fluxons could be appealing for on-chip quantum
state transfer,78,79 and routing.80
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Appendix A: Fluxon insertion

In this section, we provide a more detailed discussion
of the protocol for fluxon insertion. We consider the cir-
cuit in Fig. 5, in which L is a superinductance,35 as de-
scribed in the main text, and the loop is closed by an
input Josephson junction with Josephson energy EJ,in

approximately one hundred times the charging energy
EC,in. Before we review the time–dependent protocol in-
troduced in the main text, we derive the equations of
motion and the potential energy for the circuit of Fig. 5.
The physics of the input junction is analogous to that of
a weak link interrupting a loop of superconductor.81–83

We now write a system of classical equations of mo-
tion for branch fluxes and currents corresponding to the
Josephson junction and the inductor. These can be rep-
resented in terms of node variables ΦJ = φ1 − φg and
ΦL = φ1 − φg + Φext, respectively, from which we derive
the loop equation for branch fluxes:

ΦL = ΦJ + Φext. (A1)
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Current conservation at node 1 means

IJ + IL = CJφ̈1. (A2)

Equations (A1) and (A2) underlie the derivation of the
Hamiltonian of the circuit in Fig. 5a) based on the rules
of circuit quantization.84,85

The purpose of this section is to derive the potential
energy and its stationarity conditions. To this end, let
us set the right member of Eq. (A2) to zero, and denote
the loop current with the symbol I, with the following
sign convention:

I = IJ = −IL. (A3)

The current around the loop can be related to the phase
difference across the Josephson junction in the following
way. Let

ϕJ ≡ 2π
ΦJ

Φ0
mod 2π (A4)

be the superconducting phase difference across the
Josephson junction. It is useful to explicitly introduce
an integer m such that the equality modulo multiples of
2π becomes

ϕJ = 2π
ΦJ

Φ0
+ 2πm. (A5)

The phase variable ϕJ is defined to be compact on the
interval (−π, π]. It is related to the current through the
Josephson junction through the Josephson relation

I = Ic sin (ϕJ) , ϕJ = sin−1

(
I

Ic

)
, (A6)

where Ic is the critical current. It is related to the Joseph-
son energy through the relation EJ,in = IcΦ0/(2π).

The current I is also related to the flux through the
inductor ΦL through the constitutive equation

ΦL = −LI, (A7)

where we have used Eq. (A3).
We can now use the Josephson relation (A6), the equa-

tion relating the flux and phase variables (A5), and the
constitutive equation of the inductor (A7) together with
the loop equation (A1) to obtain

− LI =
ϕJ

2π
Φ0 −mΦ0 + Φext. (A8)

Rearranging terms, this gives

ϕJ

2π
Φ0 + (LI + Φext) = mΦ0. (A9)

The quantity on the right-hand side is the London flux-
oid. The term in the parentheses is the total flux through
the superconducting loop, composed of the kinetic flux
LI from the loop inductance L and the external flux Φext.
This is the fluxoid quantization condition.83,86

a) b)

FIG. 5. a) Circuit layout illustrating the conventions in the
text; b) Reduced potential function v(ϕJ) for the circuit in a)
at ϕext = 0 (black solid) and ϕext = 2π (black dashed). The
times t1, t2, t3, t4 correspond to those represented in Figure 1
of the main text, and the red arrows and circle markers in-
dicate the 4 stages of the insertion of 1 fluxon. The integers
m above the three central minima indicate the value of the
fluxoid, 2πm, from Eq. (A9) or its equivalent (A10).

Using the Josephson relation (A6) in Eq. (A9) we ar-
rive at the transcendental equation

ϕJ − 2πm+ 2π
Φext

Φ0
= − sin(ϕJ). (A10)

Recall that ϕJ is defined on the compact interval (−π, π].
Different solutions of the transcendental equation above
are obtained by varying m at fixed Φext. Alternatively,
one may use the relation between ΦJ and ϕJ, Eq. (A5),
and solve a transcendental equation for the real variable,
the flux:

2πΦJ/Φ0 + 2πΦext/Φ0 = − sin(2πΦJ/Φ0). (A11)

Equations (A10) and (A11) are equivalent and they serve
to distinguish between the compact phase variable ϕJ and
the real flux variable ΦJ. The equation for the compact
phase variable ϕJ necessarily contains the London fluxoid
2πm [in units of Φ0/(2π)].

Equation (A11) is a stationarity condition for the di-
mensionless potential energy [consistent with the equa-
tions of motion (A1) and (A2)]

v

(
2π

ΦJ

Φ0

)
=

[
1− cos

(
2π

ΦJ

Φ0

)]
+ 2π

(ΦJ + Φext)
2

2ΦcΦ0
,

(A12)
where we have introduced the critical kinetic flux Φc =
LIc. This function is plotted in Fig. 5b) for two values
of the external flux Φext = 0 (solid lines) and Φ0 (dashed
lines). The minima of the potential energy are labeled
by their respective values of the fluxoid 2πm, as obtained
from the solution to the transcendental equation (A10).

The fluxon insertion protocol relies on that of
Masluk et al .35 The input junction is addressable by
means of the antenna connected across a shunt capaci-
tance CS. The superinductor loop is threaded by external
flux Φext. The insertion of one fluxon entails increasing
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FIG. 6. N = 3 junction circuit with open boundaries. Minimum spanning tree (MST)84 is highlighted in gray. The junctions,
not labeled above, are characterized by Josephson energy EJ,j and capacitance CJ,j , j = 0, 1, 2.

the fluxoid from m = 0 to m = 1 in units of the super-
conducting flux quantum, in the following sequence: Be-
fore t1 at zero external flux, the system is in its classical
ground state corresponding to m = 0. At t1, the flux is
increased to Φ0 maintaining the system in the metastable
minimum. Between t2 and t3 a high-amplitude drive is
applied to lower the effective Josephson potential EJ,in,

which prompts a spontaneous relaxation of the system to
the lower energy state at m = 1. At t4, the flux is turned
back to zero, thereby placing the system in an (excited)
metastable state at m = 1. The procedure can be iter-
ated to insert additional fluxons. To insert m fluxons, a
field Φext = mΦ0 would be necessary, in order to turn
the m fluxon minimum into a global minimum at time
t2.

Appendix B: Derivation of the circuit Hamiltonian for the Josephson transmission line

Consider the circuit in Figure 6. We follow Refs. [84,85] to quantize the circuit. We will generalize our results to 2N
superconducting islands but keep the calculation concrete at N = 3 for brevity. Below, g denotes the ground node,
to which superconducting island α, j, with α = 1, 2 and j = 0, 1, 2, is connected via capacitance Cα,j . The Josephson

energy of the jth junction is EJ,j =
~Ic,j

2e , where Ic,j denotes the critical current on the jth junction. The capacitance
of each junction is CJ,j . The minimum spanning tree (MST) covering the 6 active nodes αj for α = 1, 2, j = 0, 1, 2 is
highlighted in gray in Fig. 6. The loop equations in terms of branch variables (labeled according to Fig. 6) are:

ΦC1,1
− ΦL1,1

− ΦC1,0
= 0,

ΦC1,2 − ΦL1,2 − ΦL1,1 − ΦC1,0 = 0,

ΦC2,0 − ΦEJ,0 − ΦC1,0 = 0,

ΦC2,1
− ΦEJ,1

− ΦL1,1
− ΦC1,0

= 0,

ΦC2,2
− ΦEJ,2

− ΦL1,2
− ΦL1,1

− ΦC1,0
= 0,

ΦEJ,0
− ΦL0

= Φext,0,

ΦEJ,1
− ΦL2,1

− ΦEJ,0
+ ΦL1,1

= Φext,1,

ΦEJ,2 − ΦL2,2 − ΦEJ,1 + ΦL1,2 = Φext,2,

−ΦEJ,2 + ΦL3 = Φext,3. (B1)

The branch fluxes for branches that belong to the MST can be reexpressed in terms of node fluxes,

ΦEJ,0 = φ2,0 − φ1,0, ΦEJ,1 = φ2,1 − φ1,1,

ΦEJ,2 = φ2,2 − φ1,2, ΦL1,1 = φ1,1 − φ1,0,

ΦL1,2
= φ1,2 − φ1,1, ΦC1,0

= φ1,0 − φg. (B2)
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Replacing these into the loop Eqs. (B1) we obtain

ΦC1,1
= φ1,1 − φg, ΦC1,2

= φ1,2 − φg, (B3)

ΦC2,0
= φ2,0 − φg, ΦC2,1

= φ2,1 − φg,
ΦC2,2

= φ2,2 − φg,
ΦL0 = φ2,0 − φ1,0 − Φext,0, ΦL3 = φ2,2 − φ1,2 + Φext,3,

ΦL2,1 = φ2,1 − φ2,0 − Φext,1, ΦL2,2 = φ2,2 − φ2,1 − Φext,2.

Substituting (B2) and (B3) into Kirchoff node equations, we find equations of motion

α, i

1, 0 : −φ2,0 − φ1,0 − Φext,0

L0
− Ic,0 sin

(
2π
φ2,0 − φ1,0

φ0

)
+
φ1,1 − φ1,0

L1,1
= C1,0( ¨φ1,0 − φ̈g)− C0( ¨φ2,0 − ¨φ1,0),

2, 0 : +
φ2,0 − φ1,0 − Φext,0

L0
+ Ic,0 sin

(
2π
φ2,0 − φ1,0

φ0

)
− φ2,1 − φ2,0 − Φext,1

L2,1
= C2,0( ¨φ2,0 − φ̈g) + C0( ¨φ2,0 − ¨φ1,0),

1, 1 :
φ1,1 − φ1,0

L1,1
− Ic,1 sin

(
2π
φ2,1 − φ1,1

φ0

)
− φ1,2 − φ1,1

L1,2
= C1,1( ¨φ1,1 − φ̈g)− C1( ¨φ2,1 − ¨φ1,1), (B4)

2, 1 :
φ2,1 − φ2,0 − Φext1

L2,1
+ Ic,1 sin

(
2π
φ2,1 − φ1,1

φ0

)
− φ2,2 − φ2,1 − Φext2

L2,2
= C2,1( ¨φ2,1 − φ̈g) + C1( ¨φ2,1 − ¨φ1,1),

1, 2 : +
φ1,2 − φ1,1

L1,2
− Ic,2 sin

(
2π
φ2,2 − φ1,2

φ0

)
− φ2,2 − φ1,2 + Φext3

L3
= C1,2( ¨φ1,2 − φ̈g)− C2( ¨φ2,2 − ¨φ1,2),

2, 2 : +
φ2,2 − φ2,1 − Φext,2

L2,2
+ Ic,2 sin

(
2π
φ2,2 − φ1,2

φ0

)
+
φ2,2 − φ1,2 + Φext,3

L3
= C2,2( ¨φ2,2 − φ̈g) + C2( ¨φ2,2 − ¨φ1,2).

These are Euler–Lagrange equations for the following Lagrangian (expressed now in terms of N ; to retrieve the
previous equations, one would set N = 3):

L =

N−1∑
j=0

1

2
Cj( ˙φ2,j − ˙φ1,j)

2 +

N−1∑
j=0

∑
α=1,2

1

2
Cα,i( ˙φα,i − φ̇g)2 −

N−2∑
j=0

[
(φ1,j+1 − φ1,j)

2

2L1,j+1
+

(φ2,j+1 − φ2,j − Φext,j+1)2

2L2,j+1

]

− (φ2,0 − φ1,0 − Φext,0)2

2L0
− (φ2,N−1 − φ1,N−1 + Φext,N )2

2LN
+

N−1∑
j=0

EJ,j

[
1− cos

(
2π
φ2,j − φ1,j

φ0

)]
. (B5)

Now set the longitudinal inductances to be all equal, Lα,i = L, and the terminal inductors to a value that ensures
that all loop inductances are constant across the circuit L0 = LN = 2L. Further let the capacitance to ground of each
superconducting island be Cα,i = C0, for i = 0, ..., N − 1 and α = 1, 2. These assignments agree with the particular
choices denoted in Fig. 2b) in the main text. We now introduce new coordinates

φ±j = φ2,j ± φ1,j . (B6)

In terms of these fields the charging energy is rearranged into

1

2
C0( ˙φj,0 − φ̇g)2 +

1

2
C0( ˙φj,1 − φ̇g)2 ≡ 1

2
C0(A2 +B2) =

1

2
C0

(A+B)2 + (A−B)2

2
= C0

[
(φ̇+
j /2− φ̇g)

2 + (φ̇−j /2)2
]

(B7)

and the longitudinal inductive elements give rise to:

(φ1,j+1 − φ1,j)
2

2L
+

(φ2,j+1 − φ2,j − Φext,j+1)2

2L
=

1

4L

[(
φ+
j+1 − φ

+
j − Φext,j+1

)2
+
(
φ−j+1 − φ

−
j − Φext,j+1

)2]
. (B8)

Additionally, the inductive terms for the two end loops transform to

(φ2,0 − φ1,0 − Φext,0)2

2× 2L
=

(φ−0 − Φext,0)2

2× 2L
,

(φ2,N−1 − φ1,N−1 + Φext,N )2

2× 2L
=

(φ−N−1 + Φext,N )2

2× 2L
. (B9)



9

a)

----

----

1 3 5 7
190
200
210
220
230

State index

E
/E

L

b)

-

--
-

---
-

1 3 5 7

150
160
170
180

State index

E
/E

L

FIG. 7. Three-dimensional density plots (opaque volumes signify that the absolute value of the probability density exceeds
10−3) for the first four eigenstates of H− in Eq. (9) obtained from the finite-differences solution with Np = 17. The low-lying

energies are represented in the leftmost panels. We set EC = EJ,0 × 10−1, EJ,0 = η × EJ,1 = EJ,2 in units of EL = (Φ0/2π)2

2L
,

with a) η = 1 and b) η = 10 corresponding to the values chosen in Fig. 4 of the main text. In a), the eigenvalues of the
first five states, in units of EL, are 189.51, 190.10, 190.75, 191.22, and 227.49, respectively. In b), the first five eigenvalues are
144.55, 152.34, 152.41, 159.01 and 179.91, respectively.

In terms of the new coordinates introduced in (B6) the Lagrangian of Eq. (B5) becomes

L =

N−1∑
j=0

CJ,j

2
(φ̇−j )2 +

N−1∑
j=0

C0

4

[
(φ̇+
j − 2φ̇g)

2 + (φ̇−j )2
]
−
N−2∑
j=0

1

4L

[(
φ+
j+1 − φ

+
j − Φext,j+1

)2
+
(
φ−j+1 − φ

−
j − Φext,j+1

)2]

− 1

4L

[(
φ−0 − Φext,0

)2
+
(
φ−N−1 + Φext,N

)2]
+

N−1∑
j=0

EJ,j

[
1− cos

(
2π
φ−j
Φ0

)]
.(B10)

The canonically conjugate momenta corresponding to the variables introduced in Eq. (B6) are

∂L
∂φ̇−j

≡ Q−j = (CJ,j + C0/2)φ̇−j ,
∂L
∂φ̇+

j

≡ Q+
j = (C0/2)(φ̇+

j − 2φ̇g),
∂L
∂φ̇g

≡ Qg = −
N−1∑
j=0

C0(φ̇+
j − 2φ̇g). (B11)

After a Legendre transform, H ≡ Qgφ̇g +
∑N−1
j=0

∑
α=±Q

α
j φ̇

α
j − L, and promoting classical degrees of freedom to

quantum operators, we find

H =

N−1∑
j=0

(Q+
j )2

2(C0/2)
+

N−1∑
j=0

(Q−j )2

2(CJ,j + C0/2)
+

N−2∑
j=0

1

4L

[(
φ+
j+1 − φ

+
j − Φext,j+1

)2
+
(
φ−j+1 − φ

−
j − Φext,j+1

)2]

+
1

4L

[(
φ−0 − Φext,0

)2
+
(
φ−N−1 + Φext,N

)2]− N−1∑
j=0

EJ,j

[
1− cos

(
2π
φ−j
φ0

)]
. (B12)

We introduce, as in the main text, a dimensionless variable for the flux ϕαj = 2πφαj /Φ0 and the canonically conjugate

Cooper pair number nαj =
Qαj
2e for j = 0, ..., N − 1 and α = ±. We also introduce energy scales associated with

charging and inductive circuit elements

E+
C =

e2

2(C0/2)
, EL =

[Φ0/(2π)]
2

2L
, E−C,j =

e2

2(CJ,j + C0/2)
, (B13)
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as well as dimensionless flux variables

ϕext,j =
2π

Φ0
Φext,j . (B14)

The Hamiltonian reads

H = H+ +H−, (B15)

where

H =

N−1∑
j=0

4E+
C (n+

j )2 +

N−1∑
j=0

4E−C,j(n
−
j )2 +

N−2∑
j=0

EL

2

[(
ϕ+
j+1 − ϕ

+
j − ϕext,j+1

)2
+
(
ϕ−j+1 − ϕ

−
j − ϕext,j+1

)2]

+
EL

2

[(
ϕ−0 − ϕext,0

)2
+
(
ϕ−N−1 + ϕext,N

)2]− N−1∑
j=0

EJ,j

[
1− cos

(
ϕ−j
)]
. (B16)

This is the Hamiltonian used in the main text.

Appendix C: Numerical methods

In this section we detail the solution to Eq. (9) of the
main text. For three junctions, the quantum Hamiltonian
in the antisymmetric sector reads:

H− ≈ 4EC

[
(n−0 )2 + (n−1 )2 + (n−2 )2

]
+ V−(ϕ−0 , ϕ

−
1 , ϕ

−
2 ),

(C1)
where one flux quantum is threaded through the entire
circuit. The latter condition makes the classical global
minimum correspond to fluxoid m = 1 [in analogy to the
point marked t3 in Fig. 5b)]. We choose a gauge such
that ϕext,0 = 2π and ϕext,i = 0 for i = 1, 2, 3. More-
over, making the inductances of the 4 elementary loops
in the circuit equal ensures that the global minimum of
the potential energy is four-fold degenerate – this is the
underlying tight-binding lattice.

Writing n−i = −i ∂
∂ϕ−i

the associated Schrödinger equa-

tion takes the form of a differential eigenvalue equation

H−
({
−i ∂

∂ϕ−i
, ϕ−i

∣∣∣∣ i = 0, .., 2

})
ψ = E ψ (C2)

This eigenvalue equation can be solved by finite-
difference methods.60 With one flux quantum threaded
through the loop, as explained in the previous para-
graph, the lowest energy manifold will only contain one-
fluxon states, and therefore we only consider the interval
(ϕ−0 , ϕ

−
1 , ϕ

−
2 ) ∈ [−π, 3π]× [−π, 3π]× [−π, 3π]. This inter-

val symmetrically contains the minima at 0 and 2π. We
cover this interval by a uniform mesh of Np points in each
of the three directions. Local minima of the classical po-
tential outside of the first octant are higher than the ones
inside it by an energy approximately equal to (2π)2EL,
as follows from the expression of the potential energy in
Eq. (B16), and their influence is neglected. We adapt the
mesh size so that in the classical limit, corresponding to
vanishing charging energies EC = 0, the lowest energy
eigenvalues and the corresponding wavefunctions agree

with the minima of the classical potential. In Fig. 7 we
show results for the uniform and dimerized lattices for
a computation corresponding to N = 3 junctions and
mesh size Np = 17 along each axis. Diagonalization was
performed with a Jacobi-Davidson routine in the Math-
ematica Package.
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FIG. 8. Typical tunnel rate for a Josephson junction as
a function of junction surface area (solid black lines). The
black dotted (blue dashed) lines together with the shaded re-
gion between them show the spread of the tunnel rate for a
5% (10%) error in the surface area. Thick black dashed lines
serve as guides to the eye to illustrate a possible choice of two
reference surface areas for the small and large junctions in
the dimerized configuration. Inset: Fractional spread of the
tunnel rate as a function of junction area for a 5% (black dot-
ted line) and 10% (blue dashed line) tolerance in the junction
surface area.
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a) b)

FIG. 9. a) Effect of increasing bond disorder Wbond on the spectrum of the Su-Schrieffer-Heeger model with open boundary
conditions. The degenerate boundary states subsist up to strong disorder (the size of the gap). b) On-site disorder Wsite splits
the degeneracy of the boundary states, on average by an amount equal to Wsite.

Appendix D: Disorder effects

In the cQED implementation of the tight-binding
model for fluxons, tunneling rate disorders would arise
from the spread in the junction parameters EJ,i, E

−
C,i in

Eqs. (5) and (6) of the main text, whereas on-site dis-
orders are induced by flux disorder at the level of the
circuit, i.e. in the variables ϕext,i in Eq. (6) of the main
text. Based on this correspondence, we will show in this
section that the degeneracy of the bound states in the
circuit QED implementation of the Su-Schrieffer-Heeger
model is fairly robust to junction imperfections. How-
ever, local flux noise will generally split the degenerate
manifold.

In Fig. 8 we show typical values for the tunnel rate
through a single junction, as a function of the junction
surface area, along with the expected spread caused by
errors in the junction surface area of order 5% and 10%,
respectively. We consider the following dependence for
the tunnel rate on the Josephson and charging energies:55

t = 8

√
EJEC

π

(
EJ

2EC

) 1
4

e−
√

8EJ/EC . (D1)

Additionally, from the Ambegaokar-Baratoff87 formula
we may express

EJ = h
∆

8e2

1

Rn(S)
, (D2)

where h is Planck’s constant, e is the electron charge, and
Rn(S) is the normal state resistance. We take a typical
dependence of the normal state resistance on the surface
area in the form Rn(S) = αR/S where α = 100 Ωµm2.
Moreover,

EC =
e2

2CJ(S)
. (D3)

For the junction capacitance a typical dependence on
the surface area would be CJ(S) = αCS with αC =
50 fF/µm2. The estimates used here also allow us to
exemplify in Fig. 8 a possible choice for junction surface
areas for the dimerized configuration necessary for the
Su-Schrieffer-Heeger model. This choice is governed by
the requirement that the spread in the tunnel rates pre-
serves the dimerization, in accordance with our analysis
of bond disorders. We conclude that, for typical junction
parameters as chosen here, it is possible in principle to
realize a dimerized configuration, even at a 10% tolerance
for the junction surface areas.

For completeness, we now study the effects of disorder
on the spectrum of the Su-Schrieffer-Heeger Hamiltonian.
We consider the following tight-binding model

h− =

N−1∑
i=0

Wsite,i|i〉〈i|−
N−2∑
i=0

(ti +Wbond,i) |i〉〈i+1|+H.c.,

(D4)
where we implement the dimerization by setting

t0 = t2 = ... = 0.5∆, t1 = t3 = ... = ∆, (D5)

where ∆ is the band gap. Moreover, Eq. (D4) gener-
alizes Eq. (8) of the main text with the introduction
of on-site disorders Wsite,i uniformly distributed in the

interval
[
−Wsite

2 , Wsite

2

]
and tunnel term disorder Wbond,i

uniformly distributed in
[
−Wbond

2 , Wbond

2

]
for all i running

over the ranges in Eq. (D4).
For both bond disorder [Fig. 9 a)] and on-site disorder

[Fig. 9 b)] we diagonalize numerically Eq. (D4) with 30
sites and variable disorder strength and show the spec-
trum. We perform diagonlizations for an ensemble of
1000 disordered systems. We find that the degeneracy
of the boundary states is preserved up to strong bond
disorder Wbond on the order of the band gap ∆ (equiva-
lently, the degeneracy is preserved for bond disorder that
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preserves the dimerization of the hopping rates). On the
other hand, the degeneracy of the boundary states is im-

mediately split by on-site disorderWsite, and the splitting
is proportional to Wsite.
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