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We show that at the level of BCS mean-field theory, the superconducting Tc is always increased
in the presence of disorder, regardless of order parameter symmetry, disorder strength, and spatial
dimension. This result reflects the physics of rare events – formally analogous to the problem of
Lifshitz tails in disordered semiconductors – and arises from considerations of spatially inhomoge-
neous solutions of the gap equation. So long as the clean-limit superconducting coherence length,
ξ0, is large compared to disorder correlation length, a, when fluctuations about mean-field theory
are considered, the effects of such rare events are small (typically exponentially in [ξ0/a]d); however,
when this ratio is ∼ 1, these considerations are important. The linearized gap equation is solved
numerically for various disorder ensembles to illustrate this general principle.

I. INTRODUCTION

Most theoretical analyses of the effect of disorder on
the superconducting transition rest on two separate as-
sumptions: the pairing instability is treated in the con-
text of a generalized BCS mean-field theory, and the dis-
order is treated either perturbatively or in an effective
medium approximation. The primary focus of this paper
is the demonstration that there is additional universal
structure to the mean-field solution of this problem when
the effect of disorder is treated exactly. In particular, the
presence of rare regions – which are neglected in effective
medium approximations – leads to the unintuitive con-
clusion that disorder always increases the mean-field Tc,
independent of the nature of the disorder and whether we
are considering a conventional (s-wave) or unconventional
(p-wave or d-wave) superconductor. We demonstrate this
explicitly with numerical solutions of the linearized gap
equation for various disorder ensembles.

There is a separate issue of whether this improved
analysis of the BCS equations is physically significant.
When the regions that support a local superconducting
order parameter at mean-field level are sufficiently rare,
the inclusion of fluctuation effects beyond mean-field the-
ory reveals the inferred high transition temperatures to
be artifacts of mean-field theory; in this case, an incor-
rect solution of the mean-field equations can give a more
physically sensible solution. However, when the T = 0
superconducting correlation length, ξ0, is comparable to
the disorder correlation length, a, locally superconduct-
ing solutions of the mean-field equations can lead to sig-
nificant consequences – such systems exhibit a broad fluc-
tuational regime in which a form of self-organized gran-
ularity arises. We stress this is unavoidable in supercon-
ductors with correlation lengths comparable to the lattice
constant, even if the disorder is entirely homogeneous as
in a “perfect” substitutional alloy.

Needless to say, the effect of disorder on the supercon-
ducting transition temperature, the character of super-
conducting fluctuations, and the structure of the super-
conducting state have been the subject of extensive theo-
retical investigation for many decades. Since for the most
part, these studies had in mind large coherence length su-

perconductors, the effects of inhomogeneous pairing were
(rightly) largely neglected in these studies. However,
more recently, especially since the discovery of cuprate
high temperature superconductivity, a number of stud-
ies have highlighted various circumstances in which in-
homogeneous pairing correlations play a significant role
in superconductors with short correlation lengths – see,
for example, Refs. 1–9. These effects are particularly
amplified near a T = 0 (quantum) superconductor to
metal10,11 or superconductor to insulator8,9,12 transition.
Circumstances in which disorder enhances Tc have like-
wise been discussed previously.13–20 For instance, in a
semimetal with weak attractive interactions, Tc is zero
in the absence of disorder, but non-zero in the presence
of disorder.21,22 The importance of inhomogeneous solu-
tions of the gap equation, and of thermal (classical) phase
fluctuations in short-coherence length superconductors
have certainly been explored previously. However, as far
as we know, the existence of universal Lifshitz tails gov-
erning the distribution of local mean-field Tc’s has not
previously been sharply articulated.

The paper is organized as follows: In Sec. II we re-
view the BCS mean-field theory and linearized gap equa-
tion. In Sec. III we analyze the problem in the context
of Lifshitz tails and describe a generalization of Ander-
son’s theorem. In Sec. IV we present numerical solutions
for various disorder ensembles including Born scattering,
unitary scattering, and negative U centers. In Sec. V we
discuss how these effects can manifest in recent experi-
ments in the cuprates.

II. THE MODEL

We consider the tight-binding model

H = −
∑
a,b

tabc
†
acb +

∑
abb′a′

Vabb′a′c
†
ac
†
bcb′ca′ (1)

where a = (~r, σ) is an index specifying the lattice po-
sition, ~r, the spin polarization, σ, and possibly – if rel-
evant – an orbital index, and c†a creates an electron in
single-particle state a. We assume that both t and V are
short-range in space, but they need not be translationally
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invariant. Thus, to fully specify the problem we need to
specify the ensemble which determines the probability of
different “configurations,” i.e. realizations of H. We will
imagine that the ensemble has statistical translational
symmetry, so that the configuration-averaged version

H = −
∑
~r,~r′,σ

t(~r − ~r ′)c†~r,σc~r,σ +
∑
~r,~r′

V (~r − ~r ′)n̂(~r)n̂(~r ′)

(2)
is translationally invariant. (For simplicity, we have ig-
nored spin-orbit coupling and assumed a density-density

interaction, n̂(~r) =
∑
σ c
†
~rσc~rσ, although the same con-

siderations apply to more general models.) Then when
we ask about the effect of disorder on Tc, we are com-
paring the case in which we replace H by H (transla-
tion symmetry restored) with the full problem using the
configuration-dependent H. We will always focus the
analysis on systems in the thermodynamic limit, and will
assume that the disorder ensemble is sufficiently well-
behaved that the system properties are self-averaging in
this limit. Since in general V includes effective inter-
actions obtained by integrating out high energy degrees
of freedom, we consider disorder in V as well as single-
particle disorder taa. (See, for example, Ref. 1,2)

BCS mean-field theory

The interacting problem can be treated at mean-field
level by introducing the trial Hamiltonian

Htr = −
∑
a,b

τabc
†
acb +

∑
a,b

[
∆abc

†
ac
†
b + H.C.

]
(3)

where the parameters are chosen so as to minimize the
variational free energy

Fvar[τ,∆] = Ftr + 〈H −Htr〉tr (4)

where the expectation values are taken with respect to
the Gibbs ensemble of Htr. From the condition that Fvar
is stationary with respect to variations of the parameters
entering Htr, we obtain the self-consistency conditions

∆ab =
∑
a′b′

Vabb′a′〈cb′ca′〉 (5)

τab = tab − 4
∑
a′b′

Vaa′b′b〈c†a′cb′〉. (6)

Still at mean-field level, the superconducting state is
characterized by a broken symmetry, and thus occurs
whenever the lowest free energy solution of these equa-
tions has a non-vanishing value of ∆ab for any ab; the
mean-field Tc is the upper bound on temperatures at
which such a solution exists. If the mean-field transition
is continuous, Tc can be identified by studying solutions

of the linearized gap equation. Specifically, the pair field
expectation value to linear order is given by

〈cacb〉 =
∂Ftr
∂∆?

ab

= −χab,a′b′(T ) ∆a′b′ + O(|∆|2∆?) (7)

where the notation is such that repeated indices are
summed over, and χ is the pair-field susceptibility com-
puted in the normal state (i.e. in the thermal ensem-
ble of Htr with ∆ab = 0). It is easy to see that χ is
a Hermitian, positive semidefinite matrix so the matrix
square-root χ1/2 exists and is also Hermitian.

With this in mind, we can expand the self-consistency
equation (6) to linear order. Specifically, consider the
solutions of the eigenvalue equation

λn(T )F
(n)
ab = Mab,b′a′(T ) F

(n)
b′a′ (8)

where M is the real Hermitian matrix

Mab,cd ≡ −χ1/2
ab,a′b′(T ) Va′b′,c′d′ χ

1/2
c′d′,cd(T ) (9)

(further details on the explicit form of M can be found
in Appendix A). Ordering the eigenstates λn ≥ λn+1,
the mean-field Tc is then identified as the temperature
at which λmax(Tc) ≡ λ0(Tc) = 1. If the mean-field
transition is first order, the transition temperature must
always be greater than that inferred in this way; thus,
λmax(T ) = 1 is a lower-bound estimate of the mean-field
Tc.

III. QUALITATIVE ASPECTS OF THE
SOLUTION

The linearized gap equation can be solved numerically
on moderately large systems for any given configuration,
as discussed below. Analytic solutions are difficult, but a
few general observations allow for qualitative statements
under broad circumstances.

We consider a short-ranged interaction Va1a2,a3a4
which vanishes sufficiently rapidly so as to be negligi-
ble for |~ri − ~rj | � 1 for any i 6= j (with lattice constant
= 1). However, the physics of metals is reflected in the
behavior of χ, which becomes increasingly long range as
T → 0. Specifically, at T = 0, in either a clean metal

or a diffusive metal, χaa,a′a′ ∼ |~R|−d for |~R| � 1; the
fact that

∑
~R χ(~0↑),(~0↓),(~R↓),(~R↑) is logarithmically diver-

gent is a direct manifestation of the Cooper instability of
a Fermi liquid – and the fact (Anderson’s theorem) that
it persists even in the presence of disorder.23,24

Were we studying quantum phase transitions at T = 0,
the long-range character of χ would make a statistical
analysis of M particularly subtle (see Ref. 11). How-
ever, as we are studying finite temperature transitions,
there is always a finite length scale, `(T ), beyond which χ
falls exponentially. Specifically, in a metal, `(T ) is deter-
mined by a thermal coherence length, LT , that diverges
with a power of T as T → 0: as LT = h̄vF /T in a clean
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metal and as LT =
√
h̄D/T in a diffusive metal where

vF and D are, respectively, the Fermi velocity and the
electron diffusion constant. If the disorder is sufficiently
strong to produce localization (which is to say any dis-
order in 2d), the same considerations apply so long as
LT < ξloc where ξloc is the localization length, but at
low enough temperatures, LT saturates to ξloc. In other
words, `(T ) ≈ min[LT , ξloc]. Thus, Ma1a2,a3a4 is short-
ranged in the sense that it vanishes exponentially when
|~ri − ~rj | � LT for any i 6= j.45

Lifshitz tails and a “theorem”

The problem of determining the spectrum of M is thus
structurally similar to the problem of a non-interacting
quantum particle moving in a random potential. We can
view M as a temperature-dependent tight-binding model
with moderate but finite range random hopping terms ex-
tracted from a complicated disorder ensemble; the higher
the temperature, the more local is M . The generic struc-
ture of the solutions is familiar, and therefore without
further analysis we can infer various properties of the
present problem on the basis of well-established results
from the random potential problem. We will adopt the
terminology that anything that can be established on
the basis of this precise analogy is “proven,” although
(in common with “Anderson’s theorem”) no proof in the
mathematician’s sense of propositions and lemmas will
be attempted.

On this basis, we conclude that there is a T -dependent
“density of states,” ρ(λ;T ), for the eigenvalues of M ,

and that this distribution is self averaging, ρ(λ) = ρ(λ).
Where ρ is large, we expect solutions to be delocalized
or at most weakly localized on exponentially long length
scales. But likewise, there are universal “Lifshitz tails”
to the distribution25 that extend to values of λ well in ex-
cess of the mean. In the tails, the eigenstates are strongly
localized and are associated with unusual rare regions in
which the configuration is exceptionally conducive to su-
perconductivity. The structure of this tail in the density
of states depends on details of the disorder. In many cir-
cumstances its asymptotic form, in the regime in which
ρ(λ;T ) is approaching zero, can be estimated by solving
an optimization problem25–27, which in turn can be re-
lated to a replica symmetry breaking instanton solution
of an appropriately replicated effective field theory.28

In the present problem, as in the problem originally
analyzed by Lifshitz25, we expect that the distribution
is bounded, i.e. that ρ(λ;T ) 6= 0 only within a finite
range λmin(T ) < λ < λmax(T ). Consider all possible
ways the system could be organized within the allowed
ensemble, including all possible concentrations and lo-
cal (possibly highly ordered) arrangements of impurity
atoms; λmax(T ) is then associated with the optimal con-
figuration. Of course, the concentration of regions of
the sample that happen to well approximate this opti-
mal configuration is extremely small. The more precisely

we require the optimal configuration, and the larger the
region in question, the smaller the concentration of such
regions; however, in the thermodynamic limit, for any
given size and required precision, the probability of find-
ing such a region is non-zero, and hence ρ(λ) > 0 so long
as λ < λmax.

Thus, barring a higher temperature first order tran-
sition, the mean-field critical temperature is given by
Tc,max, which is defined implicitly as the solution of
λmax(Tc,max) = 1. In other words, the mean-field transi-
tion of a disordered system is determined by the highest
possible Tc of any system that is allowed by the physics!
This is generically larger than Tc of the average Hamil-
tonian, H. This is the new “theorem.”

Significance of states in the tails

The eigenstates with λ close to λmax are localized in
rare regions with a local configuration peculiarly con-
ducive to superconductivity. For temperatures slightly
smaller than Tc,max, these regions can be treated as iso-
lated superconducting “puddles.” The magnitude of the
order parameter ∆(n) on the puddle n – which depends
on the character of the non-linear terms in Eq. 6 and so
cannot be directly computed from the solutions of the lin-
earized equation we have studied here – can nonetheless
be estimated to depend on λn as

∆(n)(T ) ∼ ∆0

√
λn(T )− 1. (10)

So long as the puddles are both rare and uncoupled in this
range of temperatures, their effect on the global prop-
erties of the system will generally be relatively weak.
However, the presence of an increasing concentration nsc
of locally superconducting regions with decreasing tem-
perature could be detected in various ways: local spec-
troscopy will see the opening of what should look like a
superconducting gap in any region in which λn(T ) > 1.

It is only when nsc(T )`d(T ) ceases to be small that the
Josephson coupling between such superconducting pud-
dles will start to become significant, so that the more
familiar signatures of superconductivity, such as a sig-
nificant drop in the resistivity and substantial diamag-
netism, will appear. Global phase coherence – i.e. the
true Tc – is a still lower temperature where the puddles
effectively begin to overlap. Even though the electronic
structure is that of a statistically homogeneous metal for
T > Tc,max and a correspondingly homogeneous super-
conductor for T � Tc, it is effectively an inhomogeneous
mixture of superconducting puddles embedded in a nor-
mal metal matrix for Tc <∼ T < Tc,max. In weakly cou-
pled superconductors, in which ξ0 is large compared to
the correlation length of the disorder, this regime is para-
metrically small (by a factor more or less equivalent to
the usual Ginzburg parameter). However, for supercon-
ductors with a short correlation length, this regime is not
small, in which case significant deviations from mean-



4

field behavior are to be expected, and Tc is determined
more by phase ordering than by (local) gap formation.

Approximate analytic considerations

Before considering a particular form of interaction, we
can get a feeling for the nature of the states in the Lif-
shitz tail. We make a variational ansatz for a localized
eigenstate,

Fa1a2 = fσ1,σ2
(~r1 − ~r2)F

(
~r1 + ~r2

2

)
(11)

with the normalization condition
∑
~r,σ,σ′ |fσ,σ′(~r)|2 = 1.

This ansatz assumes that there is a preferred form of the
pair-wave-function, with the only variational freedom as-

sociated with the local magnitude, F (~R). The simplified
eigenvalue equation is then∑

~r′

M(~r, ~r ′)F (~r ′) = λF (~r) (12)

Moreover, if we further assume that F is a slowly varying
function over the range of M (i.e. `) then we can treat ~r
as a continuous variable and expand the eigenvalue equa-
tion in a gradient expansion as[
γ(~r;T ) +

1

2
∇µ
{
Wµ,ν(~r;T )∇ν

}
+ · · ·

]
F (~r) = λF (~r).

(13)
Finally, again invoking the central limit theorem, we can
approximate γ(~r;T ) ≈ γ(T )+δγ(~r) where δγ(~r) is a local

gaussian random variable with variance δγ(~r)δγ(~r ′) =

δ(~r − ~r ′)σ2, and Wµ,ν(~r;T ) ≈ Wµ,ν(~r;T ) = δµ,ν(1/m).
We moreover expect m > 0 reflecting the fact that the
superconducting susceptibility generally favors spatially
uniform pair-wave-functions over oscillatory ones, and on
dimensional grounds we expect m ∼ `(T )−2.

This leaves us precisely with the problem of Lifshitz
tails for a particle moving in a random potential, and
asymptotic forms of ρ(λ) have been derived in several
classic references.28,29 For d < 4, the essential features
of the results can be derived rather simply as follows:
assuming we are interested in localized solutions with
λ > γ, we look to find a region of size R in which the
average value of δγ is sufficiently positive to produce
the desired eigenvalue. This requires that the constraint
δγ = (λ − γ) − βm−1R−2 be satisfied where the precise
value of β depends on the shape of the assumed puddle
– it has its smallest value if the puddle is spherical. The
probability of finding such a puddle ∼ exp[−S] where
S = β′Rd(δγ)2/[2σ2] and β′Rd is the volume of the pud-
dle. Minimizing S with respect to δγ subject to the above
constraint, yields

S = ασ−2`d [λ− γ(T )](4−d)/2 (14)

and R = α′ `[λ−γ(T )]−1/2 where α and α′ are numbers of
order 1 (that can be expressed in terms of β, β′, m0, and

d.). Finally, if we assume that γ(T ) can be approximated
as a linear function of T as γ(T ) ≈ 1−γ0(T−T0)/T0, then
this yields a concentration of superconducting regions

nsc(T ) ∼ ρ(λ = 1, T ) (15)

∼ exp

{
−A

(
ξ0
a

)d(
T − T0
T0

)(4−d)/2
}

where T0 is the average Tc, ξ0 is the corresponding
(T = 0) superconducting coherence length, a is the corre-
lation length of the disorder, and A ∼ γ0/σ2 is a constant
that depends on the strength of the disorder and other
features we have swept under the rug.

IV. SOME NUMERICALLY SOLVED
EXAMPLES

To see how the general considerations outlined above
play out explicitly, we have computed ρ(λ) by numerical
solution of Eq. 8 on a square lattice with periodic bound-
ary conditions and sizes L × L with L between 24 and
50. Typically we average our results over 600 distinct
disorder configurations. For the “uniform” problem we
take H to be a nearest-neighbor tight-binding model on
a square lattice with hopping matrix t = 1. The chemical
potential is chosen such that n = 0.8 electrons per site.
To obtain smooth curves for ρ(λ), a gaussian broadening
of the levels has been introduced with δλ = 0.01. Further
details on the explicit form of the linearized gap equation
can be found in Appendix A.

We define different disorder ensembles as follows: 1) To
represent potential disorder, we add a random single-site
energy, t(~r,σ),(~r′,σ′) = ε(~r)δσ,σ′δ~r,~r′ ; when we take ε from
a square distribution of width W we will refer to it as
“Born scattering”, while the binary distribution ε = 100t̄
or ε = 0 with probabilities nimp and 1−nimp, respectively,
will be referred to as “unitary scatterers”. 2) To represent
the pairing interaction, we assume an on-site V0(~r) and
nearest-neighbor V1(~r) density-density interaction. The
case in which we take V0 < 0 and V1 = 0 we will refer
to as “s-wave pairing,” while the case with V0 > 0 and
V1 < 0 will be called “d-wave.” We consider both uniform
(V0 and V1 independent of ~r) and inhomogeneous pairing
interactions, where for instance to represent “negative U
centers” we take V0 = −U with probability x and V0 = 0
with probability 1−x. We work in units of hopping t = 1
and take values of U = 3, 4. Since λ scales with U , we
scale the x-axis by |U | in the figures below such that the
distribution is independent of our chosen value.

1. Born scattering and s-wave pairing

The blue-dotted curve in Fig. 1 shows ρ(λ) for the case
of uniform s-wave pairing (V0 = −U) and Born scattering
with W = 3 at temperature T = 0.05. As we plot λ in
units of U , the results apply for arbitrary values of U .
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FIG. 1: Effect of disorder on “s-wave” pairing: Log-linear plot
of disorder-averaged ρ(λ) with attractive on-site (“s-wave”)
interactions (V1 = 0) at temperature T = 0.05. The blue-
dashed curve is for uniform V0 = −U and Born scattering
with W = 3t. The other curves are for the case of nega-
tive U centers where V0 = −U with probability x = 1/2
and V0 = 0 with probability (1 − x); the yellow-dashed
curve includes additional Born scattering with W = 3t while
the red-solid curve has no additional single-particle disorder
(W = 0). The dotted vertical (black) line corresponds to the
maximum eigenvalue of the disorder free system, λmax(W =
0, V0 = −U, T = 0.05), while the dashed vertical line repre-
sents λmax(W = 0, V0 = −Ux, T = 0.05) with x = 1/2.

For comparison, the dotted vertical lines represent the
maximum value of λ for the disorder free model (W = 0):
λmax(W = 0, T = 0.05)/|U | = 0.74. Since the results are
represented at fixed T , the meaning of the dotted curve
is that for the disorder free system described by H, the
critical strength of U such that Tc > T for any U > Uc(T )
is determined by Uc(T ) = t λmax(W = 0, T ). Manifestly,
at T = 0.05, the tail of the distribution in the presence
of disorder is easily seen to extend well above the λmax,
meaning that disorder enhances Tc as expected.

2. Born scattering plus negative U centers

The red-solid and yellow-dashed curves in Fig. 1 show
ρ(λ) for a concentration x = 1/2 of negative U centers
in the absence and presence of Born scattering (W = 0
and W = 3), respectively. Since the average strength of
the attractive interaction is V0 = −U/2, we have also,
for comparison, shown as the vertical dashed line the
maximum value of λ one would obtain for a disorder
free system with this average value of the effective in-
teraction. The integral of the distribution is normalized
to unity, though half of the eigenvalues are exactly zero
(not shown) when x = 1/2. The tails of the distribu-
tion extend above the dashed line showing that disorder
enhances Tc.

There is additional structure to the distribution with
no Born scattering. For example, we have checked that
the separated peak at λ/|U | ∼ 0.5 appears for system
sizes between 24 ≤ L ≤ 50 with over 1000 disorder
configurations suggesting the peak is not due to insuf-
ficient statistics. Such peaks in the distribution are as-
sociated with localized solutions associated with certain
distinct sorts of local structures. Similar peaks appear
for x = 1/10 where they can be associated with clusters
of 6–8 negative U centers.

3. d-wave pairing with Unitary and Born disorder

Disorder-averaged ρ(λ) at a temperature T = 0.05,
electron density n = 0.8, and uniform interactions of a
sort that favor d-wave pairing, V0 = +U > 0 and V1 =
−1.5V0, are shown in Fig. 2. Here the blue-solid line is
for Born scattering with W = 3, while the red-dashed
line is for a concentration nimp = 10% of unitary scat-
ters. For comparison, the dashed and dotted vertical lines
correspond, respectively, to the maximum and minimum
eigenvalues of the disorder free reference system (W = 0
and nimp = 0), λmax(W = 0, nimp = 0, T = 0.05)/|U | =
1.83 and λmin(W = 0, nimp = 0, T = 0.05)/|U | = −0.77.

Notice that although ρ(λ) is very small by the time λ
is comparable to λmax, in both the Born and the unitary
case the distribution extends beyond this point. Thus,
even in the case of “d-wave” pairing, the mean-field Tc
is enhanced by disorder, as promised. As in the previous
example, there is additional structure to the distribution
superimposed on a generally rapid decay at large λ. For
instance, we have checked that the multiple peaks seen
in the Born case at the largest values of λ are not much
affected by system size nor with the change in the number
of disorder configurations over which the average is taken.
Here, the corresponding eigenstates are moderately well
localized, and the peaks represent structures associated
with particular classes of local disorder configurations.

If, as assumed, V0 > 0, the solutions with negative λ
are of no physical significance. However, the same cal-
culation applies to the case of V0 < 0, where the model
corresponds to an attractive on-site interaction with a
weaker repulsive nearest-neighbor repulsion. In this case,
the role of positive and negative λ are interchanged. Of
course, in this case, the pairing is s-wave, and not sur-
prisingly the results are quite reminiscent of these for
the negative U problem. Here, we can see an even more
vivid example of local structures favoring highly local-
ized large λ solutions; the eigenstates corresponding to
the peak in the distribution for the unitary scatterers at
λ/|U | ∼ −2.5 are typically localized in a radius of only a
few lattice sites.
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FIG. 2: Effect of disorder on “d-wave” pairing: Disorder-averaged ρ(λ) with uniform interactions, V0 = +U , V1 = −1.5U
at T = 0.05. The blue-solid line is for Born scattering with W = 3, and the red-dashed line is for unitary scattering with
nimp = 10%. The dashed and dotted vertical lines represent maximum and minimum eigenvalues, respectively for disorder free
system, W = 0 and nimp = 0.

V. POSSIBLE RELEVANCE TO THE
CUPRATES

Of course, the best known short-coherence length su-
perconductors are the cuprates in which, depending
somewhat on the range of doping and the method used
to make the estimates, the superconducting coherence
length is thought to vary from a few lattice constants up
to perhaps a dozen lattice constants. Moreover, the fact
that these materials are highly quasi-2D, means that the
large factor of (ξ0/a)d in the exponent of Eq. 15 has
d = 2 rather than d = 3 which enhances the range of
temperatures over which the present considerations are
relevant. With that in mind, we note that there are sev-
eral features of the body of experimental observations
that indeed may reflect a degree of self-organized granu-
larity in the superconducting phenomena.

Inhomogeneity in the gap has been observed in scan-
ning tunneling microscopy measurements of peaks in the
local density of states in BSCCO.30–32 Significantly, it
has been observed32 that regions that locally have large
values of the gap at low T have a local gap onset temper-
ature that is larger than average, roughly in proportion
to the local value of the low T gap. This is suggestive of
the sort of local variations in the pair-wave-function dis-
cussed above. Moreover, this correlates with the obser-
vation that Tc is typically determined by the superfluid
stiffness, rather than the pairing scale.33–35 On the other
hand, the above mentioned results primarily concern the
underdoped cuprates, where even the “normal” state
above Tc deviates dramatically from the usual Fermi liq-
uid metal phase on which BCS theory is based. Below the
critical temperature, however, mean-field d-wave pairing
inhomogeneity can still reproduce a relatively homoge-

neous LDOS at sufficiently low energy36 such that the
proposed granularity above the critical temperature does
not directly conflict with local spectroscopy in BSCCO
observing a homogeneous superconducting state.37,38

Recently, interesting experiments have begun to sys-
tematically probe the overdoped regime, where the nor-
mal state is at least more nearly Fermi liquid-like. Some-
what unexpectedly, it is found that the same relation
between Tc and the superfluid density persists, even
as the quantum critical doping at which Tc vanishes
is approached.39 Moreover, there is evidence both from
optics40 and specific heat41 that even deep in the super-
conducting state, a large density of apparently normal
metallic quasiparticles persists, with a density that ap-
proaches that of the normal state as Tc → 0. We there-
fore consider it likely that these experiments reflect the
sort of self-organized granularity that we have described
here, though clearly local probe measurements are neces-
sary to confirm this. In making this suggestion, we wish
to stress that what we are talking about is an intrin-
sic feature of short-coherence-length superconductors in
the presence of statistically homogeneous disorder; it has
nothing to do with any large scale structural or chem-
ical inhomogeneities that are typically meant when one
discusses “sample inhomogeneities.”46
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mogeneous pairing interactions. However, close enough to
the quantum critical point at which Tc → 0, a variety of
“phase-sensitive” effects could give rise to unambiguous
macroscopic signatures of self-organized granularity, even
in the superconducting state.44

Appendix A: Linearized gap equation

The spectrum of M is computed numerically for dif-
ferent disorder realizations to extract the effect of rare

events on mean-field Tc. The disordered problem is diag-
onalized H =

∑
nEnγ

†
nγn using crσ =

∑
n U
∗
rσ,nγn and

Green’s function

〈caσ(τ)c†bλ〉 =
∑
n

U∗aσ,nUbλ,ne
−τEn(1− fn) (A1)

where the columns of Urσ,n are eigenvectors and fn =
(1 + eβEn)−1. For singlet operator defined as ψab =
(ca↓cb↑ + cb↓ca↑)/2, the pair susceptibility is

χab;cd =

∫ β

0

dτ
〈
ψab(τ)ψ†cd

〉
=

1

2

∫ β

0

dτ
〈
ca↓(τ)c†c↓

〉〈
cb↑(τ)c†d↑

〉
+
〈
ca↑(τ)c†d↑

〉〈
cb↓(τ)c†c↓

〉

=
1

2

2NxNy∑
n,m=1

(
1− fn − fm
En + Em

)[
U∗a↓,nUc↓,nU

∗
b↑,mUd↑,m + U∗a↑,nUd↑,nU

∗
b↓,mUc↓,m

]

for sites a, b, c, d = 1, · · · , NxNy. The interaction term
studied numerically in Section IV has the form

Hint =
∑
r

V0(r)c†r↑c
†
r↓cr↓cr↑ +

∑
〈r,r′〉

V1(r)n̂rn̂r′ (A2)

where n̂r =
∑
σ c
†
rσcrσ, and the inhomogeneous on-site

interaction V0(r) and nearest neighbor interaction V1(r)
are chosen to favor either s-wave (V0 < 0 and V1 = 0)
or d-wave (V0 > 0 and V1 < 0) solutions. The simplified
eigenvalue equation (12) is solved for (5NxNy)×(5NxNy)
matrix

Mr,r+δ;r′,r′+δ′ = Vr,r+δχr,r+δ;r′,r′+δ′ (A3)

for δ, δ′ = {(0, 0), (±1,±1)} and interactions Vr,r = V0(r)
and Vr,r+δ = V1(r).

Appendix B: s-wave pairing at higher temperature

The disorder-averaged distribution ρ(λ) at a higher
temperature T = t is shown in Fig. 3 for the same
disorder ensembles shown in Fig. 1. The maximum
value of λ for the disorder free model (W = 0) is
λmax(W = 0, T = 1)/|U | = 0.2. For the high tempera-
ture case, the range of M has dropped to being on the
order of one lattice site, the fall-off of distribution is suf-
ficiently sharp that the probability has dropped below
the limits accessible to our numerical results before the
clean-limit value is reached. The increasingly fast drop
of the tails of the distribution with increasing tempera-
ture is to be expected from the above considerations; our
failure to see the tail of the distribution at high temper-
atures extending above λmax is, we believe, an artifact

but one that could only be corrected by keeping a much
larger number of disorder configurations. For the case
with negative U centers (x = 1/2), the entire observed
distribution lies above the dashed line.

Appendix C: Inverse Participation Ratio

The degree to which the gap solution is localized can
be quantified using the inverse participation ratio Iλ for
a given eigenvalue λ defined as

Iλ =
〈|Fλ(~r)|4〉
〈|Fλ(~r)|2〉2

(C1)

where 〈· · · 〉 denotes a spatial average and Fλ(~r) is the
eigenvector of the linearized BCS equation. The inverse
participation ratio has the property that Iλ ∼ 1/Ld → 0
as linear system size L → ∞ for extended states, and
Iλ ∼ 1/ξdloc for states localized within a characteristic
length ξloc as L → ∞. The inverse participation ratio
therefore provides a length scale 1/

√
Iλ which gives an

estimate nsc/Iλ of the degree to which superconducting
solutions are isolated from each other in two dimensions.
Negative U centers: The inverse participation ratio

Iλ decreases with increasing λ meaning the solutions with
the largest eigenvalues are most delocalized. The charac-
teristic length scale 1/

√
Iλ increases smoothly to roughly

L/2 at a value λ ∼ 1.8 at which point there is a jump in
both λ and 1/

√
Iλ (visible as a peak at λ/V0 ≈ 0.5).

Unitary scattering with on-site interaction: Dif-
ferent types of disorder are more conducive to local en-
hancements of the density of states and therefore larger
eigenvalues of M . The results for V0 = −4 and V1 = 0
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FIG. 3: Effect of disorder on “s-wave” pairing: Log-linear plot
of disorder-averaged ρ(λ) with attractive on-site (“s-wave”)
interactions (V1 = 0) at temperature T = 1. The blue-
dashed curve is for uniform V0 = −U and Born scattering
with W = 3t̄. The other curves are for the case of negative U
centers where V0 = −U with probability x = 1/2 and V0 = 0
with probability (1−x); the yellow-dashed curve includes ad-
ditional Born scattering with W = 3t̄ while the red-solid curve
has no additional single-particle disorder (W = 0). The dot-
ted vertical (black) line corresponds to the maximum eigen-
value of the disorder free system, λmax(W = 0, V0 = −U, T ),
while the dashed vertical line represents λmax(W = 0, V0 =
−Ux, T ) with x = 1/2.

in the presence of pairing inhomogeneity x = 1/2 and a
concentration nimp = 10% of randomly located unitary
scatterers of strength Vimp = 100t are shown in Fig. 4
at a temperature T = 0.05t. The inverse participation
ratio for each of the eigenvectors is plotted (red circles)
on top of the tail end of the ρ(λ) distribution (blue).
The vertical dashed line (black) corresponds to the maxi-
mum eigenvalue λmax,0 for the clean system at T = 0.05t.
Above λ ≈ 1 in the exponential tail of the distribution,
the inverse participation ratio remains small correspond-
ing to relatively extended states; however, above clean
system maximum λmax,0 ≈ 3, the solutions with the
largest λ show an increase in IPR. The maximum eigen-
value solutions with λ/V0 ∼ 2.3 have Iλ = 1 meaning
the gap eigenvector is localized on a single site. From vi-
sual inspection of the solution and local density of states
(see Appendix D), it can be seen that these solutions are
associated with clusters of multiple unitary scatterers in
close proximity. There appear to be two peaks near λ ≈ 5
and λ ≈ 9 that can correspond to impurity bands with
IPR = 1/2 (states localized on two sites) and IPR = 1
(states localized on single site) respectively, which would
hybridize at sufficiently large concentration. For λ < 1
(not shown), the IPR spans a range from zero to one;
however, since the density of states ρ(λ) is large, the
IPR loses meaning due to mixing in the self-consistent
mean-field solution. The distribution at higher temper-
ature T = 1 (not shown) similarly exhibits two peaks

FIG. 4: Disorder-averaged ρ(λ) (blue) for x = 1, V0 = −4,
and V1 = 0 with nimp = 10% unitary scattering at T = 0.05.
The maximum clean eigenvalue λmax,0 is represented by ver-
tical dashed line (black), and inverse participation ratio by
circles (red). Solutions with largest λ/V0 ∼ 2.3 have max-
imum inverse participation ratio Iλ = 1 and correspond to
impurity band of states localized on a single site. A second
impurity band appears around λ/V0 ∼ 1.25 with Iλ = 1/2
corresponding to a solution localized on two sites.

above the clean λmax,0.

Appendix D: LDOS Enhancement

From visual inspection of the gap solution and local
density of states, it can be seen that there is an en-
hancement due to rare microscopic impurity configura-
tions. The chemical potential, local density of states,
and on-site pairing solutions Fλ(~r) with nimp = 10% uni-
tary scatterers for largest (λ1 = 9.7) and second largest
(λ2 = 3.4) eigenvalues for a particular disorder realiza-
tion at temperature T = 0.05t are shown in Fig. 5. The
on-site interaction is taken as V0 = −4 and nearest neigh-
bor interaction V1 = 0. The peak in the local density
of states is associated with a rare impurity cluster, and
the largest eigenvalue solution Fλ1(r) has Iλ1 = 1 corre-
sponding to non-zero value on a single site. The second
largest eigenvalue solution Fλ2(~r) for this disorder real-
ization has Iλ2 = 0.48 and can be seen to have finite value
over a localized region.

Appendix E: Potential disorder with
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FIG. 5: Chemical potential, LDOS, and on-site pairing solu-
tions with nimp = 10% unitary scatterers for largest (λ1 =
9.7) and second largest (λ2 = 3.4) eigenvalues for a particu-
lar disorder realization at T = 0.05t. The peak in the local
density of states is associated with a rare impurity cluster.

nearest neighbor interaction

The results for random potential and interaction disor-
der with nearest-neighbor interaction show qualitatively
similar behavior to the case V1 = 0: the distributions
decay exponentially with the eigenvalues in the tail ex-
ceeding the uniform clean case, and increasing tempera-
ture narrows the distribution. In contrast to the previ-
ous example, the negative U centers with V1 6= 0 at high
temperature T = 1 show two separated peaks: the peak
with larger eigenvalues corresponds to solutions localized
in clusters where the interaction is non-zero such that the
effective interaction of the puddle is U . The peak with
smaller eigenvalues (absent for V1 = 0) corresponds to
solutions localized on “checkerboard” patterns where the
interaction averages to U/2 - the eigenvalues associated
with this second peak are roughly half that of the larger-
eigenvalue peak (though the lower end of this second peak
has a range of effective interactions less than U). This
characterization is confirmed quantitatively by defining
an effective gap V 1 =

∑
r V1(r)|∆x(r)|2/

∑
r′ |∆x(r′)|2

of the puddle which shows V1 ≈ V1/2 for states in the
smaller-eigenvalue peak.


