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Gyroscopic metamaterials — mechanical structures composed of interacting spinning tops — have
recently been found to support one-way topological edge waves. In these structures, the time re-
versal symmetry breaking that enables their topological behavior emerges directly from the lattice
geometry. Here we show that variations in the lattice geometry can give rise to more complex band
topology than has been previously described. A ‘spindle’ lattice (or truncated hexagonal tiling)
of gyroscopes possesses both clockwise and counterclockwise edge modes distributed across several
band gaps. Tuning the interaction strength or twisting the lattice structure along a Guest mode
opens and closes these gaps and yields bands with Chern numbers of |C| > 1 without introduc-
ing next-nearest-neighbor interactions or staggered potentials. A deformable honeycomb structure
provides a simple model for understanding the role of lattice geometry in constraining the effects
of time reversal symmetry and inversion symmetry breaking. Lastly, we find that topological band
structure generically arises in gyroscopic networks, and a simple protocol generates lattices with
topological excitations.

I. INTRODUCTION

Materials with nontrivial band topology have captured
the attention of condensed matter scientists since their
discovery in electronic systems1. Since then, the concept
of topological order has found its way to a plethora of
physical systems, from electronic to photonic, acoustic,
and even mechanical systems2–14. When topologically
nontrivial, all these systems exhibit excitations confined
to their surface that propagate unidirectionally without
backscattering and are robust to disorder. These features
are both fundamentally intriguing and form the basis for
technological applications of topological materials.

Here, we focus on unidirectional edge modes in struc-
tures composed of coupled spinning objects4–6,15–17. In
particular, we focus on edge modes which arise from the
topological properties of lattices of gyroscopes’ collective
motion — namely, that their phononic band structure en-
codes a nonzero Chern number. When the band structure
is topologically nontrivial, the gyroscopic system sup-
ports unidirectional waves on its boundary. These edge
waves are distinct from a range of other non-reciprocal
properties that emerge in angular momentum-biased sys-
tems because of their topological origin18,19.

The minimal requirements for such a Chern insulator
are the the presence of a band gap and broken time re-
versal symmetry. In the electronic case, time reversal
symmetry breaking arises from the presence of magnetic
fields20. As we will see, the analogous mechanism in gy-
roscopic lattices is the lattice geometry itself: the mere
presence of spinning components is not sufficient to gen-
erate the effects enabling chiral edge modes.

In this article, we go beyond simple geometries and find
the flexibility to design lattices with desired band gaps
and desired topology. In particular, we examine tunable
lattices with Chern numbers |C| > 1 as well as multiple
gaps with edge modes of opposite chirality, we examine
the effects of competing time reversal symmetry breaking
with inversion symmetry breaking, and demonstrate a

C

A pivot B

~̀
cm~̀

f = ~̀
cm

~̀
k

p

q

✓pq

✓qp

~g

~!

FIG. 1. A spring-coupled gyroscopic metamaterial
is composed of spinning gyroscopes that hang from

a pinned pivot point. (A) ~̀
f is the vector from the pivot

point to where a force acts. When the only force is gravity,
~̀
f = ~`cm (B) Gyroscopes in the metamaterial are coupled to

their neighbors in the lattice via a spring which is attached to
the free end. (C) The linearized equation of motion for our
system relates the displacements via angles between bonds
and the local gyroscope’s local x-axis (indicated by dotted
lines in this view from above).

design strategy to achieve band topology in lattices with
seemingly arbitrary unit cells.

II. THE EQUATIONS OF MOTION

A simple realization of gyroscopic metamaterials is
a collection of coupled gyroscopes which hang from a
pivot point and spin rapidly enough for their angular
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momentum to lie approximately along the primary axis,
as shown in Fig. 1A. Under these conditions, the free tip
of a gyroscope moves when a torque, ~τ , acts about the
pivot point according to:

~τ ≈ Iω ˙̂n = ~̀
f × ~F (1)

where I is the principal moment of inertia, ω is the spin-
ning speed, n̂ points from the pivot point to the center

of mass, and ~̀
f is the vector from the pivot point to the

point acted upon by force, ~F .
Considering small displacements of each gyroscope al-

lows a linearized description. Denoting the displacement
from the equilibrium position in the plane as ψ = x+ iy,
the equation of motion for a single gyroscope under the
influence of gravity becomes:

iψ̇ =
mg`cm
Iω

ψ. (2)

Note that throughout this paper, without loss of general-
ity, we choose the angular momentum vector of a hang-
ing gyroscope to point down, from the pivot point to-
wards the center of mass. Noting the similarity between
Equation 2 and the Schrödinger equation for a quantum
particle, we use the same notion of time reversal symme-
try as is used in quantum mechanics, namely ψ → ψ∗

and t → −t. While ψ → ψ∗ corresponds to a reversal
of momentum for a quantum particle, in the context of
gyroscopes, ψ → ψ∗ carries out a reflection of the gy-
roscope’s displacement about a horizontal axis passing
through its pivot point. Performing this operation on
the equation above, we find that Equation 2 is time re-
versal symmetric. Thus, a spinning top precessing under
the influence of gravity does not break this notion of time
reversal symmetry.

Introducing interactions, however, allows the structure
to break time reversal symmetry. The simplest setting
to see this is a network of gyroscopes coupled by linear
springs. For small displacements, the forces exerted on
one gyroscope by another are proportional to the com-
ponent of the net displacement along the line connecting
them. For a given pair of gyroscopes p and q, it is conve-
nient to extract the component of the net displacement
ψp − ψq along the bond by rotating the system to the
local x−axis of p, taking the real part of expression, and
then rotating back. The resulting force in complex form
is given by:

Fpq = −k0eiθpqRe[e−iθpq (ψp − ψq)] (3)

= −k0e
iθpq

2

[
e−iθpq (ψp − ψq) + eiθpq (ψ∗p − ψ∗q )

]
,

where k0 is the spring constant of the bond. Using this
result, the equation of motion for two gyroscopes can
then be written as

iψ̇p = Ωgψp +
Ωk
2

[
(ψp − ψq)

+ e2iθpq
(
ψ∗p − ψ∗q

) ]
.

(4)

where Ωk = k0`
2
k/(Iω) and Ωg = mg`cm/(Iω). We define

the time reversal operation as ψTRp (t) = ψ∗p(−t). By tak-

ing the complex conjugate of ψ̇p and rewriting in terms
of ψTRp , we see that the equations of motion are changed

only by ei2θ → e−i2θ. Therefore, we see that time re-
versal symmetry is preserved under reflections that are
parallel or perpendicular to the bond4.

The full equation of motion for a hanging gyroscope
with more than one neighbor can be similarly expressed:

iψ̇p = Ωgψp +
Ωk
2

n.n.∑
q

[
(ψp − ψq)

+ e2iθpq
(
ψ∗p − ψ∗q

) ]
.

(5)

As before, time reversal symmetry is only preserved if all
bonds are either parallel or perpendicular to each other
since in this case, a coordinate system can be chosen so
that bonds lie along the x and y axes, constraining the
prefactor e2iθpq to be real for all bonds in the network.

To date, the only ordered lattices that have been con-
sidered in this framework are the honeycomb lattice and
simple distortions thereof4,5. A slightly different manifes-
tation of gyroscopic metamaterials considered in6 found
that by including staggered sublattice precession frequen-
cies and bond strengths, time reversal symmetry could be
effectively broken in lattices with square and honeycomb
symmetries.

III. TWISTED SPINDLE LATTICE

To demonstrate the considerable flexibility of gy-
roscopic metamaterials, we begin by considering the
twisted spindle lattice shown in Fig. 2. This structure
shares features of both the honeycomb lattice and the
kagome lattice. As Fig. 2A shows, shrinking the red tri-
angles to a single site — while increasing the strength of
red bonds — deforms the spindle lattice into the honey-
comb lattice. Conversely, taking the length of the blue
bonds that connect triads of gyroscopes to zero — while
increasing their strength — deforms the spindle lattice
into a kagome configuration. As shown in Fig. 2B, the
spindle lattice also supports a Guest mode in which each
triad of gyroscopes rotates locally.

In the limiting case of the honeycomb lattice, which has
two sites per unit cell, we find a single gap with clockwise
topologically-protected edge modes4. By contrast, in the
kagome lattice, with three sites per unit cell, there are
two gaps, which each support a counterclockwise topo-
logical mode, as shown in the Supplemental Material21.
In the intermediate case of the undeformed spindle lat-
tice, which has six sites per unit cell, we generically find
five band gaps. Most of these gaps possess chiral edge
modes, and a given configuration can host both clock-
wise and counterclockwise modes. As we show below,
locally twisting this structure (as in Fig. 2B) or varying
the bond strengths, Ωk, relative to the pinning strength,
Ωg, opens and closes edge-mode-carrying gaps.
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FIG. 2. The spindle lattice shares features of both the
honeycomb and kagome lattices, while supporting a
Guest mode in which each triad of gyroscopes is lo-
cally rotated. (A) Taking the size of the red triangles in
the spindle lattice to zero returns a honeycomb configuration,
while taking the length of the blue bonds connecting each red
triangle of gyroscopes to zero transforms the spindle lattice
into the kagome configuration. The associated band struc-
tures are shown below each of the three configurations. (B)
Locally twisting the triangles spindle lattice preserves bond
lengths while globally deforming the lattice.

Shaking a gyroscope on the boundary of this network
at a frequency in the lowest band gap generates a clock-
wise wavepacket confined to the edge of the sample which
is robust to disorder in the gravitational precession fre-
quencies or bond strengths and does not scatter at sharp
corners or defects (Fig. 3A and Supplementary Video
121). Shaking at a frequency in the middle band gap,
however, generates counterclockwise edge waves, allow-
ing a single lattice structure to conduct protected edge
waves with a chirality determined by frequency (Fig. 3B).
We compute the Chern number for each band via22

Cjdx ∧ dy =
i

2π

∫
d2k Tr[dPj ∧ PjdPj ], (6)

where Pj is the projection matrix defined using a sym-
plectic inner product between states (see Supplemental

Material21), and where ∧ is the wedge product. We note
that the use of symplectic norms for the projector in our
system was absent in previous studies of gyroscopic lat-
tices. We find that the Chern number is equal to the
number of chiral edge modes, which suggests the same
bulk-boundary correspondence for these systems as in
electronic Chern insulators15,23.

The topological band structure of the gyroscopic spin-
dle lattice offers additional axes of tunability through
varying the interaction strength (i.e. the bond stiffness
in the case of springs) and by performing bond-length-
preserving deformations on the lattice. For gyroscopic
lattices with uniform interaction strengths (i.e. equal
spring constants throughout), we can tune the the ra-
tio of interaction frequency to gravitational precession
frequency, Ωk/Ωg. This operation can deform the band
structure in addition to changing its extent. In the case
of the spindle lattice, this provides a tuning knob that
changes the topology of the band structure. Simply in-
creasing the interaction strength relative to the grav-
itational precession frequency closes and reopens gaps
and changes the Chern numbers of bands, as shown in
Fig. 4A. We note that this feature was absent in the gy-
roscopic honeycomb lattice previously studied4,5, whose
topology was unaffected by changes in Ωk and Ωg. This
allowed the topology to be continuously connected to the
electronic Haldane model, unlike in the spindle lattice.

Twisting the spindle lattice through a Guest mode, as
shown in Fig. 2B, also provides a tuning knob. Globally
deforming the lattice closes and reopens the lowest and
highest band gaps, allowing for several distinct configu-
rations of multiple gaps supporting protected chiral edge
modes, as shown in Fig. 4C and Supplementary Video
221. As the twist angle grows, there are five values for
which a pair of bands touch and reopen, flipping the chi-
rality of the modes in that gap or imparting chiral modes
to a gap which previously had none.

What determines the chirality of edge modes? Unlike
in Maxwell lattices recently found to be topological8, here
the coordination number alone does not play a central
role in determining band topology. If Chern numbers
were determined purely at the level of nearest neighbors,
we would expect, for instance, that the spindle and hon-
eycomb lattices would have similar edge modes: both
have a coordination number of z = 3 and have obtuse
bond angles θnml > π/2 for all junctions. However, the
spindle supports edge modes of either chirality. Further-
more, the spindle lattice’s rich band structure depends
not only on geometry, but also bond strengths (Fig. 3A).
We conclude that simple, local aspects of the lattice such
as coordination number and mean bond angle do not sin-
glehandedly determine the band structure.

From a design perspective, the two simple tuning pa-
rameters of angle and interaction strength are sufficient
to cover a broad range of topological phenomenology
without introducing staggered interaction strengths, in-
cluding edge modes with either chirality, the opening and
closing of gaps, and bands with Chern number ±1 and



4

FIG. 3. The gyroscopic spindle lattice contains chiral edge modes of either chirality as well as bands with Chern
number of C > 1. Direct simulation of Equation 5 reveal clockwise (left) and counterclockwise (right) edge modes in the
same structure when shaken at different frequencies (Ω = 1.8 Ωg (left) and 3.62 Ωg (right)). Computing the Chern numbers
for each band confirms the topological origin of the chiral edge modes, as shown in the colored band structure in the middle
panel. A single gyroscope on the edge is shaken at a fixed frequency with an amplitude varying in time; the spectrum of the
excitation is indicated by blue (left) and red (right) curves overlaying the density of states, D(Ω). The density of states, shown
above each lattice, is given for the case with periodic boundary conditions. For these simulations, the interaction strength was
set to be Ωk = 3Ωg.

±2. These behaviors demonstrate the versatility of gy-
roscopic metamaterials.

IV. TIME REVERSAL SYMMETRY AND
TOPOLOGICAL BAND-GAPS

All configurations shown so far break time reversal
symmetry, which is a necessary ingredient for band topol-
ogy in Chern insulators4,6. This is not necessarily true
for all gyroscopic lattices. For example, as illustrated in
Fig. 5, a honeycomb lattice can undergo a bond-length-
preserving deformation to a configuration in which all
bond angles are multiples of π/2 (for δ = π). In such
a configuration, time reversal symmetry is restored and
therefore band topology disappears. Further changing
the value of δ past π causes the band topology to reap-
pear, but with opposite sign. In Fig. 5, we extend
this analysis to the entire phase-space of periodic, bond-
length-preserving deformations by introducing an addi-
tional angle, φ. This allows us to explore the question of
whether time reversal symmetry breaking is sufficient to
generate band topology in gyroscopic metamaterials.

Fig. 5B shows the topological phase diagram corre-
sponding to general deformations of the honeycomb lat-
tice, characterized by angles φ and δ. Red (blue) re-
gions indicate to a Chern number of 1 (-1) for the lower
band and, correspondingly, clockwise (counter-clockwise)
propagating modes in the gap. For φ = π/2 and δ = π,
the network is arranged in a bricklayer configuration
(Fig. 5C). Varying either φ or δ from this point breaks

time reversal symmetry. However, only changes in δ im-
bue nontrivial band topology, as illustrated by the white
line in Fig. 5B for δ = π4. The fact that changes in
φ break time reversal symmetry without opening a gap
demonstrates that broken time reversal symmetry does
not inevitably lead to either band gaps or nontrivial band
topology.

This behavior warrants further investigation. During
the deformation of the honeycomb into the bricklayer ge-
ometry, the band gap closes and the two Dirac points
in the spectrum touch at a point. Surprisingly, these
Dirac points are preserved even in the canted bricklayer
configuration, as shown in Fig. 5D, despite the fact that
shearing the bricklayer configuration breaks time reversal
symmetry by creating acute and obtuse bond angles (see
Equation 5).

As detailed in the Supplemental Material, this protec-
tion of the Dirac cones arises due to a subtle pseudo-
reflection symmetry. The symmetry consists of reflecting
the positions of gyroscopes about the x axis and shearing
their relative positions such that the tilt angle φ is in-
variant, while leaving the gyroscopes’ displacements un-
changed. This pseudo-reflection is a symmetry of the
equations of motion, and thus of the normal modes21.
This symmetry leads to the existence of a special line
of modes in momentum space. Along this line, modes
that are symmetric and antisymmetric under the sym-
metry operation decouple and cannot hybridize at their
band crossing. Thus, a pseudo-reflection symmetry sta-
bilizes the Dirac points against acquiring gaps, which
would otherwise be unstable to time-reversal-symmetry-
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FIG. 4. Phononic band structures for the spindle and twisted spindle lattices show opening and closing of gaps
with topological edge states. (A) Simply increasing the interaction strength enables the closing and opening of band gaps,
creating and annihilating protected chiral edge modes. (B) Band gaps for two different interaction strengths are highlighted
in green. (C-D) As the structure is twisted through a bond-length-preserving Guest mode, three of the five gaps close and
reopen, leading to three or four gaps with chiral edge modes, depending on the value of the twist deformation angle, α.

breaking perturbations — analogous to the effect other
discrete symmetries in electronic systems24. The pseudo-
reflection symmetry also explains the vanishing Chern
number for all values of φ at δ = π seen in Fig. 5B, on
account of the Berry curvature being odd under the ac-
tion of the symmetry. More broadly, this protection un-
derscores of the interplay between lattice geometry and
the topological character of the band structure.

V. COMPETING SYMMETRIES IN
TOPOLOGICAL GYROSCOPIC SYSTEMS

Breaking inversion symmetry is the canonical mecha-
nism for opening gaps in the phonon spectra of mass-and-
spring lattices? . This is also true in other systems, such
as electronic materials. This gap opening mechanism can
be made to compete with broken time reversal symmetry
to close and reopen gaps and eliminate protected chiral
edge modes. To study an analogous effect in gyroscopic
lattices, we detune the yellow and blue sublattice sites in

Fig. 6 by modulating their on-site gravitational preces-
sion frequencies: ΩgA,B = (1±∆)Ωg (see also5).

Fig. 6A shows the phase diagram that results from
varying δ and lattice pinning frequencies, ΩgA,B . When
the unit cell’s two sites are equivalent (∆ = 0), the Chern
number of the system changes only when the gap closes
at the bricklayer transition. For ∆ 6= 0, however, a
third, topologically trivial region appears. In this case,
the band structure is gapped, yet displays no chiral edge
modes.

The behavior of excitations confirms the Chern number
calculations in all three regions, as indicated in Fig. 6B-
D and Supplementary Video 321. In Fig. 6C, excitations
propagate along the edge in both directions. The Chern
number is zero, and these edge waves are not topologi-
cally protected: they backscatter at sharp corners or in
the presence of disorder (see Supplementary Video 421).
The result shown in Fig. 6A displays a strong resem-
blance to Haldane’s phase diagram: sites must have sim-
ilar pinning strengths for the lattice to support topolog-
ical states.
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FIG. 5. Band gaps and topology in the deformed honeycomb lattice (A) The angles φ and δ control the deformation
of the honeycomb lattice. (B) The φ-δ phase diagram shows that the Chern number of the lower band changes when straight
lines of bonds appear in the lattice, which occurs on the white diagonal lines in the left corners and on the white vertical line at
δ = π. (C) The bricklayer configuration (δ = π) band structure is plotted along paths in the Brillouin zone. The gap is closed
at two Dirac points. (D) No band gap opens in the canted bricklayer (δ = π, φ 6= π/2), even though time reversal symmetry
is broken in this configuration.

While varying precession frequencies is an effective way
of breaking inversion symmetry, it is not the only one. An
alternative way is to alter the coordination number be-
tween sites – i.e. the number of bonds that are linked
to each gyroscope. For example, unlike the lattices con-
sidered so far, the α–(ET )2I3 lattice shown in Fig. 7
contains sites of coordination number z = 4 (for the A
and B sites) and z = 2 (for the C and D sites). When all
gravitational precession frequencies are equal, the lattice
displays no topological excitations (top right corner of
Fig. 7B).

As seen in the first term of Eqn. 5, contributions to
on-site pinning — ie. terms in which ψ̇p depends on ψp
— come not only from gravitation precession terms (Ωg),
but also from coupling to adjacent sites. For lattices with
unequal coordination at different sites, balancing the full
‘site pinning frequency’, Ωp, for each site can be used to
enhance or remedy the effects of site inequivalence:

Ωp ≡ z
Ωk
2

+ Ωg. (7)

We can test if site pinning inequivalence is the mecha-
nism preventing the α–(ET )2I3 lattice from having gaps.
Indeed, reducing the precession frequencies of the sites
with higher coordination numbers enables a band gap
with chiral edge modes (Fig. 7B). This provides another
example of the inextricable connection between lattice
geometry and topological order in gyroscopic lattices.

VI. TOWARDS TOPOLOGICAL DESIGN

We have seen that both time-reversal symmetry and
site equivalence are tied to lattice geometry and connec-
tivity. Turning now toward engineering new topological

gyroscopic lattices, we can summarize the principles of
the previous sections as follows:

I Breaking time reversal symmetry via bond angles is
a necessary, but not sufficient condition for creating
a lattice with a non-trivial band topology.

II A competition between time reversal symmetry and
site equivalence determines whether or not a lattice
can have topological modes. Lattice connectivity is
relevant for determining the effective on-site preces-
sion frequencies to achieve equivalence.

Using these two principles, one can construct topological
metamaterials beginning with an arbitrary unit cell and
subsequently balancing pinning frequencies according to
Equation 7. This procedure can generate lattices with de-
sired properties—such as multiple bandgaps or mechan-
ical stability. Fig. 8 shows several examples, including a
deformed kagome lattice, which has gained considerable
interest for its versatile mechanical properties8,25–27.

One example of a mechanically stable lattice with non-
vanishing Chern number is shown in Fig. 8B. Although
all previous lattices in this paper have been mechanically
unstable (z̄ ≤ 4), the lattice in Fig. 8B shows that this
is not necessary for band topology to arise. Sublattices
A (yellow) and C (red) have five bonds each, while sub-
lattice B (blue) has four. We expect that topological
modes will arise when the total pinning at each site are
approximately equal, which would occur for ΩB > ΩA,C .
Supplementary Information Figure 6 shows that the nu-
merics agree with this prediction21.

The results demonstrated in this section show that
topology is not specific to one family of lattices in gyro-
scopic networks and is in fact ubiquitous. Many topolog-
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FIG. 6. Inversion and time reversal symmetries compete in a gyroscopic lattice. (A) The phase diagram for a
deformed honeycomb lattice (without shear, so that φ = π/2) with varying Ωg values on sites A and B shows an interplay
between inversion and time reversal symmetries. (B) In a simulation of the honeycomb lattice with inversion symmetry breaking
∆AB = 0.15, driving a gyroscope on the edge at a gap frequency results in a clockwise wavepacket. (C) When the lattice is
deformed to a bricklayer geometry, the Chern number vanishes. This configuration is gapped due to the inversion symmetry
breaking (∆AB = 0.15). The gap contains modes which are localized on the edge, but these unprotected edge waves propagate
in both directions and are not robust against disorder. (See also Supplementary Videos 3-4.) (D) In the bowtie geometry, edge
modes propagate counterclockwise, as predicted by the calculations shown in (A).

ical lattices can be created using only simple principles—
opening a myriad possibilities for material design.

VII. CONCLUSION

In this article, we explored the interplay between lat-
tice geometry and topological order in gyroscopic lattices
— including the effects of broken time reversal symme-
try and site equivalence. Along the way, we found exam-
ples of lattices with multiple band gaps containing edge
modes of either chirality in the same structure and Chern
numbers |C| > 1. We then identified general principles
which are helpful in designing lattices with desired topo-
logical band structures. Building on our observations, we
used a simple prescription that yields mechanically stable
topological gyroscopic lattices and lattices with multiple
band gaps. The ubiquity of band topology in gyroscopic
metamaterials provides a broad palette with which to de-
sign topological behaviors in elastic structures. Further
study could investigate the interplay between band topol-
ogy and nonlinear excitations in gyroscopic networks or
interspersing both clockwise and counterclockwise spin-
ning sites.
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FIG. 7. Coordination number and topological phases.
(A) A lattice with four lattice sites per unit cell, where sites
A and B have two neighbors and sites C and D have two. (B)
The topological phase diagram for varying the gravitational
precession frequencies on sites A and B shows that because
of the different coordination numbers for the lattice sites, the
band structure is trivial when ΩgA = ΩgB = ΩgC = ΩgD. (C)
The band structure in the nontrivial phase for a strip which
is infinite along y and 120 unit cells wide in x.
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A B C D

FIG. 8. Examples of topological lattices created balancing coordination by varying on-site precession frequen-
cies. Each lattice is generated by placing triangulated points in a square unit cell, then deleting some bonds randomly. (A)
An example of a deformed kagome lattice structure exhibits two topological gaps. (B) A mechanically stable lattice with one
topological gap (upper gap) demonstrates that gyroscopic lattices need not be undercoordinated to be Chern insulators. The
propagation of edge modes is in the same direction as the kagome lattice. (C) A 3-site-per-unit-cell lattice structure with one
topological gap (lower gap). The propagation of edge modes is in the same direction as the honeycomb lattice. (D) An example
of a 4-site-per-unit-cell lattice structure with three topological gaps. The propagation of edge modes is in the same direction
as the kagome lattice for all three gaps.
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