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We present the electrical resistivity data under application of pressures up to ∼ 26 GPa and down
to 50 mK temperatures on YbFe2Zn20. We find a pressure induced magnetic phase transition with
an onset at pc = 18.2± 0.8 GPa. At ambient pressure, YbFe2Zn20 manifests a heavy fermion, non-
magnetic ground state and the Fermi liquid behavior at low temperatures. As pressure is increased,
the power law exponent in resistivity, n, deviates significantly from Fermi liquid behavior and tends
to saturate with n= 1 near pc. A pronounced resistivity maximum, Tmax, which scales with Kondo
temperature is observed. Tmax decreases with increasing pressure and flattened out near pc indicat-
ing the suppression of Kondo exchange interaction. For p>pc, Tmax shows a sudden upward shift,
most likely becoming associated with crystal electric field scattering. Application of magnetic field
for p>pc broadens the transition and shifts it toward the higher temperature, which is a typical
behavior of a transition towards a ferromagnetic state, or a state with a significant ferromagnetic
component. The magnetic transition appears to abruptly develop above pc, suggesting probable
first-order (with changing pressure) nature of the transition; once stabilized, the ordering temper-
ature does not depend on pressure up to ∼ 26 GPa. Taken as a whole, these data suggest that
YbFe2Zn20 has a quantum phase transition at pc = 18.2 GPa associated with the avoided quantum
criticality in metallic ferromagnets.

INTRODUCTION

Among the rare-earth-based intermetallic compounds,
Ce and Yb -based materials have attracted much atten-
tion due to their peculiar properties [1–14]. The proper-
ties of these compounds are usually dominated by two
characteristic energy scales: Ruderman-Kittel-Kasuya-
Yosida (RKKY) [15–17] and Kondo [18, 19] interaction
energies. The exchange interaction, J , which determines
the interaction energy between local moments and con-
duction electron, TK∝ e−1/J , is also responsible for the
coupling between local moments through the RKKY in-
teraction, TRKKY∝ J2. Hence, the ground state of these
compounds is determined by the competition between
these two energy scales and often described by the Do-
niach phase diagram [20]. When TK�TRKKY the ground
state in nonmagnetic and when TK�TRKKY, magnetic
order can be established. The most interesting situation
occurs when the two energy scales are comparable and
the system can be tuned through a T = 0 K magnetic in-
stability at a quantum phase transition (QPT). By tun-
ing the interaction via pressure, chemical substitution or
magnetic field, the magnetic ordering temperature could
be driven to T = 0 and quantum phase transition could
happen. If the second− order magnetic phase transition
is continuously suppressed to zero temperature, which is
often seen in antiferromagnetic systems, then the term
quantum critical point (QCP) is used[21–26]. If mag-

netic phase transition becomes of first order before being
suppressed to zero temperature[27–30] the QPT term is
used. In ferromagnetic metallic systems quantum criti-
cality can be avoided either by the QPT or by the ap-
pearance of a modulated magnetic phase[31–33].

Often Yb is considered as a ”hole” equivalent of Ce.
In contrast to Ce compounds, where magnetic ordering is
suppressed by pressure, in Yb systems, increasing pres-
sure can tune the system from a nonmagnetic state to
a magnetic one [8, 12]. There are only a few examples
of the pressure induced, nonmagnetic-to-magnetic phase
transitions in Yb compounds [2, 5, 6, 22, 34–38] and, so
far, superconductivity has been reported in only two ma-
terials [11, 39].

The YbT2Zn20 (T = Fe, Ru, Os, Co, Rh, Ir) series
is a Yb-based heavy fermion system [40–44] which be-
longs to the RT2Zn20 family [45]. For all six members,
at high temperature, the magnetic susceptibility mea-
surements show Curie-Weiss behavior with the effective
moment close to the Yb3+ [40, 41]. In the resistivity mea-
surements, there are no signs for the magnetic ordering
down to 20 mK [40, 41]. Among this YbT2Zn20 series,
YbCo2Zn20 has the lowest TK and the largest Sommer-
feld coefficient of the six members [40, 41]. By combining
the Doniach model with this small TK and large Som-
merfeld coefficient, one can assume that YbCo2Zn20 is
close to a possible magnetic QCP. With this idea, Saiga
et al. [22] performed a high pressure resistivity measure-
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ment on YbCo2Zn20 and observed a pressure induced
QCP at a critical pressure∼ 1 GPa and antiferromagnetic
(AFM) ordering at higher pressures. Apart from this, a
field induced ordered phase has been observed at the am-
bient pressure in YbCo2Zn20, possibly due to the crystal
electric field level crossing [46–51]. A pressure induced
QCP has also been estimated for YbIr2Zn20 (≈ 5.2 GPa)
and YbRh2Zn20 (≈ 5.2 GPa), however, for YbRh2Zn20

no pressure induced magnetic transitions have been ob-
served so far [23–25, 52].

Several years ago, high pressure resistivity measure-
ments were performed up to 8.23 GPa for YbFe2Zn20 [53].
Increasing pressure drives TK to lower values and en-
hanced the A-coefficient (∆ρ(T ) ∝ AT 2); a QCP of ∼
10 GPa was inferred [53]. In this work, by employing a
diamond anvil cell in a dilution refrigerator, we extend
the pressure range up to ∼ 26 GPa and lower the base
temperature to 50 mK. As a result we find a clear fea-
ture in resistivity that we identify as a magnetic phase
transition in YbFe2Zn20 for p> 18.2 GPa. The transition
temperature is about 1 K and does not change with fur-
ther increase of pressures up to 26 GPa. We tentatively
identify the transition as ferromagnetic in nature and as-
sociate the step-like feature in TC(p) with an avoided
quantum criticality QPT.

EXPERIMENTAL METHODS

Single crystals used for this study were grown using a
high-temperature solution growth technique [54, 55] with
the help of frit-disc crucible set [56]. More details about
the crystal growth can be found in Refs. 40, 57, and
58. Temperature and field dependent resistivity measure-
ments were carried out using a Quantum Design Physical
Property Measurement System from 1.8 K to 300 K. A
dilution refrigerator option was utilized to perform mea-
surements down to 50 mK. The resistivity was measured
using the van der Pauw method [59, 60] with ac-current
(I = 0.005 mA, f = 18.3 and 21.3 Hz) parallel to the [111]
plane and a magnetic field was applied perpendicular to
the current plane. A miniature diamond anvil cell [61],
with 300µm culets, was used to generate the pressure for
the resistivity measurement and KCl powder was used
as a pressure transmitting medium. The temperature
gradient between the dilution refrigerator thermometer
and sensor positioned on miniature diamond anvil cell
close to the anvils was evaluated in a separate experi-
ment and was found negligible with the protocol of the
measurement used in this work. Single crystals with a
typical dimension of 80×80×20µm3 were loaded into the
sample chamber with an inner diameter of 130µm made
out of a cubic BN gasket. Pressure was applied at room
temperature and ruby fluorescence, at 300 K was used to
determine the pressure[62].
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FIG. 1. (Color online) Temperature dependence of the nor-
malized resistivity of three different samples of YbFe2Zn20:
(a) sample 1, (b) sample 2 and (c) sample 3. Data have been
normalized to the lowest pressure 300 K resistivity value of
each sample. Un-normalized curves are shown in appendix
(Fig. A.1).

RESULTS AND DISCUSSION

Temperature dependent resistivity measurements on
three different samples of YbFe2Zn20 under pressures up
to 26.4 GPa are shown in Fig. 1. For each pressure,
resistivity values are normalized to the lowest pressure,
300 K resistivity value of each sample. For sample 1,
when increasing the pressure, the 300 K resistivity, ρ300K ,
is monotonically suppressed, which is similar to Ref. 53.
For sample 2 and 3, as indicated in Figs. 1 (b) and (c),
ρ300K shows a non-monotonic dependence on pressure
when higher pressure values are achieved. However, for
p . 18 GPa, ρ300K shows relatively small variation with
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FIG. 2. (Color online) Pressure dependence of the normalized
resistivity at 300 K. For each samples, ρ is normalized by the
lowest pressure 300 K resistivity value of each sample. Un-
normalized curves are shown in appendix (Fig. A.2 (c)).

pressure, while for p & 18 GPa, ρ300K systematically
increases with pressure. Fig. 2 presents the pressure
evolution of the normalized ρ300K with pressure. As in-
dicated in the figure, ρ300K stays relatively flat for p .
18 GPa and continuously increases for p & 18 GPa. Fig.
3 presents a low temperature expanded view of the data
presented in Fig. 1. In addition to the increased ρ300K
for p& 18 GPa there is also the clear onset of a relatively
sharp, low temperature feature (Fig. 3) for p& 20 GPa.
Whereas these are qualitative changes we will now exam-
ine these data quantitatively.

For all measured pressures, for T > 50 K, the resistiv-
ity data show a nearly linear temperature dependence
(Fig. 1). It is worth noting that the high-temperature
slope (250 K<T < 300 K) of the resistivity decreases with
increasing pressure up to about 10 GPa and then re-
mains constant for higher pressures. Below 50 K, there
is a broad shoulder in the resistivity data for p< 3.4 GPa
that changes into a broad maximum (Tmax) with pres-
sure increasing above 3.6 GPa. The value of Tmax usu-
ally scales with the Kondo temperature, TK[63–65]. It
moves to lower temperatures with increasing pressure up
to about 20 GPa and then shows a sudden increment for
p> 20 GPa. The behavior of pressure dependence of the
Tmax (for p < 9.6 GPa) is consistent with the previous
work [53].

The total resistivity of the YbFe2Zn20 can be ex-
pressed as a combination of normal metallic behavior
and a magnetic contribution. As mentioned above, the
high-temperature resistivity shows a nearly linear tem-
perature dependence, indicating that phonon scattering
is dominant in the high temperature range. Normal
metallic behavior can be approximated by considering
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FIG. 3. (Color online) Blowup of the low temperature resis-
tivity as in Fig. 1. Resistivity was measured down to 1.8 K
for the first three pressures of sample 1, all the others have
been measured down to 50 mK.

the temperature dependent resistivity of non-magnetic
LuFe2Zn20. Therefore, the magnetic contribution to the
resistivity of YbFe2Zn20 can be estimated by subtract-
ing the LuFe2Zn20 resistivity data from YbFe2Zn20 data.
Since the residual resistivity values of our samples show
non-monotonic increments, first we have to subtract their
residual resistivity values for each data set and then nor-
malize the high temperature (T > 275 K) slope of the re-
sistivity to that of LuFe2Zn20. This can be written as

ρmag(T ) = (ρYb−ρYb,0)
dρLu,R

dT
dρYb,R

dT

∣∣∣∣
275K

− (ρLu−ρLu,0) (1)

Similar analysis has been used to determine the ρmag(T )
in Ref. 43. ρmag(T ) data for samples 2 and 3 are shown in
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Figs. 4 (a) and (b) respectively. For both samples, Tmax1

decreases with increasing pressure up to about 20 GPa
and then shows a sudden change (jump up in temper-
ature) for higher pressures. Tmax2 is the temperature
corresponding to this higher pressure, broad, maximum
in the ρmag(T ) low temperature data. The solid black
triangles and open red squares indicate the Tmax1 and
Tmax2 respectively.
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FIG. 4. (Color online) Temperature dependent ρmag for (a)
sample 2 and (b) sample 3. ρmag is obtained from Eq. 1 (see
text below). The solid black triangles\arrows and open red
squares\arrows indicate Tmax1 and Tmax2 respectively. Data
are offset for clarity.

The evolution of the low temperature resistivity for
samples 2 and 3 are shown in Figs. 5 (a) and (b) respec-
tively. For T < Tmax and p < 18.2 GPa, the resistivity
of both samples decreases with decreasing temperature
and there is no pronounced anomaly down to 50 mK.
When the pressure exceeds pc = 18.2 ± 0.8 GPa, the
resistivity shows a kink/sharp drop, suggesting a loss
of spin-disorder-scattering and magnetic ordering at TM.
The peak in the temperature derivative of the resistivity
dρ/dT is used to determine the ordering temperature,
TM, as shown in Figs. 5 (c) and (d). As can be seen, the
peak position does not change with the pressure and re-
mains essentially the same up to 26 GPa. From the resis-
tivity measurements, we cannot determine the nature of
the magnetic transition, however, as shown in Fig. 6, ap-
plication of magnetic field broadens the kink/sharp drop
of the resistivity and moves it to higher temperatures,
which suggests that this is not a structural phase tran-
sition. Instead, this is typical behavior for a transition
towards a ferromagnetic state, or a state with a signifi-
cant ferromagnetic component.

A pressure-temperature phase diagram can be con-
structed and shown in Fig. 7 using the data from Figs. 4
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FIG. 5. (Color online) Low temperature resistivity of (a)
sample 2 and (b) sample 3 and (c),(d) their corresponding
temperature derivatives. Solid blue circles in (c) and (d) rep-
resent the criteria (peak of the dρ/dT ) used to obtain the
transition temperature. Curves in (c) and (d) are offset by
increments of 8µΩ cm K−1 for clarity.

and 5 as well as data from Ref. 53. Black solid triangles
and red open squares represent the data obtained from
Fig. 4. The Tmax obtained from Ref. 53 is represented by
open green triangles.

Figs. 7 and 2 demonstrate three changes that take place
as pressure increases through p∼ 20 GPa. At low temper-
atures (∼ 1 K) there is the sudden appearance of a tran-
sition that is arguably ferromagnetic. At intermediate
temperatures there is the disappearance of an ∼ 10 K re-
sistive maximum associated with the Kondo effect and
the appearance of an 30-40 K resistive feature that is
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FIG. 6. (Color online) Temperature dependence of the resis-
tivity at various magnetic fields for (a) p= 22.6 GPa and (b)
p= 26.4 GPa.

most likely associated with CEF splitting [66, 67]. At
higher temperatures, all the way up to room tempera-
ture, there is a marked increase in resistivity that starts
around 15 GPa and appears to saturate by ∼ 25 GPa.
Taking these three observations together, our results
strongly suggest that by ∼ 20 GPa there is a band struc-
ture change associated with the droping of the Yb-4f -
levels below the Fermi level. As a result, the Yb-4f -levels
stop being hybridized and the system enters the magnetic
regime in the Doniach phase diagram.

These results can be put in the context of the RFe2Zn20

(R= Gd-Tm) series which shows a clear de Gennes scal-
ing of its ferromagnetic ordering temperature [43, 57].
According to the de Gennes scaling, if Yb3+ were to be
purely local-moment-like, YbFe2Zn20 would order ferro-
magnetically at about 1 K. This is essentially what we
find for p > pc. The suggested pressure-induced ferro-
magnetic ordering in YbFe2Zn20 is not too surprising,
if we look at other intermetallic compounds in RT2Zn20

family[41, 43]. Taking GdT2Zn20 series for example, fer-
romagnetic ordered ground state is found for members in
the iron column (T = Fe, Ru and Os) while antiferromag-
netic ordered ground state in the cobalt column (T = Co,
Rh and Ir) [41]. Moreover, the pressure-induced ordered
states in YbCo2Zn20 and YbIr2Zn20 have also been sug-
gested as AFM ordering[25, 49]. Taking YbFe2Zn20 in
this study together, RT2Zn20 family seems to follow the
rule that for the iron column members, ferromagnetic or-
dering is expected, while for the cobalt column members,
antiferromagnetic ordering is expected.

TM appears to abruptly develop above pc suggesting
the first-order nature of the quantum phase transition at
pc. This is consistent with the growing number of ex-
amples of avoided quantum criticality in ferromagnetic
metals[27, 32, 68, 69]. According to the current the-
oretical understanding, a continuous PM to FM tran-

sition is not possible at T = 0 K, when suppressing the
FM phase with a clean parameter such as pressure [70].
Two possibilities have been proposed [71, 72]; either the
transition becomes of the first order [27–30] or the mod-
ulated magnetic phase appears to replace the ferromag-
netic one [31–33]. In order to check for hysteresis effects
(first order transition), the resistivity measurements were
carried out with both increasing and decreasing temper-
atures at 26.4 GPa (see Fig. 8). However, no hysteretic
behavior is observed. This could be due to a weak-first-
order transition, where the hysteresis is small and may
not be detected experimentally. Also, it could be due to
26.4 GPa being higher than the pressure that corresponds
to the tricritical point, so that, at 26.4 GPa, the transi-
tion is second order in temperature[27, 29, 32, 73–75].

0 5 1 0 1 5 2 0 2 50 . 1

1

1 0

 T M
 T m a x 1 - T h i s  w o r k
 T m a x 2 - T h i s  w o r k
 P h y s  R e v  B  8 8 ,  0 4 5 1 1 6  ( 2 0 1 3 )

p  ( G P a )

T (
K)

p c

F M

FIG. 7. (Color online) Temperature-pressure phase diagram
of YbFe2Zn20as determined from resistivity measurement.
TM, Tmax1 and Tmax2 are obtained using the criteria described
in Fig. 4 and 5. The green open triangles are obtained
from Ref. 53. Vertical arrow represents the critical pressure
pc = 18.2± 0.8 GPa for ferromagnetic transition as well as 4f-
localization. The error bars of p are determined by performing
ruby fluorescence on several locations inside the sample space.
The error bars of temperature are determined as half the data
spacing.

Let’s consider more details about the temperature vari-
ation of the resistivity. Figs 9 (a)-(c) show the ρ-ρ0 versus
T for sample 1, 2 and 3 to emphasize the low-temperature
exponent, n, which appears as the slope on a log-log scale.
At low-pressures (in Fig. 9 (a) p < 3.4 GPa), ρ-ρ0 obeys
T 2 and for the intermediate pressures (p ∼ 6 GPa) it fol-
lows T 1.5. For higher pressures ( 9 GPa < p < 18 GPa),
ρ-ρ0 shows linear T dependence over a wide range of tem-
perature. A T -linear resistance has been observed in sev-
eral compounds, such as; CeCoIn5 [76], CeRhIn5 [77, 78],
YbRh2Si2 [21, 79, 80], YbAgGe[9, 81] and CeNi2Ge2 [82].
Evolution of the temperature power-law exponent n with
pressure is summarized in Fig. 9 (d). The value of n is ob-
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tained from a sliding window fit to ρ-ρ0 =ATn, where ρ0
is obtained from the fit at the lowest temperature. Since
the data have been taken down to 0.05 K, the value of
ρ0 can be obtained more accurately than was possible
for Ref. 53. As can be seen, n is clearly deviating from
2 for higher pressures. Power-law analysis from Ref. 53
indicates n= 2 even at p∼ 8 GPa (see Figs. 5 and 9 in
Ref. 53). This most likely led to the low estimated value
of pc based on the divergence of A-coefficient in Ref. 53.
For p > pc the low temperature loss of spin disorder fea-
ture has ∝ Tn behavior most likely associated with spin
excitation scattering not too far below Tc. As indicated
in Fig. 9 (d), as pressure is increased above pc, n quickly
deviates from 1.

From the constructed p − T phase diagram (Fig. 7),
it is shown that for YbFe2Zn20, at the low tempera-
ture region, the associated Kondo temperature Tmax1 is
first suppressed with increasing pressure. At pc, a possi-
bly ferromagnetic transition TM suddenly appears at ∼
1 K and stays unchanged with further increasing pres-
sure. This suggests that for YbFe2Zn20, the quantum
criticality is avoided by going through a first-order QPT
under pressure, which is in contrast to the YbCo2Zn20

and YbIr2Zn20, where they enter AFM ordered states
through QCP[22, 25, 49]. At high temperature, a contin-
uously increase of the resistivity with pressure was ob-
served for p & pc (Fig. 2), suggesting that the suppress-
ing of hybridization and developing of the Yb3+ local
moment is more continuous in nature.
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CONCLUSIONS

In summary, we have measured the resistivity of
YbFe2Zn20 up to ∼ 26 GPa and down to 50 mK. Above
a critical pressure, pc = 18.2± 0.8 GPa, we observed the
resistivity anomaly at TM∼ 1 K, which remains constant
with increasing pressure. This anomaly appears to cor-
respond to a transition towards a ferromagnetic state, or
a state with a significant ferromagnetic component, since
the application of magnetic field broadened the transition
and moved it to higher temperature. Increasing pressure
drives the Tmax, the associated Kondo temperature, to
lower values and flattening at pressures up to pc indicat-
ing a decrease of the hybridization strength. Above pc,
Tmax abruptly increases with pressure. In this pressure
range Tmax can be attributed to the crystal electric field
effects. In heavy fermion non-magnetic phase, the low
temperature power law exponent is deviated from the
Fermi liquid behavior for p> 3.4 GPa and reached n= 1
for 9 GPa<p<pc. The reason for this unusual exponent
value, n= 1, over large range of pressure is not clear so
far. Additionally, our data suggests that at ∼ pc there is
a band structure change associated with the dropping of
4f-levels below the Fermi level.
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FIG. A.1. (Color online) Temperature dependence of the re-
sistivity of three different samples of YbFe2Zn20: (a) sample
1, (b) sample 2 and (c) sample 3.

APPENDIX

Fig. A.1 presents the temperature dependence of the
resistivity of three different samples without normaliza-
tion. Fig. A.2 presents the pressure dependence of the
resistivity values at different fixed temperatures. (a) Ex-
trapolated 0 K resistivity values ρ0 by fitting low tem-
perature ρ(T ) data, (b) ρ at 2 K, (c) ρ at 300 K. Fig.
2 is the normalized version of Fig. A.2 (c) obtained by
dividing the 300 K resistivity value at the lowest pressure
for each sample.
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1, the first three pressures, measurements were done down to
2 K (arrows in (a)), for the rest, measurements were done
down to 0.05 K. (b)Resistivity ρ at 2 K. (c)Resistivity ρ at
300 K.
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tai, and Y. Ōnuki, J. Phys. Soc. Jpn. 80, 114703 (2011).

[51] F. Honda, Y. Taga, Y. Hirose, S. Yoshiuchi, Y. To-
mooka, M. Ohya, J. Sakaguchi, T. Takeuchi, R. Set-
tai, Y. Shimura, T. Sakakibara, I. Sheikin, T. Tanaka,
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