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Hopfions are three-dimensional (3D) topological textures characterized by the integer Hopf invari-
ant QH . Here, we present the realization of a zero–field, stable hopfion spin texture in a magnetic
system consisting of a chiral magnet nanodisk sandwiched by two films with perpendicular magnetic
anisotropy. The preimages of the spin texture and numerical calculations of QH show that the hop-
fion has QH = 1. Furthermore, another non-trivial state that includes a monopole–antimonopole
pair (MAP) is also stabilized in this system. By applying an external magnetic field, hopfion and
MAP states with the same polarization can be switched between each other. The topological tran-
sition between the hopfion and the MAP state involves a creation (annihilation) of the MAP and
twist of the preimages. Our work paves the way to study non-trivial 3D topological spin textures
and stimulates more investigations in the field of 3D spintronics.

I. INTRODUCTION

A topological soliton carries an integer topological in-
dex that cannot be changed by a continuous deforma-
tion [1]. A celebrated example is the skyrmion, a two-
dimensional (2D) topological soliton originated from the
Skyrme model [2], which can be characterized by the
skyrmion number (or winding number) [3]. The addi-
tion of a third spatial dimension brings more diverse and
complicated topological solitons, such as rings, links and
knots [4–6]. Some of these three-dimensional (3D) topo-
logical solitons are “hopfions”, since they can be classi-
fied by the Hopf invariant (QH) [7], a topological index
of the homotopy group Π3(S2) that can be interpreted
as the linking number [8]. Due to their complex struc-
tures and models, the detailed study of the hopfion was
properly established not long ago in terms of toroidal
coordinates[9, 10]. Hopfions have been observed in a
variety of physical systems including fluids, optics, liq-
uid crystals, Bose-Einstein condensates, etc. [11–17] But
their observation in magnetic materials remains elusive.

In magnetic systems, topological solitons in one di-
mension and two dimensions such as domain walls and
vortices have been extensively studied over the past few
decades. Much of the recent attention is attracted by
the magnetic skyrmions residing in magnetic materi-
als with the antisymmetric Dzyaloshinskii-Moriya inter-
action (DMI) [18–20]. Skyrmions are proposed to be
promising candidate for spintronic applications due to
their prominent features such as the nanoscale size and
low driving current density [21, 22]. Although numerous
studies have been made on the low-dimensional topolog-
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ical solitons, 3D topological solitons like hopfions have
still not been well explored in nanomagnetism. Under-
standing the static and dynamical properties of these 3D
topological solitons are not only of fundamental interest,
but may also enable potential applications.

In ferromagnetic systems, only a few theoretical pro-
posals predict the existence of hopfions, but only in the
dynamical regime [23–25]. In chiral ferromagnetic liquid
crystals, such 3D topological solitons can be stabilized via
complicated high order interactions and specific bound-
ary conditions [15, 16, 26]. However, these interactions
and boundary conditions are difficult to achieve and their
counterparts are not obvious in magnets. It has been re-
cently proposed that a higher order exchange interaction
and an external magnetic field will stabilize a metastable
hopfion in a frustrated magnet [27], but how to create
such metastable state is not clear.

Here, we show that a QH = 1 hopfion can be enabled in
a chiral magnet nanodisk in the absence of external mag-
netic fields. The nanodisk is sandwiched by two magnetic
layers with perpendicular magnetic anisotropy (PMA) to
nucleate the hopfion in between. The hopfion is identi-
fied by both the preimages and the numerical calcula-
tions of QH . Associated with the hopfion, another non-
trivial state that includes a monopole-antimonopole pair
(MAP) is also stabilized at zero fields in this structure.
This MAP state is similar to the so-called toron struc-
ture in chiral liquid crystals [28]. Furthermore, the hop-
fion can be switched into a MAP state with the same
polarization by an applied magnetic field, and vice versa.
The topological transition between the hopfion state and
the MAP state involves the creation (annihilation) of the
monopole-antimonopole pair and a twist of the preim-
ages.

II. STABLE HOPFION AND MAP STATE

We consider a chiral magnet nanodisk sandwiched by
two PMA magnetic thin layers with 10 nm thickness,
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FIG. 1. (a) Schematic of the proposed structure. The thin
disks at the top and bottom are the magnetic films with PMA.
The transparent region in the middle is the chiral magnet
nanodisk. The coordinate system is shown as inset. The
color ring at the center represents the set of preimages with
sz = 0 of a QH = 1 hopfion. The hopfion cross-section in
the y − z plane is shown in (b). (c), (d) The cross-sectional
spin textures in the x− y plane (z=0) for the hopfion (c) and
MAP (d) in a chiral magnet nanodisk with radius r = 100 nm
(1.43LD) and thickness t = 70 nm (1LD). (e), (f) The set of
preimages with sz = 0 for the hopfion and MAP, respectively.
(g), (h) The preimages of s =(-1,0,0) (cyan) and s =(1,0,0)
(red) for the hopfion (e) and MAP (f). In the color scheme,
black indicates sz = −1 and white indicates sz = 1. The color
wheel is for sz = 0.

as shown in Fig. 1(a). An isotropic bulk type DMI is
employed to model the chiral magnet. The Hamiltonian
of this system is given by

H =

∫
dr3[−A(∇s)2−(1−p)Ds·(∇×s)−pKu(sz)

2+Ed],

(1)
where A and D are the exchange and DMI constant, re-
spectively, Ku is the PMA constant, and p is 0 in the
chiral magnet nanodisk and 1 in two PMA layers. Ed is
the magnetic dipole-dipole interaction (DDI). It depends
on the exact shape of the system. The DDI can stabi-
lize spin textures such as zero-field target skyrmion in
confined geometries [29–32]. The effect of DDI here is
discussed in details in Appendix.

We minimize the Hamiltonian (1) in the nanodisk
structure with different initial states (for details of the
simulation methods and parameters, see Appendix). Af-

ter minimizing the energy, we find two stable non-trivial
states at zero-field, the the MAP state and the QH = 1
hopfion state. The sx and sy components of the spin
textures of both states are plotted in Fig. 1, where nor-
malized lengths are provided in terms of the helical pe-
riod of the chiral magnet, LD = 4πA/D. The hopfion
spin texture consists of a 2π twisted skyrmion tube with
its two ends glued together as shown in Fig. 1(a,b). A
cross-section in the y − z plane consists of a skyrmion–
antiskyrmion pair, as shown in Fig. 1(b). A cross-section
in the x− y plane, shown in Fig. 1(c), has a 2π vortex in
which spin rotates by 2π going from the center to the pe-
riphery [34]. On the other hand, the cross-section of the
MAP state in the x − y plane consists of a skyrmion at
the center and an edge state at the boundary, as shown
in Fig. 1(d). It is similar to a typical target skyrmion
state recently observed in FeGe nanodisk [32].

To further visualize and understand the spin config-
urations of the hopfion and MAP in 3D, we plot their
preimages using Spirit [35]. A preimage is the region
in 3D real space that contains spins with the same ori-
entations. It is a Hopf map of a point on the S2 unit
sphere to 3D space. We first plot the set of preimages
of all spins with sz = 0 for the hopfion (Fig 1(e)) and
MAP (Fig. 1(f)), which corresponds to a Hopf map from
the equator of the S2 unit sphere to the 3D space. Two
preimages are topologically distinct as characterized by
different genus g, i.e., the number of holes. The preim-
age of the hopfion forms a torus with g = 1, whereas
the preimage of the MAP is a trivial surface with g = 0,
which satisfies the Poincaré-Hopf theorem [36].

The Hopf invariant, also called the linking number,
counts the number of links between two arbitrary closed-
loop preimages. Therefore, preimages of two arbitrary
spins must form closed loops that are linked with each
other. These features can be identified by the preim-
ages of s = (1, 0, 0) and s = (−1, 0, 0) for the hopfion
(Fig. 1(g)) and MAP (Fig. 1(h)). For the hopfion, two
closed-loop preimages are formed and linked with each
other once. QH = 1 in this case, and the topology of the
hopfion state in this system is confirmed. In contrast, the
MAP does not have closed-loop preimages and thus no
links. Monopole and antimonopole are source and drain
of all preimages. The two MAP preimages of s = (1, 0, 0)
and s = (−1, 0, 0) join at the monopole and antimonopole
indicating their singular natures. The MAP is considered
a defect state, while the hopfion is a smooth spin texture
with no singularity. These preimages successfully reflect
the topological natures of the two states.

III. HOPF INVARIANT CALCULATION

Other than the linking number of preimages, topology
of the hopfion can also be confirmed by directly calcu-
lating the Hopf invariant. The integral form of the Hopf
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FIG. 2. (a), (b) The emergent magnetic field B in the y-
z plane (x=0) for hopfion (a) and MAP (b) using the same
geometry as Fig. 1. Insets show the enlarged B plot at the
monopole and antimonopole, which has opposite monopole
charges.
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FIG. 3. Numerical calculations of the Hopf invariant QH for
different meshes. The total number of grid points Ntot = N3.

invariant in real space can be expressed as [37, 38]

QH = −
∫

B ·Adr, (2)

where Bi = 1
8π εijks · (∇js × ∇ks) is the emergent mag-

netic field associated with the spin textures, and A is any
vector potential that satisfies the magnetostatic equation
∇×A = B. The Hopf number is invariant under a gauge
transformation A → A + ∇χ only when the emergent
field B is free of singularities, i.e., ∇ · B = 0. Cross-
sections in the y-z plane of the emergent magnetic fields
B of the hopfion and MAP states are shown in Fig. 2.
The emergent B field of the hopfion shown in Fig. 2(a)
flows smoothly and streams intensively near the center
of the nanodisk. In contrast, the emergent B field of
the MAP shown in Fig. 2(b) clearly presents two mag-
netic monopoles with opposite charges near the top and
bottom surface. The Hopf invariant is thus ill–defined
for the MAP state, and it is well defined for the hopfion
texture.

The vector potential A is solved in momentum space
with the Coulomb gauge k ·A = 0, and then QH is also
computed in momentum space [39]. To carry out the
numerical integral, discrete grids in the momentum space

are employed. As shown in Fig. 3, as the grid number
(Ntot) increases, QH rapidly converges to 1. We thus
obtain a Hopf invariant of QH = 0.96 for the hopfion
spin texture under investigation. Here QH is slightly
deviated from an integer due to the finite size and open
boundary condition. The manifold is not compact, as
indicated by the edge state around the disk boundary.
Nevertheless, the Hopf invariant is close to 1, and the
topological nature of the hopfion is further confirmed.

IV. TOPOLOGICAL TRANSITION BETWEEN
HOPFION AND MAP STATE

At zero external magnetic field, two states with op-
posite spins share the same energy. Therefore, stable
hopfion and MAP states each have two polarizations, i.e.
spin points up or down at their cores. As shown in Fig. 4,
the MAP state has lower energy than the hopfion state
at zero magnetic field. But they can be switched be-
tween each other by sweeping an external magnetic field.
When applying a magnetic field in the same (opposite)
direction with the MAP (hopfion) polarization, the MAP
(hopfion) can be switched into a hopfion (MAP) with the
same polarization. Thus, despite the MAP state having
lower energy, the hopfion state can still be realized by
using an applied field. Here, we mainly focus on the
switching between the hopfion and MAP with the
same polarization, but it is also possible to switch
between MAP states with opposite polarizations
using a large field to saturating spins in the op-
posite direction as indicated by the bottom inset
of Fig. 4.

Since the hopfion is topologically protected by the
nonzero Hopf invariant, a topological transition must
take place in the switching between the hopfion and
MAP states. To investigate this topological transition,
we performed a minimal energy path (MEP) calcula-
tion between these two states in the same geometry with
Fig. 1 [40–42]. The MEP calculation is carried out us-
ing the geodesic nudged elastic band method associated
with the Hamiltonian in Eq. (1). The stable spin tex-
tures from the energy minimizations are employed as the
initial states in the MEP calculation.

Results from the MEP calculation are shown in Fig.
5(a). There exists an energy barrier between the hop-
fion and the MAP state. Thus, an activation energy
is required to enable the transition from the hopfion
(MAP) to MAP (hopfion) state. To capture details of the
topological transition, we plot preimages of s =(1,0,0)
and s =(-1,0,0) at the initial hopfion state, the barrier
peak, the intermediate MEP state and the final MEP
state (Fig. 5(b)-(e)). Transitioning from the hopfion
state in (b) to the intermediate state (d), the two linked
preimages break and reconnect generating the monopole–
antimonopole pair with a 2π rotation. The two preimages
are then topologically equivalent to those of the MAP
state in Fig. 5(e), although they are twisted by 2π. Re-
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FIG. 4. Energy density plot of the hopfion and MAP state as
a function of external magnetic field. Black arrows indicate
the field sweeping directions and the switching events. Top
insets show the enlarged details near the switching
point. Bottom inset plots the relative energy density
of the hopfion and MAP state to the trivial state (fer-
romagnetic state at high field or conical like state at
low field) with positive polarization. Below 0.25 T,
MAP is the ground state and hopfion also has lower
energy than the trivial state below 0.09 T. The ferro-
magnetic state becomes the ground state only when
the field is above 0.25 T. The nanodisk geometry is the
same as in Fig. 1.

laxing from point (d) to to the MAP state of point (e),
the preimages untwist to π, while the monopole and an-
timonopole move towards the top and bottom surface,
respectively. Videos of the transition also capture the
transformation from a torus (g = 1) to a trivial sur-
face (g = 0) for the preimages of sz = 0 (see movies in
the Supplemental Materials). To create a hopfion from a
MAP state, the reverse process is applied. The preimages
first rotate from π to 2π. The monopole–antimonopole
pair move towards each other until they eliminate each
other. Then each preimage becomes close-looped and
linked with the other preimage.

V. PHASE DIAGRAM OF HOPFION AND MAP

Since the hopfion is a 3D spin texture, a finite radius
and thickness of the chiral magnet nanodisk are required
to stabilize it, and the length scale is determined by the
helical period LD of the chiral magnet. This is confirmed
by the calculated phase diagram of a stable hopfion as a
function of the nanodisk radius r and thickness t shown
in Fig. 6. When r and t are both smaller than LD, the
hopfion cannot be stabilized in the nanodisk and MAP
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FIG. 5. (a) Minimal energy path between the hopfion and
MAP state. Points b and e represent the hopfion and the
MAP, respectively. The hopfion is nearly annihilated at sad-
dle point c, and the MAP is created at d. Insets show the
half-plane view preimages of sz = 0 for spin textures at c and
d. (b)-(e) Top panel: The preimages of s =(-1,0,0) (cyan) and
s =(1,0,0) (red) corresponding to points b–e in (a). Bottom
panel: The half-plane view preimages of sz = 0 corresponding
to points b–e in (a). The nanodisk geometry is the same as
in Fig. 1.
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is the ground state. As r and t increase, the MAP state
continues to be the gound state, but the hopfion appears
as a metastable state and it remains the metastable state
with increasing r and t for the values shown in Fig. 6. As
r and t continue to increase, multiple MAP states, mul-
tiple hopfion states and more complicated spin textures
appear. These results illustrate the effect of 3D confine-
ment on the hopfion stability, and they provide a set of
geometry parameters for experimentally achieving a sta-
ble hopfion in chiral magnet nanodisks.

VI. CONCLUSIONS

To conclude, in a chiral magnet nanodisk sandwiched
by two magnetic layers with PMA, two stable states exist
at zero external magnetic field, a MAP state and a QH =
1 hopfion state. The ratio of the helical period LD to
the disk radius and thickness determines the stability of
hopfion. Although the MAP state is the ground state
of the nanodisk, it can be switched into the metastable
hopfion state by applying a magnetic field. The minimal
energy path calculation reveals the topological transition
and the energy barrier between the hopfion and the MAP
state. 3D magnetic imaging techniques such as the X-
ray vector nanotomography could be a powerful tool for
visualizing the spin texture of hopfion in real space [43].
The hopfion may exhibit fascinating electronic transport
and dynamical properties due to its novel topology. This
work paves a way in the development of 3D spintronics
and high dimensional memory architectures [44].
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APPENDIX A: DETAILS OF THE SIMULATIONS

The micromagnetic simulations were carried out us-
ing Mumax3 [45], and the results were also verified
in terms of atomistic spin simulation carried out by
Fidimag [46] and an in-house micromagnetic simula-
tion package. For the chiral magnet nanodisk, we take
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FIG. 7. (a), (c) The cross-sectional spin textures in the x-y
plane (z=0) for hopfion with (a) and without (c) DDI. (b),
(d) The cross-sectional spin textures in the y-z plane (x=0)
for hopfion with (b) and without (d) DDI. Here the nanodisk
has radius r = 1.43LD and thickness t = 1LD.

the exchange constant A = 2.195 pJ/m, DMI con-

stant D = 0.395 mJ/m
2

and saturation magnetization
Ms = 384 kA/m. A perpendicular magnetic anisotropy

constant Ku = 0.8 MJ/m
3

is used for the magnetic
thin nanodisks at the top and bottom. In micromag-
netic simulations, the mesh cell size was varied from
2 nm × 2 nm × 2 nm to 0.5 nm × 0.5 nm × 0.5 nm, but
the final results do not depend on the cell size.

Atomistic spin simulation was also employed to further
verify the stability of the monopole-antimonopole (MAP)
state. A lattice constant equal to 0.6 nm, the smallest
size limited by our computer memory, was employed in
the atomistic spin simulation and the magnetic interac-
tions were adjusted from the micromagnetic parameters
in order to fit this lattice constant. The dipole-dipole in-
teraction (DDI) was also taken into account in the atom-
istic spin simulations. The atomistic spin simulations
give similar results of MAP and hopfion and further con-
firm their stabilities.

Multiple initial states were employed in the simula-
tions: a ferromagnetic state, a random state, a skyrmion
tube at the center of the nanodisk, and a skyrmion tube
in the chiral magnet part sandwiched by spin polarized
states at the top and bottom magnetic layers with the
spin polarization either parallel or antiparallel. Both
the conjugate gradient method and the micromagnetic
method are employed for the energy minimization. For
the field induced switching part, hopfion and MAP initial
states with different polarizations are used. After mini-
mizing the energy at each field, we compare the energy
of different states in order to get the switching diagram
in the main text.
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a circular disk (a) and in a square domain (c). The preimages
of s =(-1,0,0) (cyan) and s =(1,0,0) (red) for the hopfion in a
circular disk (b) and in a square domain (d).

APPENDIX B: EFFECT OF THE
DIOPLE-DIOPLE INTERACTION

In confined geometries, the DDI depends on the exact
shape of the given geometry. The role of DDI in de-
termining the explicit spin texture and Hopf charge of
the hopfion is discussed in this section. We first check
the DDI effect in a chiral magnet nanodisk with radius
r = 100 nm (1.43LD) and thickness t = 70 nm (1LD),
where LD is the helical period in the chiral magnet. The
hopfion spin textures with and without DDI are shown
in Fig. 7. In the absence of DDI, although the hopfion is
still stable, its configuration slightly differs. The hopfion
is smaller than that in the presence of DDI. Further-
more, the edge states at the disk boundary are different
in these two cases. In the presence of DDI, the edge de-

viates from z-direction only at two green (purple) islands
shown in the left (right) edge in Fig. 7(b). In contrast,
edge spins deviates from z-direction in a significant por-
tion of boundaries in the absence of DDI, as shown in
Fig. 7(d). Due to this reason, the cross-sectional spin
texture in the x-y plane at z=0 only shows one concen-
tric helical ring wrapping a skyrmion at the center in the
presence of DDI, while two concentric rings are identified
in the absence of DDI. The Hopf charge is 0.97 and 0.96 in
the absence and presence of DDI respectively. Therefore,
the DDI can indeed affects the morphology of hopfion,
but has a minor effect on the Hopf charge.

Also we have checked the DDI effect with a square do-
main, which is different from the circular nanodisk dis-
cussed in the main text. As shown in Fig. 8, due to
the DDI effect (or in other words, the shape anisotropy),
the shape of the hopfion clearly reflects the shape of the
square domain. The cross-sectional spin textures in the
x-y plane at z=0 for both the circular disk and the square
domain have the same topology, including a skyrmion at
the disk center and a concentric helical ring. However,
the helical ring in the square domain demonstrates an
obvious square shape. Other than the spin textures, we
further checked preimages of this new hopfion. The set of
preimages of all spins with sz = 0 are plotted in Fig. 9(a)
and (c). The shape of these preimages further confirms
the effect of DDI. Although their shapes are different,
the topology of hopfion, qualitatively described in terms
of the genus and linking number, is still the same in cir-
cular disk and the square domain. The Hopf charge in
the square domain is 0.92, which is smaller than the 0.96
in circular disk. Such slight difference comes from more
complex edge states in the square domain.

APPENDIX C: NUMERICAL CALCULATION OF
HOPF INVARIANT

In real space, the integral form of Hopf invariant is
defined as [38]

H = −
∫

B(r) ·A(r)dr, (3)

with Bi = 1
8π εijkn ·(∇jn×∇kn), and ∇×A = B, where

B is the emergent magnetic field in form of the Levi-
Civita symbol and A is the gauge potential that satisfied
the magnetostatic equation.

To avoid solving for the explicit form of A, we repre-
sent A in form of B in momentum space. To do this, we
first perform Fourier transformation on both A and B
and get

A(r) =
1

N

∑
A(k)ei2πk·r,

B(r) =
1

N

∑
B(k)ei2πk·r,

(4)

where N is the grid size of the system. The magnetostatic
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equation in momentum space becomes

i2πk×A(k) = B(k). (5)

Then, by using the Lagrange formula and the gauge re-

lation k ·A = 0, we solve Eq. 5 and get the expression

A(k) = −ik×B(k)

2πk2
. (6)

Substituting Eq. 6 into Eq.(1), the Hopf invariant in mo-
mentum space becomes

H = i
1

N

∑
k

B(−k) · (k×B(k))

2πk2
. (7)

All the Hopf invariant calculations in the main text were
obtained using Eq. 7.
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[30] A. O. Leonov, U. K. Rößler, and M. Mostovoy, EPJ Web

Conf. 75, 05002 (2014).
[31] M. Beg, R. Carey, W. Wang, D. Corts-Ortuo, M. Vous-

den, M.-A. Bisotti, M. Albert, D. Chernyshenko, O. Hov-
orka, R. L. Stamps, and H. Fangohr, Sci. Rep. 5, 17137
(2015).

[32] F. Zheng, H. Li, S. Wang, D. Song, C. Jin, W. Wei,
A. Kovcs, J. Zang, M. Tian, Y. Zhang, H. Du, and R. E.
Dunin-Borkowski, Phys. Rev. Lett. 119, 197205 (2017).

[33] See Supplemental Materials, for details of the simula-
tions, effect of DDI, Hopf invariant calculations and
movies for the topological transition. Micromagnetic and
atomistic spin simulations were performed using Mu-
max3 [45], Fidimag [46] and an in-house simulation pack-
age.

[34] A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 195,
182 (1999).

[35] Spirit spin simulation framework, (see https://spirit-
code.github.io).

[36] J. W. Milnor, Topology from the Differentiable Viewpoint
(Princeton University Press, Princeton, 1997).

[37] J. H. C. Whitehead, Proc. Natl. Acad. Sci. U.S.A. 33,
117 (1947).

[38] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[39] J. E. Moore, Y. Ran, and X.-G. Wen, Phys. Rev. Lett.

101, 186805 (2008).
[40] P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Comput.

Phys. Commun. 196, 335 (2015).
[41] D. Cortés-Ortuño, W. Wang, M. Beg, R. A. Pepper, M.-

A. Bisotti, R. Carey, M. Vousden, T. Kluyver, O. Hov-
orka, and H. Fangohr, Sci. Rep. 7, 4060 (2017).

[42] P. F. Bessarab, G. P. Müller, I. S. Lobanov, F. N. Ry-
bakov, N. S. Kiselev, H. Jónsson, V. M. Uzdin, S. Blügel,
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