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Deconfined quantum critical points govern continuous quantum phase transitions at which frac-
tionalized (deconfined) degrees of freedom emerge. Here we study dynamical signatures of the
fractionalized excitations in a quantum magnet (the easy-plane J-Q model) that realize a decon-
fined quantum critical point with emergent O(4) symmetry. By means of large-scale quantum Monte
Carlo simulations and stochastic analytic continuation of imaginary-time correlation functions, we
obtain the dynamic spin structure factors in the Sx and Sz channels. In both channels, we observe
broad continua that originate from the deconfined excitations. We further identify several distinct
spectral features of the deconfined quantum critical point, including the lower edge of the contin-
uum and its form factor on moving through the Brillouin Zone. We provide field-theoretical and
lattice model calculations that explain the overall shapes of the computed spectra, which highlight
the importance of interactions and gauge fluctuations to explaining the spectral-weight distribution.
We make further comparisons with the conventional Landau O(2) transition in a different quantum
magnet, at which no signatures of fractionalization are observed. The distinctive spectral signa-
tures of the deconfined quantum critical point suggest the feasibility of its experimental detection
in neutron scattering and nuclear magnetic resonance experiments.

I. INTRODUCTION

The deconfined quantum critical point (DQCP), which
separates the Néel antiferromagnetic (AFM) and sponta-
neously dimerized valence bond solid (VBS) phases in
(2+1)D quantum magnets, was proposed as an exam-
ple of continuous quantum phase transition outside the
conventional Landau-Ginzburg-Wilson (LGW) paradigm
[1, 2]. The AFM and VBS order parameters both van-
ish continuously and simultaneously at the DQCP. This
scenario is generically not expected within the standard
LGW description, where such a case should be realiz-
able only by fine tuning two separate transitions to co-
incide at special multi-critical points. Multiple field the-
ory descriptions [1–15] have been proposed for the DQCP
which are believed to be equivalent (or dual) to each other
at low energy, including the non-compact CP1 (NCCP1)
theory [1, 2] and some versions of the quantum electro-
dynamics (QED) and quantum chromodynamics (QCD)
theories [13]. In contrast to the LGW description which
formulates the critical theory in terms of the order pa-
rameters directly, these gauge theory descriptions of the
DQCP are formulated in terms of deconfined degrees
of freedom (fractionalized particles and emergent gauge
fields). The order parameters on either side of the DQCP
can be expressed as different compositions of the frac-
tionalized particles or gauge fluctuations within the same
theoretical framework. This mechanism captures the in-
tertwinement of the AFM and VBS orders and provides a

natural route beyond the LGW paradigm to a non-fine-
tuned quantum critical point between the two distinct
symmetry-breaking phases.

With the increasing understanding of the nature of the
DQCP ground state phase transition, the time is now
ripe to address direct connections to experiments, where
the most detailed signatures of deconfinement can be ex-
pected in dynamical properties. Based on the physical
picture of deconfinement of the experimentally accessible
spin excitation into two spinons at the DQCP, a broad
continuum is expected in the spectral function. This is
in sharp contrast to an LGW transition of the AFM
state into a nondegenerate (trivial) quantum paramag-
net, where spinwaves (magnons) picture remain approxi-
mately valid at the critical point (as a very sharp edge of
the critical continuum, albeit the magnon quasiparticle
weight is highly damped to zero) [16]. The aim of this
paper is to present a comprehensive numerical study of
the signature of magnon fractionalization in the dynamic
spin structure factor S(q, ω) of a (2+1)D square-lattice
spin model hosting a DQCP, accompanied with a detailed
field theory analysis of every low-energy continuum that
appears in the spectrum.

Following the DQCP proposal, intensive theoretical
and numerical efforts have been invested in the possibility
of unambiguously observing such critical points in lattice
models. In the traditional frustrated quantum spin mod-
els that exhibit VBS phases, sign problems in quantum
Monte Carlo (QMC) simulations and other technical dif-
ficulties in methods such as the density matrix renormal-
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ization group and tensor product states prohibit studies
of the large system sizes needed in order to reliably char-
acterize critical points. However, for generic and uni-
versal properties, other “designer hamiltonians” [17] can
be constructed that do not suffer from QMC sign prob-
lems but still host the desired phases. Many such stud-
ies have pointed to the existence of the DQCP in both
two-dimensional (2D) quantum magnets [18–27] and re-
lated (through the path integral) three-dimensional (3D)
classical models [28–31]. In these studies it has been
observed, e.g., that the order parameters have unusu-
ally large anomalous dimensions [20, 23, 24, 26, 27, 30],
which is an important deviation from the common 3D
Wilson-Fisher fixed point. More concrete evidence of
deconfinement has been found by directly probing the
length scale associated with the fractionalization process
[24, 32] and from thermodynamics [33]. However, the ex-
perimentally most direct signatures of a DQCP, the dy-
namic spin structure factor S(q, ω), have so far not been
calculated in the case of electronic spins (while there are
already some intriguing results for an SU(3) symmetric
model [34]). Historically, in quasi-1D systems, the exper-
imentally observed spinon continuum, which agrees with
calculations for the spin-1/2 Heisenberg chain, was cru-
cial in establishing spinon deconfinement. Indications of
fractionalized magnetic excitations in 2D quantum spin
liquids have also been similarly observed [35–41]. Given
that S(q, ω) is detectable by multiple experimental tech-
niques, including inelastic neutron scattering (INS), reso-
nant inelastic X-ray scattering (RIXS) and nuclear mag-
netic resonance (NMR), identifying the distinct signa-
tures of fractionalization in S(q, ω) at the DQCP will pro-
vide a useful guide to experimental searches for DQCPs
in magnetic materials. Since the qualitative features of
S(q, ω) remain the same in the entire critical “fan” ex-
tending from the critical point to finite temperature, the
dynamical signatures proposed in our study should be
robustly observed even if the experimental parameter is
slightly off the critical point. Moreover, due to a re-
cently investigated duality relation between the DQCP
and a certain bosonic topological transitions in fermion
systems [13, 26, 27], similar dynamical signature of frac-
tionalization is also expected in interaction-driven topo-
logical phase transitions. Therefore our work also can im-
pact the ongoing efforts in finding experimentally accessi-
ble signatures of topological phase transitions in strongly
correlated electron systems.

In this work, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J-Q
(EPJQ) model defined by the Hamiltonian

HJQ = −J
∑
〈ij〉

(Pij + ∆Szi S
z
j )−Q

∑
〈ijklmn〉

PijPklPmn, (1)

were Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on
the link ij (between nearest-neighbor sites). The two-
and six-spin terms are both illustrated in Fig. 1(a). For
∆ = 0 this is the previously studied SU(2)spin J-Q3
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FIG. 1. The two lattice models considered in this work and
their schematic phase diagrams. (a) The EPJQ model with
two-spin (J) and six-spin (Q) couplings preserve all symme-
tries of the square lattice. We define the tuning parameter
chosen as q = Q/(J+Q). The antiferromagnetic XY (AFXY)
phase is separated by the DQCP at q = qc from the colum-
nar VBS phase, which spontaneously breaks lattice symme-
tries but which has significant fluctuations of the four-fold
degenerate dimer pattern close to qc, as indicated. (b) The
EPJ1J2 model, with the tuning parameter g = J2/J1. The J2
term explicitly pins a columnar dimer pattern and drives the
AFXY phase to the spin-disordered trivial (non-degenerate)
columnar singlet phase (without spontaneous lattice symme-
try breaking) through the 3DXY transition at g = gc.

model [20, 21, 42], which is an extension of the origi-
nal J-Q model (or J-Q2 model) [19], with two instead
of three singlet projectors in the Q terms. With three
singlet projectors we can go further into the VBS state
while still keeping J > 0 in sign-free QMC simulations.
The term ∆Szi S

z
j with ∆ ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry
down to U(1)spin explicitly. It has been shown [26] that
when ∆ = 1/2 (which is the value we will use here), the
EPJQ model exhibits a direct and continuous quantum
phase transition between the AFXY and VBS phases, as
illustrated in Fig. 1(a), realizing the easy-plane DQCP
(while for larger anisotropy, such as ∆ = 1, the transi-
tion becomes first-order). The XY order parameter has
a U(1)spin rotational symmetry and the VBS order pa-
rameter exhibits an emergent U(1)VBS symmetry as the
DQCP is approached, and, as argued based on dualities
[13], the two U(1) symmetries combine to form an emer-
gent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will
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also study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2
= J1

∑
〈i,j〉′

Dij + J2
∑
〈i,j〉′′

Dij , (2)

where Dij = Sxi S
x
j +Syi S

y
j +∆Szi S

z
j . The J1 bonds 〈i, j〉′

and the J2 bonds 〈i, j〉′′ correspond to the thin black and
the thick blue bonds in Fig. 1(b) respectively. Since the
Hamiltonian explicitly breaks the lattice symmetry, with
the J2 terms pinning a columnar pattern of bonds with
higher singlet density, the large J2 phase will simply be a
trivial, non-degenerate quantum paramagnet. The tran-
sition out of the AFXY phase is then the conventional
O(2) Wilson-Fisher transition in the 3D XY universality
class, as illustrated in Fig. 1(b), which we will contrast
with the DQCP. We here take ∆ = 1/2 for the anisotropy
parameter.

By means of stochastic analytic continuation (SAC)
of imaginary-time correlation functions calculated using
large-scale QMC simulations, we extract the dynamic
spin structure factor S(q, ω) over a wide range of mo-
mentum (q) and energy (ω) transfers in both the EPJQ
and EPJ1J2 models. The calculations are performed in
all phases of the models as well as at the critical points for
both the Sx and Sz spin channels. Our result confirms
the broad spinon continua in both Sx and Sz channels
at the DQCP, as expected from the spinon deconfine-
ment. We also identify the following distinctive spectral
features: (i) the lower edge of the spinon continua well
fitted by a simple function (sin2(qx) + sin2(qy))1/2 which
reveals the spinon dispersion relation, (ii) six gapless con-
tinua at Sz(π, π), Sx(0, 0), Sx(π, 0), Sx(0, π), Sz(π, 0),
Sz(0, π) unique to the DQCP, (iii) the characteristic spa-
tial anisotropy of the (π, 0) and (0, π) continua, (iv) the
remarkable similarity between Sx and Sz spectrums de-
spite of the strong easy-plane anisotropy. We will also
show that these specific signatures of deconfined spinons
can be observed in the EPJQ model over a wide range
of model parameters even away from the exact critical
point, demonstrating that the dynamic signatures we
identified are robust phenomena that should be testable
in future experiments.

The rest of the paper is organized as follows: In Sec. II,
the theoretical background of the DQCP phenomenon
and the consequently expected low energy spectral fea-
tures are laid out. In Sec. III, we discuss in detail the
dynamic spin structure factors in the EPJQ and EPJ1J2

models, as they are driven through their phase transi-
tions. This comparison reveals the distinct spectral fea-
tures of the DQCP. In Sec. IV, we provide a theoretical
calculation of the dynamic spin structure factor at the
DQCP which nicely matches the numerical observations.
Sec. V summarizes the significance of our findings and
their relevance to bridging the DQCP to experimentally
accessible information, and points out future directions.
A detailed finite-size scaling analysis of the not previ-
ously studied quantum phase transition of the EPJ1J2

model and additional discussion of the spin spectra of
this model are given in Appendix A and B, respectively.

II. THEORETICAL EXPECTATIONS FOR
LOW-ENERGY SPECTRAL FEATURES

Before presenting our numerical result, we would like
to first provide a theoretical overview of the expected
spectral features at low energy, as summarized in Tab. I
and Fig. 2. Let us define the Néel AFM n = (nx, ny, nz)
and VBS v = (vx, vy) order parameters as

n = (−)iSi, va = (−)aSi · Si+â. (3)

With the easy-plane anisotropy, the XY order parameter
in the AFXY phase is just the planar component (nx, ny)
of the Néel order parameter n.

Deep in the AFXY phase of both the EPJQ and
EPJ1J2 models, the low-energy fluctuations are described
by the XY model, L[θ] = (ρs/2)(∂θ)2, where ρs is the
spin stiffness and θ is the spin-wave Goldstone mode,
such that the XY order parameter can be written as
nx + iny ∼ eiθ. The XY spin correlation function Sx

near momentum (π, π) is expected to follow

〈e−iθeiθ〉 ∼ ρsδ(q) + (q2 − ω2)−1 + · · · , (4)

where q = (ω, q). The imaginary part of this correla-
tion function (with ω → ω + i0+) is shown in Fig. 2 (a),
demonstrating the well-defined magnon mode with linear
dispersion. On the other hand, the spin Sz fluctuation is
gapped at (π, π) due to the easy-plane anisotropy, but be-
comes gapless at (0, 0). The excitation of Sz corresponds
to the spin density fluctuation ∂tθ ∼ nx∂tny − ny∂tnx,
which can decay into two gapless magnon modes, each
around (π, π), so that the total momentum is close to
(0, 0). Therefore, we expect Sz near (0, 0) to be of the
form

〈∂tθ∂tθ〉 ∼
ω2

ρs(q2 − ω2)
. (5)

The imaginary part of this correlation function (with
ω → ω + i0+) is shown in Fig. 2 (b). Here the spec-
tral weight of the linearly dispersing mode is suppressed
as ω → 0. As we will see, the low-energy spectral fea-
tures of the dynamic spin structure factors Sx(q, ω) and
Sz(q, ω) match our QMC-SAC results nicely [see (a) and
(b) for both Fig. 3 and Fig. 4].

At the DQCP, the low-energy dynamic spin suscepti-
bility around Q = (π, π) is expected to be of the from

χx(Q+ q, ω) ∼ (q2 − ω2)−1+ηxy/2,

χz(Q+ q, ω) ∼ (q2 − ω2)−1+ηz/2,
(6)

with large values of the anomalous dimension ηxy and ηz,
characterizing the complete breakdown of a well-defined
magnon at the critical point. The imaginary part of these
correlation functions are shown in Fig. 2 (c,d) respec-
tively, with ηxy ≈ 0.13 and ηz ≈ 0.91 taken from Ref. [26]
for illustration purpose. Strictly speaking, any non-zero
anomalous dimension η would imply the breakdown of
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TABLE I. Analytical expressions for the low-energy dynamic
spin susceptibility χ(q, ω) ≡

∫ +∞
−∞ (dε/π)(ω−ε)−1S(q, ε) close

to the gapless momentum points. The physical meanings of
all these low-energy modes are listed in the last column in
terms of the AFM (n) and VBS (v) order parameters.

low energy χ(Q + q, ω) channel Q mode
(a) (q2 − ω2)−1 AFXY Sx (π, π) nx
(b) ω2(q2 − ω2)−1 AFXY Sz (0, 0) nx∂tny
(c) (q2 − ω2)−1+ηxy/2 DQCP Sx (π, π) nx
(d) (q2 − ω2)−1+ηz/2 DQCP Sz (π, π) nz
(e) q2(q2 − ω2)−1/2 DQCP Sz (0, 0) nx∂tny
(f) (ω2 − q2x)(q2 − ω2)−1/2 DQCP Sx (π, 0) nx∂yvy

FIG. 2. Expected low-energy features of the dynamic spin
structure factor S(q, ω) ≡ Imχ(q, ω + i0+) based on the the-
oretical dynamic spin susceptibility χ(q, ω) listed in Tab. I.

well-defined magnons, but compared to the small anoma-
lous dimension η ≈ 0.04 [43, 44] at the 3D O(2) Wilson-
Fisher transition, we expect to observe a much more
prominent continuum at the DQCP in the EQJQ model
[as clearly seen in the QMC-SAC results Fig. 3(b,e), to be
discussed later]. This is in sharp contrast to the Sx(q, ω)
spectrum at the 3DXY critical point in the EPJ1J2 model
[as shown in Fig. 4(b)], where there is essentially no con-
tinuum in the gapless Sx channel and that in the gapped
Sz channel is much less prominent (though there are also
interesting features there that cannot be explained at the
level of analysis discussed above).

Another important feature in the spectrum of the
DQCP is the gapless excitations at momenta (0, 0) and
(π, 0) [as well as (0, π) by symmetry] in both Sx and Sz

channels, with much weaker spectral weight, as shown in

Fig. 3 (b,e). Theoretically, they correspond to the (gen-
erally non-conserved) SO(5) current fluctuations, where
the SO(5) group rotates the Néel and VBS order param-
eters as a combined vector N = (N1, N2, N3, N4, N5) =
(n,v). The SO(5) current can be written in terms of the
combined order parameter N as

jµab = Na∂µNb −Nb∂µNa, (7)

with µ = 0, 1, 2 and a, b = 1, · · · , 5. By matching
the momentum and the SO(5) symmetry quantum num-
bers, it is straightforward to identify the Sx and Sz

fluctuations around (0, 0) to j023 and j012 respectively,
and identify those around (π, 0) to j215 and j235 respec-
tively. The emergent O(4) symmetry at the easy-plane
DQCP corresponds to the subgroup of SO(5) that ro-
tates (N1, N2, N4, N5) only (keeping N2

3 invariant), so the
currents j012 and j215 are emergent conserved currents at
low-energy. Their correlation functions can be calculated
based on the Nf = 2 QCD theory or the Nf = 4 QED
theory L[ψ, a] = ψ̄γµDµψ+ · · · , where the order param-
eters are fractionalized as Na ∼ ψ̄Γaψ and the current-
current correlations are given by

〈j012j012〉 ∼ 〈ψ̄γ0Γ12ψψ̄γ0Γ12ψ〉 ∼ q2

(q2 − ω2)1/2
,

〈j215j215〉 ∼ 〈ψ̄γ2Γ15ψψ̄γ2Γ15ψ〉 ∼ ω2 − q2x
(q2 − ω2)1/2

,

(8)

with Γab = i
2 [Γa,Γb] being the SO(5) generator that ro-

tates (Na, Nb) components. These spectral functions of
the currents in the field theory correspond in the lat-
tice model to the spin spectrum Sz around (0, 0) and Sx

around (π, 0). The imaginary part of these correlation
functions are show in Fig. 2 (e,f) respectively.

The correlation function of the non-conserved currents
j023 and j235 are expected to take a similar form with an-
other anomalous dimension ηj ,

〈j023j023〉 ∼
q2

(q2 − ω2)(1−ηj)/2
,

〈j235j235〉 ∼
ω2 − q2x

(q2 − ω2)(1−ηj)/2
.

(9)

They correspond to Sx(q, ω) around (0, 0) and Sz(q, ω)
around (π, 0). As we will discuss in more detail in Sec. III
and Sec. IV, all these expected spectral features are
qualitatively observed in the QMC-SAC spectrum of the
EPJQ model [see Fig. 3 (b,e)], consistent with the QCD
or QED description of the DQCP.

In the VBS phase, all excitations (in both Sx and Sz

channels) are gapped. There is no low-energy feature in
the spectrum that can be reliably predicted at the field
theory level. With our QMC-SAC numerics we can easily
go into the VBS, however, and we will present results
along with the results in the XY phase and DQCP in the
next section.
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III. NUMERICAL CALCULATIONS OF THE
SPIN SPECTRA

We here present results for both the EPJQ and the
EPJ1J2 models. The key quantity computed in our QMC
simulations with the stochastic series expansion (SSE)
method [45] is the spin correlation function in the imag-
inary time domain (for a = x, y, z),

Ḡa(q, τ) = 〈Sa−q(τ)Saq(0)〉, (10)

where Saq = 1
L

∑
i e
−iq·riSai and the summation is over all

sites of the L×L lattice. From the imaginary time data
for a set of τ points, we reconstruct the corresponding
real-frequency spectral function by performing a numer-
ical analytic continuation using the SAC method [46–
53]. With this method, we average over Monte Carlo
importance-sampled spectral functions Ba(q, ω), from
which the dynamic spin structure factor is later obtained
as Sa(q, ω) = 〈Ba(q, ω)〉/(1 + e−βω). The intermediate
spectrum Ba(q, ω) has the advantage of being normal-
ized to Ḡa(q, 0) when integrating over positive frequen-
cies only. In the sampling procedure we thus fix the nor-
malization and use the relationship

Ga(q, τ) =

∫ ∞
0

dω

π

e−τω + e−(β−τ)ω

1 + e−βω
Ba(q, ω) (11)

to define the goodness-of-fit χ2 between this function and
the SSE-computed result Ḡa(q, τ) (including covariance
among the SSE data for different τ). The weight for
a given spectrum is ∝ exp(−χ2/2θ), with θ a fictitious
temperature chosen in an optimal way so as to give a sta-
tistically sound mean χ2 value, while still staying in the
regime of significant fluctuations of the sampled spectra
so that a smooth averaged spectral function is obtained.
The most recent incarnation of the SAC method uses a
parametrization with a large number of equal-amplitude
δ-function sampled at locations in a frequency continuum
and collected in a histogram, as explained in Refs. 50–54.
We refer to these works for technical details.

We have extracted S(q, ω) for the EPJQ and EPJ1J2

models in both the Sx and Sz channels. The imaginary
time correlations in these channels were independently
calculated in different simulations with the stochastic se-
ries expansion QMC method [55], implemented in the ba-
sis of the Sx and Sz spin components, respectively (i.e.,
the operators used in the correlators are always diago-
nal). For the EPJQ model in Eq. (1), we set J + Q = 1
and define the ratio q = Q/(J +Q) to be the driving pa-
rameter, and for the EPJ1J2 model we define g = J2/J1.
All results presented here are for L × L square lattices
with L = 32 and periodic boundary conditions, and the
inverse temperature β = 1/T = 2L. While there are
some remaining finite size effects on these lattices, by
comparing with smaller lattices we have confirmed that
the main features of the spectra are stable and should be
close to the thermodynamic limit and T = 0.

For small q, the EPJQ model essentially reduces to
an XXZ model, which has an AFXY ground state that
breaks the U(1)spin symmetry spontaneously. When q
is large, the dimer interaction favors a VBS (columnar-
dimerized) ground state, which spontaneously breaks the
lattice C4 rotation symmetry. In this work, we set the
anisotropy parameter to ∆ = 1/2, where we have found
the signature of an easy-plane version of the DQCP sepa-
rating the AFXY and the VBS phases at qc = 0.6197(2),
based on the finite-size analysis of the critical exponent in
our previous work [26]. The phase diagram of the EPJQ
model Fig. 1(a) is similar to those of the SU(2)spin J-Q2

and J-Q3 models [18–21, 24, 42], but the DQCP is in
a different universality class due to the lowered symme-
try. In the EPJ1J2 model, as g increases there is a O(2)
Wilson-Fisher transition from the AFXY phase to the
trivial columnar dimer phase, as illustrated in Fig. 1(b).
The critical point is at gc = 2.735(2) as determined in Ap-
pendix A. The O(3) vesion of this quantum phase transi-
tion has been investigated extensively with various stati-
cally dimerized Heisenberg Hamiltonians (see the review
in Ref. 45), including also a recent calculation of dynamic
spectral functions [56]. The O(2) transition, however, has
not been investigated in detail with 2D quantum spin
models, as far as we are aware.

Turning now to the salient features of the spin spectra,
in Fig. 3 and Fig. 4 we show our results for the two mod-
els along the high symmetry path of wavevectors (0, 0)-
(π, 0)-(π, π)-(0, 0). In both cases we present results both
inside the two phases and at the critical point.

In the AFXY phase, which is common to both the
EPJQ and the EPJ1J2 models, we observe the gapless
Goldstone mode at (π, π) in the Sx channel, as shown
in Fig. 3 (a) and Fig. 4 (a). In the Sz channel, the (π, π)
fluctuations are gapped due to the easy-plane anisotropy.
However, as seen in Fig. 3 (b) and Fig. 4 (b), the modes
around (0, 0) are still gapless, but with vanishing spec-
tral weight as ω → 0, as expected due to the conserved
total Sz. These behaviors are consistent with theoretical
expectations in Fig. 2 (a,b) based on the field theory of
the XY model.

Now let us focus on the critical points of both mod-
els. Fig. 3 (b,e) show the EPJQ spectra at q = 0.6, close
to the DQCP at qc = 0.6197(2). Fig. 4 (b,e) show the
EPJ1J2 spectra at g = 2.735, close to the 3DXY transi-
tion at gc = 2.735(2). By comparison, several exotic fea-
tures of the DQCP spectra can be unambiguously iden-
tified. First, we observe broad and prominent continua
in both Sx(q, ω) and Sz(q, ω) at the DQCP, which re-
flect the expected magnon fractionalization and emer-
gence of deconfined, essentially independently propagat-
ing spinons. In contrast, at the 3DXY transition, the
gapless magnon mode remains sharp in Sx(q, ω) around
(π, π) with very weak continuum due to the critical fluc-
tuations.

In the case of the DQCP, we find that the lower edges
of both spectral function can be well accounted for by
a remarkably simple single-spinon dispersion relation,
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FIG. 3. Dynamic spin structure factors Sx(q, ω) (a-c) and Sz(q, ω) (d-f) obtained from QMC-SAC calculations for the EPJQ
model with L = 32 and β = 64. Here (a) and (d) are inside the AFXY phase, q = 0.2, (b) and (e) are close to the DQCP,
q = 0.6, and (c) and (f) are inside the VBS phase, q = 0.9.
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FIG. 4. Dynamic spin structure factors Sx(q, ω) (a-c) and Sz(q, ω) (d-f) obtained from QMC-SAC calculations for the EPJ1J2

model with L = 32 and β = 64. Penels (a) and (d) are inside the AFXY phase, g = 2, (b) and (e) are close to the 3DXY
transition point, g = 2.735, and (c) and (f) are inside the quantum disordered phase, g = 3.6.

ω1(q) ∝ [sin2(qx) + sin2(qy)]1/2, which matches the dis-
persion relation of a deconfined fermionic parton in the
square lattice π-flux state [4–6, 34]. This points us to the
Nf = 2 QCD or the Nf = 4 QED theory [13, 15] that

were previously proposed to describe the DQCP. If in-
deed the broad spectral functions seen in Fig. 3 (b,e) are
due to two independently propagated spinons, and con-
tributions from four- or more spinon excitations can be
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neglected, the upper spectral bound is obtained by max-
imizing ω2(q) = ω1(q1) + ω1(q2) with q1 + q2 = q. This
indeed appears to be in reasonable agreement with the
observed distribution of the main spectral weight, though
some weight, presumably arising from states with more
than two spinons, is also present at higher energies. As
we will elaborate further in Sec. IV, the overall shape
and weight distribution of the continuum can be nicely
captured at the mean field level.

Note that the gapless continuum in Sz(q, ω) around
(π, π) is present at the DQCP but is absent at the 3DXY
transition. The Sz excitations are simply the low-energy
fluctuations of the nz field. In the NCCP1 description of
the DQCP[1, 2], L[z, a] = |(∂ − ia− iAs

σz

2 )z|2 + i
2πAv ∧

da+· · · , the nz fluctuation corresponds to the two-spinon
excitation since nz ∼ z†σzz. The criticality of the de-
confined spinon z therefore leads to the gapless Sz(q, ω)
continuum around (π, π). However for the 3DXY tran-
sition, described by the XY order parameter nx + iny in
the LGW paradigm, the nz fluctuation is not associated
with any critical fluctuation of the order parameter and
thus remains gapped at the critical point. Moreover, at
the DQCP, as a consequence of the nz criticality, the Sx

fluctuation also becomes gapless around (0, 0), because
this corresponds to spin density ny∂tnz − nz∂tny which
can decay into the gapless continuum of both nz and ny.

Furthermore gapless continua are also observed at mo-
mentum (π, 0) [and at (0, π) as well by symmetry] in
both Sx(q, ω) and Sz(q, ω) at the DQCP only. Gap-
less excitations at these points should be generally ex-
pected at a continuous quantum phase transition of the
AFM into a columnar VBS state [57], and the vanishing
(π, 0) gap was already confirmed in the standard spin-
rotational invariant [SU(2)] J-Q model [58]. It was also
argued recently that the (π, 0) excitation anomaly (i.e., a
lowered excitation energy and enhanced excitation con-
tinuum above the single-magnon pole at this momentum
relative to spin wave theory) in the Heisenberg model
and, in materials realizing it, is a precursor to a DQCP
[24]. Such exotic features are not observed at the 3DXY
transition, however.

The ability to separate the distinct planar and out-
of-plane excitations within the EPJQ model provides
additional information and opportunities to test field-
theoretical descriptions. The Sx excitation around (π, 0)
corresponds to the fluctuation of the conserved current
nx∂yvy−vy∂ynx associated with the emergent O(4) sym-
metry (in the XY-VBS rotation channel), which is an
unique feature of the easy-plane DQCP. The gapless
point (π, 0) also follows naturally, because the XY-VBS
current can decay into the nx continuum at (π, π) and
the vy continuum at (0, π), such that the momenta add
up to (π, 0). A similar interpretation applies to the Sz

channel as well. The only difference is that the spin-VBS
current there is not conserved, but is nevertheless still
critical. The (π, 0) continua exhibit a remarkable spa-
tial anisotropy. On the edge of the continua, the spectral
weight is always larger along (π, 0)-(π, π) line and smaller

along (π, 0)-(0, 0) line. This spatial anisotropy is a signa-
ture of current-current correlation, which originates from
the non-trivial ω2 − q2x form factor on the numerator as
given in Eq. (8) and Eq. (9). The (0, π) continua will also
exhibit the spatial anisotropy but with the form factor
rotated by π/2 to ω2−q2y. These “shadow” continua allow
us to probe the critical VBS fluctuation in the spin ex-
citation spectrum, which is another remarkable hallmark
of the DQCP.

As discussed in the Sec. I, the spectral features uncov-
ered here are relatively easy to probe in INS or RIXS ex-
periments, hence paving way for observation of the seem-
ing ephemeral DQCP in real materials. These features
are also robust even if the parameter is slightly off the
critical point. Our simulation itself serves as a “numeri-
cal proof” of this statement. As we measure the DQCP
spectra at q = 0.6 of the EPJQ model (not exactly at its
critical point qc = 0.6197(2)), we still observe all the low-
energy spectral features consistent with the field theory
qualitatively. This demonstrates that the dynamical sig-
natures do not require fine-tuning and should be easier
to measure in experiment. Whereas the previous stud-
ies of DQCP mainly focused on the critical scaling and
exponents from the theoretical perspective, these quan-
tities require more fine-tuning and are rather difficult to
measure in experiments. Even if the DQCP turns out
to be first-order (as expected if the anisotropy is strong)
or becomes unstable against other intermediate phases
at low temperature, its distinct spectral features over a
large range of frequencies can still be robustly observed
above the low energy scale at which the potentially other
transitions of phases become manifest.

Finally, the spectra of the EPJQ model in the VBS
phase is shown in Fig. 3 (c,f). Their EPJ1J2 counterpart
in the columnar singlet phase is shown in Fig. 4 (c,f). All
spin excitations are gapped in both Sx(q, ω) and Sz(q, ω)
for both models. For the EPJQ model, the spectra in
the VBS phase still maintain broad continua above the
gap, in contrast to the much sharper spectra of gapped
magnons in the EPJ1J2 columnar phase. This might be
related to the two-length-scale phenomena, which is in-
herent to the DQCP, persisting in the VBS phase of the
standard JQ model [24], namely, the domain wall size
of the VBS order may still remain large while the spin
correlation length is small. The domain wall size of the
VBS order is directly related to the confinement length
scale of the spinons [2]. This implies that although the
spin correlation length is finite, the confinement length
scale of the spinon can still be large, which leads to the
large continuum above the spin gap in the spin excitation
spectrum.

IV. PARTON MEAN FIELD THEORY FOR THE
DQCP SPECTRA

In this section, we provide theoretical account for
the overall shape of the dynamic spin structure factors
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FIG. 5. Comparison of the DQCP dynamic spin structure
factors between numerics [(a) Sx channel and (c) Sz channel]
and theory [(b) Sx channel and (d) Sz channel]. The color
map is the same as that in Fig. 3. The dashed curves trace out
the upper and low edges of the two-parton continuum, assum-
ing free fermionic partons with the π-flux state dispersion εk
in Eq. (14). The lower edge simply follows εk and the upper
edge is given by the maximal two-parton excitation energy
Eq = maxk∈BZ |εk + εq−k|. The suppressed spectral weight
near (0, 0) can be captured by matrix element effects.

Sx(q, ω) and Sz(q, ω) observed at the DQCP. The easy-
plane DQCP admits several candidate field theory de-
scriptions, including the easy-plane NCCP1 theory [1–3],
the Nf = 2 non-compact QED3 theory [6, 7, 9–13] and
the Nf = 2 QCD3 theory [5, 13] (or its Higgs descen-
dent Nf = 4 compact QED3 [4, 6, 13, 15]) with addi-
tional anisotropy in the SO(5) symmetric tensor repre-
sentation. Although all theories are believed to provide
equivalent descriptions of the low-energy physics under
proposed duality relations [13], some of them are more
convenient to handle by mean field treatment than oth-
ers. Among these theories, we found that the Nf = 2
QCD (or Nf = 4 QED) theory gives the best account
for the overall spectral features at the mean field level.
Because in these theories, both the AFM and VBS or-
der parameters are treated on equal footing as fermionic
parton bilinears, it is already possible to approximately
capture both spin and dimer fluctuations at the free
fermion level (ignoring gauge fluctuations and local in-
teractions). Fig. 5 shows the comparison of the dynam-
ics spin structure factors between numerics and theory,
based on the parton mean field theory. The overall fea-
tures match quite nicely. However, if similar mean field
treatment were applied to other dual field theories such as
the NCCP1 or the Nf = 2 non-compact QED3 theories,
some low-energy continua that involve gauge monopole
excitations will be missing, as the gauge fluctuation can
not be captured at the mean field level.

Let us start with the parton construction on the square
lattice [59], where the spin operator Si is fractionalized
into fermionic partons fi = (fi↑, fi↓)

ᵀ at each site i as

Si =
1

2
f†i σfi. (12)

An SU(2) gauge structure emerges in association with
the above fractionalization scheme, but at the mean field
treatment we will ignore the SU(2) gauge fluctuation
completely and place the fermionic parton in the square-
lattice π-flux state [4, 5, 59]. Thus, we use the following
mean field Hamiltonian

HMF =
∑
i

i(f†i+x̂fi + (−)xf†i+ŷfi) + H.c., (13)

such that each plaquette hosts a π-flux for the fermionic
parton. Four Dirac fermions are obtained at low energy.
The fermionic parton dispersion is simply given by

εk = 2(sin2(kx) + sin2(ky))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall ve-
locity, as shown in Fig. 5 (a,c), which justifies the π-flux
state as our starting point. The upper edge of the two-
parton continuum can also be obtained from εk by adding
up single-parton energies. This gives a rough estimate for
the energy range of the parton continuum, which is also
consistent with the numerical observation in Fig. 5 (a,c).

Given Eq. (12) and Eq. (13), it is straightforward to
calculate the spin-spin correlation function

Ga0(ri − rj , t) = 〈MF|eiHMFtSai e
−iHMFtSbj |MF〉 (15)

on the free fermion ground state |MF〉 of the mean field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility

χa0(q, ω) =

∫
dt

∑
i

Ga0(ri, t)e
iωt−iq·ri , (16)

from which we obtain the dynamic spin structure factor

Sa0 (q, ω) = Imχa0(q, ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calcu-
lated in Ref. 34 previously. One can see that S0 already
captures the gapless continua at momenta (0, 0), (π, 0),
(0, π), and (π, π) in all spin channels. Because the mean
field Hamiltonian HMF is symmetric under SU(2)spin,
there is no difference between Sx0 (q, ω) and Sz0 (q, ω). The
easy-plane anisotropy only enters the parton theory start-
ing from four-fermion interactions, since it is expressed
in the SO(5) symmetric tensor representation that can
not be written down at the quadratic level. Therefore,
the anisotropy is not manifest in the mean field approx-
imation, where the interaction effects are ignored. This
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of
the free fermion π-flux state.

observation provides a natural explanation for the strik-
ingly similar spectra of Sx(q, ω) and Sz(q, ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ∆ = 1/2 in the
EPJQ model.

The gauge fluctuations are expected to further renor-
malize the spectrum and enhance the critical fluctuations
around (π, π), which are not taken into account in the
simple mean field theory presented in Fig. 6. While in-
cluding the gauge interactions in the calculation is highly
non-trivial and beyond the scope of this work, we next
discuss a phenomenological model that captures the spec-
tral weight enhancement, and leave the more extensive
calculation to future work. Let us consider modeling the
interaction effect phenomenologically by a random phase
approximation (RPA) correction,

χa(q, ω) =
χa0(q, ω)

1 + Jaχa0(q, ω)
, (18)

where a = x, y, z. The coupling Ja parameterize the
strength of the spin-spin interaction in the Sa channel.
We can introduce the easy-plane anisotropy simply by
considering Jx = Jy > Jz. We found that the (π, π) fluc-
tuation is indeed enhanced by the interaction Ja. The
resulting RPA corrected spectral functions are already
shown in Fig. 5 (b,d), with Jx tuned to the magnetic
ordering critical point and Jz = Jx/2 [60]. Compared
to Fig. 6, the spin spectra in Fig. 5 (b,d) are much im-
proved by the interaction effect. Our phenomenological
study combined with the QMC-SAC result demonstrates
that the π-flux state fermionic parton with interaction
accounts well for the overall features of the DQCP spec-
tra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic
route to incorporating the effects of gauge fluctuations
in calculating the spin excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signa-
tures of fractionalization at the DQCP in a planar, U(1),

quantum magnet by computing both the in-plane and
out-of-plane dynamic spin structure factors at low tem-
perature. By contrasting with analogous results for a
conventional LGW critical point, we explicitly observe
how fractionalization of the critical magnon into two
spinons is manifested by a large continuum, in sharp con-
trast to a much less prominent continuum due to con-
ventional critical quantum fluctuations at the ordinary
3DXY transition. We also discovered several low-energy
spectral features that are unique to the DQCP, notably
the (π, π) continuum in the Sz channel and the (π, 0) con-
tinua in both channels. These features are missing in the
3DXY transition. They will provide us with “smoking
gun” evidence to guide experimental searches for DQCPs.
In particular, the calculations we have presented here
can be compared with neutron scattering experiments on
quantum magnets with weak antiferromagnetic (or simi-
lar) order or quantum paramagnets with small gaps.

An important aspect of experimental detection of
DQCP physics is that we have demonstrated the salient
dynamical signatures of confinement, in the form of broad
continua of spin excitations, even quite far away from
the DQCP, inside the gapped phase. This reflects an ex-
pected long length scale associated with deconfinement
inside the VBS state, which may make it possible to ob-
serve essentially deconfined spinons even quite far from
DQCP in quantum paramagnets with the right kind of
fluctuations. Some signatures of precursors to a DQCP
have already been argued on the gapless side, in mate-
rials closely realizing the 2D Heisenberg antiferromagnet
[52], and in systems with weakened order these signatures
should become stronger; again under the condition that
the fluctuations are those associated with the DQCP, in-
stead of bringing the system closer to some other exotic
phase [61]. One promising candidate for DQCP physics
is the magnetically quasi-2D Shastry-Sutherland mate-
rial SrCu2(BO3)2, where a plaquette singlet state similar
to a VBS was recently detected by neutron scattering at
moderately high pressure [62], before the system enters
an antiferromagnetic phase at higher pressure. Although
in this case the non-magnetic state is two-fold degenerate,
instead of the four-fold degenerate VBS states we have
considered here, a DQCP with emergent O(4) symmetry
may still be realizable close to the parameter regime of
the material [63].

Our work also calls for further studies on the theory
side. While we have found remarkable agreement be-
tween the numerical spectra and field theories of decon-
fined spinons at the mean field level, there are also dis-
tinctive features, e.g., the way the spectral weight at the
lower edge evolves as we move through the BZ, that will
require more sophisticated treatments of the interactions
and gauge fluctuations. Our results should provide a con-
crete impetus for these demanding calculations. Beyond
quantum magnets, in a series of recent works [13, 64, 65],
it was shown that the easy-plane DQCP is dual to the
N = 2 quantum electrodynamics with fermionic matter
fields, and it describes the bosonic topological transition
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(BTT) between a bosonic symmetry protected topologi-
cal state and a trivial insulator state [7, 8]. In addition,
it also exhibits a self-duality [9, 11, 64, 66]. Recently this
bosonic topological transition has also been realized in a
lattice model and the static properties of the phase tran-
sition has been simulated via determinantal QMC [67–
70]. It would be very interesting to measure the dynamic
structure factor at the BTT, and compare the results
with our current study.

The DQCP also has a natural large-N generalization
[1, 2], i.e., instead of two flavors of bosonic matter fields,
there are N -flavors of matter fields. The field theory is
called the noncompact CPN−1 model. This model is un-
derstood very well in the large-N limit, and for finite and
large N , a systematic 1/N expansion can be performed
to understand the details of the NCCPN−1. Remarkable
agreements have already been found between critical ex-
ponents calculated in the 1/N expansion [71, 72] and re-
sults of finite-size scaling of QMC data [23, 25, 73]. In the
future, similar dynamic structure factor calculations for
the large-N versions of the DQCP and comparison with
QMC-SAC calculation would be another very interesting
research direction.
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Appendix A: Quantum critical point of the EPJ1J2

model

In this section, we discuss how the critical point gc =
J2/J1 = 2.735(2) of the EPJ1J2 model is determined
from finite-size scaling of QMC results. The physical
observable used here is the spin stiffness

ρs ≡
1

N

∂2F (φ)

∂φ2
, (A1)

where F is the free energy and φ is the twisting angle
between spins in two different columns.

ρs is easy to measure in SSE QMC simulations [45] and
it has well defined finite size scaling form

ρs(g, L) = L−zf((g − gc)L1/ν , βL−z), (A2)

with the dynamic exponent z = 1 and the correlation
length exponent ν = 0.672, and f(x, y) is the scaling
function. The quantum phase transition from AFXY
phase to the columnar phase in the EPJ1J2 model be-
longs to (2 + 1)D O(2) universality class [74, 75]. In the
simulation we fix β = 2L such that the β/L−z is a con-
stant and we effectively have a single-parameter scaling
function. Then the quantity ρsL is dimensionless and
does not change with L at critical point.
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FIG. 7. Finite-size scaling of the spin stiffness ρxs of the
EPJ1J2 model. (a) Raw data for system sizes L = 8, 16, 32
and 64 as a function of g = J2/J1. (b) The same results
rescaled by L, so that the crossing points of the curves for dif-
ferent L should approach the critical point, determined here
as gc = 2.735±0.002. (c) The horizontal axis has been further

rescaled as (g−gc)L1/ν with the 3D O(2) exponent ν, leading
to good data collapse in support of the assumed universality
class.

In the QMC simulation, ρs is evaluated using winding

number fluctuations as [45]

ρs =
1

Nβ
〈(N+ −N−)2〉, (A3)

where N+ and N− are the number of all operators that
transport spin in positive and negative directions along
the lattice direction, respectively, during propagation of
the spin state in imaginary time. Since the EPJ1J2 model
is spatially anisotropic, one can calculate ρs along the x
or y directions of the lattice, and both of them satisfy
the same finite size scaling form Eq. (A2) with different
scaling functions. We label the two quantities as ρxs and
ρys , and for the sake of simplicity, only show ρxs here.

Fig. 7 (a) depicts the raw ρxs data for four different
system sizes, L = 8, 16, 32, 64. In Fig. 7(b), we plot the
scaled quantity Lρxs against the control parameter. The
crossing point of the curves should drift toward the criti-
cal point gc, and from our data we obtain gc = 2.735(2).
Finally, in Fig. 7(c), we further rescale the x-axis as
(g−gc)L1/ν , with gc = 2.735 and ν = 0.672, thus obtain-
ing the scaling function in Eq. (A2) as the common curve
onto which the data for different system sizes collapse.
The good data collapse without any adjustable param-
eters supports the expected (2 + 1)D O(2) universality
class.

Appendix B: Spectra of EPJ1J2 model

In this section, we provide more detailed information of
the EPJ1J2 spectra inside the AFXY phase and close to
the 3DXY transition point. Fig. 8 shows a scan through
the square-lattice Brilliune zone (BZ) with more q points,
along the path (0, 0) − (π, 0) − (π, π) − (0, 0) − (0, π) −
(π, 0) − (0, 0). In Fig. 8(a), Sx(q, ω) is shown at g =
2. Here the left part is identical to Fig. 4(a), where the
Goldstone mode at (π, π) is seen, and the spectra at (π, 0)
is gapped. The right part is slightly different, with the
spectra at (0, π) also gapped, but, due to the folding
of the BZ coming from the doubling of the real space
unit cell along the x direction of the square lattice, a
“shadow” band originating from the gapless dispersion
from (π, π) − (π/2, π/2) of the AFXY phase, presents
itself from (0, π) − (π/2, π/2). Fig. 8 (c) shows Sz(q, ω)
along the the same path. Since the Sz excitations are
gapped in the AFXY phase, except for the (0, 0) point,
there is no obvious sign of the band folding close to (0, π).

Fig. 8(b),(d) show Sx(q, ω) and Sz(q, ω) close to the
3DXY critical point at g = 2.735. The Goldstone mode
at (π, π) still presents itself, as well as the band folding
close to (0, π) in the Sx channel. In the Sz channel, on
the other hand, all the spectra are gapped except (0, 0),
and above the gap, some signature of the band-folding
can also be seen close to (0, π).
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FIG. 8. Spin structure factors Sx(q, ω) and Sz(q, ω) obtained from QMC-SAC for the EPJ1J2 model with L = 32 and β = 2L.
Panels (a) and (c) show data inside the AFXY phase with g = 2, while (b) and (d) are close to the 3DXY transition point with
g = 2.735. Results are shown along the path (0, 0)− (π, 0)− (π, π)− (0, 0)− (0, π)− (π, 0)− (0, 0) through the BZ.
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