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Abstract

The Burgers distortion is a two-stage transition between body centered cubic (BCC) and hexag-

onal close-packed (HCP) structures. Refractory metal elements from the Sc and Ti columns of

the periodic table (BCC/HCP elements) form BCC structures at high temperatures but transition

to HCP at low temperatures via the Burgers distortion. Elements of the V and Cr columns, in

contrast, remain BCC at all temperatures. The energy landscape of BCC/HCP elements exhibits

an alternating slide instability, while the normal BCC elements remain stable as BCC structures.

This instability is verified by the presence of unstable elastic constants and vibrational modes for

BCC/HCP elements, while those elastic constants and modes are stable in BCC elements. We show

that a pseudogap opening in the density of states at the Fermi level drives the Burgers distortion

in BCC/HCP elements, suggesting the transition is of the Jahn-Teller-Peierls type. The pseudogap

lies below the Fermi level for regular BCC elements in the V and Cr columns of the periodic table.

The wave vector kS when the gap opens relates to the reciprocal lattice vector G=(1 1
2

1
2) of

the distorted BCC structure as kS=1
2G. BCC binary alloys containing both BCC/HCP and BCC

elements exhibit a similar instability but stabilize part way through the BCC to HCP transition.

PACS numbers: 71.70.Ej,71.30.+h,62.20.de,64.70.Kd
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I. INTRODUCTION

Elements from the Sc and Ti columns of periodic table are body centered cubic (BCC)

at high temperatures and transform to hexagonal close-packed (HCP) at low temperatures.

We refer to these as BCC/HCP elements. Their transition is known as the Burgers distor-

tion [1]. On the other hand, elements from the V and Cr columns are BCC at all temperature

below their melting temperatures. Although prior works discuss the BCC to HCP transi-

tion, (e.g. angular distortive matrices [2], space group representation [3], pressure-induced

transitions [4–8], MD simulation [9]) and a review of instability of metal elements [10] in-

cluding Burgers and Bain instabilities, a complete understanding including the electronic

structure driving the transition is missing. We seek the underlying cause of the instabil-

ity in order to understand the mechanical properties of refractory metals and their alloys,

especially high entropy alloys (HEAs) containing both BCC/HCP and normal BCC ele-

ments [11]. Our study is also complementary to the previous work of Lee and Hoffmann [12]

who discussed a Jahn-Teller type transition of transition metals and alloys from BCC to

FCC structures. While they focus on transition metals starting from V column going to the

right of the periodic table, corresponding to the BCC to FCC transition, our study goes to

the left of the periodic table. However, both transitions share similar pseudo-gap opening

and bonding/antibonding orbital stabilization.

The Burgers distortion is a two-stage transition, consisting of an orthorhombic shear

deformation and an alternating slide displacement between atomic layers of the BCC struc-

ture [13]. We sketch the mechanism in Fig. 1. In the notation of Ref. [13], a Pearson type

oS4 cell characterized by two variables, λ1 and λ2, interpolates between the BCC and HCP

structures. The lattice constants of this oS4 cell are

a(λ1) = a0/α(λ1), b(λ1) = α(λ1)
√

2a0, c =
√

2a0 (1)

where a, b and c are the three lattice constants of the oS4 cell, α(λ1) = 1 + ( 4
√

3/2− 1)λ1,

and a0 is the lattice constant of the corresponding BCC structure. Notice that the lattice

constants of the oS4 cell only depend on the value of λ1 and their variation generates

orthorhombic shear. The positions of the four atoms in the oS4 cell are

R1 = (0,
3 + λ2

12
b,

1

4
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3− λ2
12
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4
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λ2 generates the alternating slide between atomic layers in (1,1,0) planes of BCC. When

λ1 = λ2=0, we have a BCC structure (Pearson type cI2), and the oS4 cell is a 1×
√

2×
√

2

supercell of BCC. When λ1 = λ2=1, the structure is HCP (Pearson type hP2).

Both λ1 and λ2 alter bond bond lengths. Nearest neighbor (NN) and next nearest neigh-

bor (NNN) bonds are of particular importance. To understand the instability of the BCC

structure, we consider their variation for small distortions. Expanding to first order in λ1

and λ2 we find

NNL ≡ |R1 −R3|≈
√

3

2
a0 +

1

12
(63/4 − 2

√
3)a0λ1 (3)

NNS ≡ |R1 −R4|≈
√

3

2
a0 −

1

12
(63/4 − 2

√
3)a0λ1

NNNL ≡ |R1 −R2|≈ a0 +
1

6
a0λ2

NNNS ≡ |R3 −R4|≈ a0 −
1

6
a0λ2

Notice that both the NN and NNN bonds split into long and short versions (subscripts L

and S, respectively, in Eq. 3), with the NN bonds varying to first order only in λ1, and the

NNN bonds varying to first order only in λ2.

In the following sections, we examine the impact of electronic structure on the total energy

as λ1 and λ2 vary during the Burgers distortion. We show that λ2 distortion drives the initial

instability of the BCC structure, by opening a gap in the electronic band structure, creating

a pseudo-gap in the electronic density of state and a charge density wave, with subsequent

relaxation in the λ1 variable that eventually stabilizes an HCP structure. We recognize the

initial instability as a type of Jahn-Teller-Peierls distortion [14–17]. We then turn to alloys

and show how the BCC structure of binary alloys containing both BCC/HCP and normal

BCC elements are stabilized part way through Burgers the distortion.
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FIG. 1: Illustration of the Burgers distortion. (a)
√

2×
√

2× 1 supercell of BCC viewed

along the [1,0,0] direction; (b) Alternating slide displacement; (c) Orthorhombic shear

b>c; (d) unit cell of HCP structure viewed along the [1,0,0] direction. Large cyan atoms

are in lower layer; small magenta atoms are in upper layer. For pure element all atoms are

same species; for binary alloys, magenta and cyan are BCC/HCP and normal BCC,

respectively. Atoms are labeled according to Eq. 2.
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II. PURE ELEMENTS

A. Elasticity and Phonons

1. Elasticity

We begin our analysis with calculation of BCC/HCP and normal BCC refractory element

T=0K elastic constants. These are obtained within density functional theory from stress-

strain relationships using two-point central differences as implemented in VASP [18]. We

employ the generalized gradient approximation (GGA [19]) without spin polarization. The

energy cutoffs of the plane wave basis sets are set to 400eV and k-point meshes are set

to 14×14×14 in 16-atom 2×2×2 supercells of the conventional 2-atom unit cell. We use

“Accurate” precision to avoid wraparound errors. An extensive set of elastic constants for

these metals and many more crystalline compounds is available in reference [20] and in the

references of reference [10].

As shown in Table I, BCC/HCP elements from the Sc and Ti columns have C11 ≤

C12. This violates a Born stability condition and predicts instability to a tetragonal or

orthorhombic distortion. These elements are stabilized in the BCC state at high temperature

by their vibrational entropy [21]. The BCC structures become mechanically unstable at low

temperatures, causing the transformation to HCP. Elements from the V and Cr columns all

have C11 > C12, so that the BCC structures are maintained at low temperatures. Note that

our calculations underestimate C44 for V and Nb, which arises from the combined effects of

Fermi surface nesting, an electronic topological transition and the Jahn-Teller effect [22–24].

2. Phonon Instability

We calculate the Γ-point phonon modes of the 2×2×2 supercell structures using density

functional perturbation theory (DFPT) [25]. Fig. 2 illustrates the unstable modes of Hf and

Table II lists the unstable phonon mode frequencies for all HCP/BCC elements. Each of the

BCC/HCP elements has a 6-fold degenerate imaginary frequency mode, and three of them

also have a second 6-fold degenerate lower imaginary frequency mode. All BCC elements are

stable as BCC structures with no imaginary frequency modes. In every case the (maximal)

imaginary frequency mode corresponds to the λ2 alternating slide deformation illustrated
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TABLE I: Calculated T=0K elastic constants of elements from Sc-Cr columns of the

periodic table (units of Gpa).

moduli C11 C12 C44 C11 C12 C44 C11 C12 C44 C11 C12 C44

element Sc Ti V Cr

moduli 59 59 27 99 119 41 317 163 28 580 175 119

element Y Zr Nb Mo

moduli 25 46 22 92 96 34 250 139 17 517 181 117

element La Hf Ta W

moduli -14 47 7 77 118 54 270 163 77 525 205 147

TABLE II: The unstable (imaginary frequency) phonon modes of elements from Ti and V

columns of periodic table (unit of frequency: THz, dfi : degeneracy of mode fi).

element frequency element frequency

Sc 2.73i Ti 3.21i, 4.93i

Y 2.05i Zr 2.50i

La 1.76i, 1.80i Hf 1.80i, 2.76i

in Fig. 1b. We can understand the 6-fold degeneracy because we have three choices for the

direction of alternation (i.e. x̂, ŷ, or ẑ in Fig. 1) and for each direction of alternation we have

two choices of perpendicular direction in which to displace. Equivalently, the cubic crystal

system has 6 independent but symmetry equivalent {111} planes within which to slide. This

mode reduces the symmetry from cubic to orthorhombic. If the initial cubic structure is

displaced according to this mode, it follows the Burgers distortion pathway and relaxes to

HCP. The lower imaginary frequency mode corresponds to a tetragonal symmetry breaking.

If the initial cubic structure is displaced according to this mode it follows the Bain path to

either a tI2 or an FCC structure. Complete phonon dispersion relations of several refractory

metals are presented in reference [26].
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FIG. 2: Unstable phonon modes of Hf in 2× 2× 2 supercell of conventional BCC unit cell

viewed along the cubic [100] axis. Note the y and z axes are rotated by 45◦ compared with

Fig. 1. Atom sizes indicate vertical height. Colors distinguish cube vertex (magenta) from

cube center (cyan). (a) Lower imaginary frequency. (b) Upper imaginary frequency.

3. Energy Landscape

The instabilities of the BCC/HCP elements can be seen from their energy landscapes as

the λ1 and λ2 values are varied (see Fig. 3). These are calculated within the conventional oS4

unit cell using 12×8×8 k-point meshes and otherwise normal VASP defaults. Specifically,

only lattice volume is relaxed, but not cell shape or ion position, in order to maintain the λ1

and λ2 values. BCC/HCP elements are more stable as HCP structures, while BCC elements

are more stable as BCC structures. Notice that the Burgers distortion is driven initially by

the λ2 distortion, since if we start from BCC (λ1 = 0, λ2 = 0), changing λ2 reduces the

energy much more quickly than changing λ1 does. Thus the Burgers distortion should begin

in the λ2 direction (alternating slide), then later complete in the λ1 direction (variation of

lattice parameters).

Fig. 3 presents energy landscapes for the Ti and V columns of the periodic table. Similar

behaviors are found in the Sc and Cr columns, although in the case of the Sc column the

initial instabilities in λ1 are somewhat stronger than those in the Ti column.
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FIG. 3: Energy landscapes of elements from the Ti (left) and V (right) columns of the

periodic table. Elements from the Ti column are stable as HCP (hexagons), whereas

elements from the V column are stable as BCC (squares). Color bars give energy contours

in meV/atom relative to energies of the BCC structures.
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FIG. 4: DOS comparison of Hf (left) and Ta (right) before and after the application of λ2

distortion.

B. Electronic Structure

So far, our investigation of elasticity, phonon modes and energy landscapes has illustrated

the instability of BCC/HCP elements without revealing the underlying mechanism. Here,

we seek an explanation by examining the electronic structure. Our study focuses on the

HCP/BCC element Hf and the normal BCC element Ta. Our findings for Ta apply equally

to the entire V and Cr columns of the periodic table, while our findings for Hf apply to the

entire Ti column, and with minor modification (discussed later), to the Sc column.

1. Density of States

The electronic density of states (DOS) is qualitatively similar for Hf and Ta, although

the Fermi energy, EF , is higher for Ta owing to its extra valence electron. Hf has a weak

pseudogap right at EF , while this pseudogap lies below EF in the case of Ta. The pseudogap

deepens upon application of the λ2 distortion, as illustrated in Fig. 4. Thus, in the case of

Hf, increasing λ2 reduces the energy of occupied states below EF while raising the energy

of empty states above EF , and hence lowering the band energy [27–29] relative to the

initial BCC structure [30–32]. The band energy of Ta is less strongly affected, because the

pseudogap opening occurs below EF .

The impact of λ2 on total energy ETotal(λ2) is quantified in Table III for Hf and Ta. Here

E0 refers to values at λ2 = 0. Owing to the symmetry between ±λ2, all first derivatives with
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TABLE III: Energy contributions E0 to BCC Hf and Ta, and their second variation as λ2

varies from -0.1 to 0.1. αZ and EEwald give the electrostatic energy of the ions in the

electron gas. VH is the Hartree potential. Exc − Vxc and PAWdc are double counting

corrections. Eband is the sum of Kohn-Sham eigenvalues, and Eatom is an arbitrary offset

approximating the energy of an isolated atom. Units are eV/atom.

Hf Ta

Contribution E0 ∆2E/∆λ22 E0 ∆2E/∆λ22

αZ 86.33 -9.46 125.99 -13.20

EEwald -742.93 +29.64 -956.72 +36.59

−VH -104.39 -8.50 -112.11 -13.37

Exc − Vxc 20.13 -0.47 22.79 -0.47

PAWdc 11.14 -0.42 13.63 -0.06

Eband -140.89 -11.79 -152.54 -8.67

Eatom 860.87 0 1047.14 0

ETotal -9.72 -0.98 -11.80 +0.78

respect to λ2 vanish. Hence, we approximate their second derivatives by taking a second

central difference using λ2 = ±0.1 and 0. The total energy is the sum of several large terms

with opposing signs. Most contributions are decreasing functions of λ2, with the exception

of the Ewald energy of repulsion among the positively charged ions which increases due to

the short second neighbor bonds. The repulsion is stronger for Ta than for Hf. Among the

negative contributions, the band energy stands out as being stronger for Hf than for Ta.

Notice the relative signs of total energy variation, confirming the instability of Hf and the

stability of Ta.

2. Band Structure

Pseudogap opening in the DOS results from a gap opening in the band structure. Fig. 5

plots the band structures of Hf and Ta at λ2=0 and 0.1. These are calculated using the oS4

primitive cell. Fig. 6 displays the Brillouin zone of the BCC structure in the oS4 setting with

λ2 = 0, and table IV gives coordinates of the special points [33]. Because oS4 is a supercell
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FIG. 5: Band structure comparison of (a) Hf and (b) Ta. See Fig. 6 and Table IV for

special point locations. The insets enlarge the vicinity of the special point S. Solid bands

show λ2 = 0 (i.e. BCC in an oS4 setting) while dashed bands (see inset) show λ2 = 0.1.

of BCC, the usual BCC Brillouin zone is folded. The BCC special points map onto special

points of oS4, so that the BCC 4x point H appears at the oS4 point Y; the BCC 2x point

N appears at the oS4 points Γ, R and Y; the BCC 3x point P appears at a position 2/3 of

the way along the oS4 special line ΓX.

As λ2 increases, a band-gap opens up between degenerate states at the S point, reflecting

the DOS pseudo-gap opening both in Hf and in Ta. For Hf, the gap opens at EF so that

occupied states drop in energy while empty states rise. In contrast, the extra electron in

Ta places EF above the gap so that the drop in energy is partially offset by the increase

in energy of some occupied states. Hence λ2 has a greater influence on band energy for Hf

than for Ta.

Since λ2 reduces the symmetry from cubic to orthorhombic, we recognize the the energy

reduction by gap opening as a bulk crystalline analogue of the Jahn-Teller distortion. Ac-

cording to Jahn and Teller [14], breaking the symmetry of a molecule can split a partially

occupied highest molecular orbital (HOMO), resulting in a drop in energy of the HOMO

and increase in energy of the split-off lowest unoccupied molecular orbital (LUMO). Equiva-

lently, from the point of view of Peierls [15], symmetry breaking creates a gap in a partially

filled band, reducing the energy of occupied states and increasing the energy of unoccupied

states. Hence we recognize the mechanical instability of BCC Hf as a manifestation of the

Jahn-Teller-Peierls mechanism.
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FIG. 6: Brillouin zone of oS4 with b = c =
√

2a. See Table IV for coordinates of special
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TABLE IV: Symmetry k-points of the oS4 cell [33]. ζ = (1 + a2/b2)/4 = 3
8

for the case

a = b.

×b1 ×b2 ×b3 ×b1 ×b2 ×b3

0 0 0 Γ -1/2 1/2 1/2 T

ζ ζ 1/2 A ζ ζ 0 X

−ζ 1− ζ 1/2 A1 −ζ 1− ζ 0 X1

0 1/2 1/2 R -1/2 1/2 0 Y

0 1/2 0 S 0 0 1/2 Z

We examined all the elements in the Sc-Cr columns of the periodic table. The entire Ti

column shows the same two band degeneracies at the S-point that is lifted by λ2 as seen in

Hf. These degenerate points fall below EF throughout the entire V and Cr columns which

contain, respectively, one and two electrons more than the Ti column. For the Ti column,

the upper degenerate point sits just at EF . In the case of the trivalent elements of the Sc

column, which contain one electron less than the Ti column, EF lies just slightly above the

lower degenerate point. In view of their mechanical instability we suspect that proximity

to the degenerate point is sufficient to drive the BCC to HCP distortion. Thus we expect
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FIG. 7: Band structure comparison of Hf using (a) LDA and (b) Spin-orbit coupling. See

Fig. 6 and Table IV for special point locations. The insets enlarge the vicinity of the

special point S. Solid bands show λ2 = 0 (i.e. BCC in an oS4 setting) while dashed bands

(see inset) show λ2 = 0.1.

similar behavior across the rare earth series, all of which can be trivalent and all of which

exhibit transitions from BCC at high temperature to either HCP or FCC.

Because the precise band energies can be influenced by the choice of exchange correlation

functional, we pesent the band structure of Hf in the local density approximation (LDA [34])

in Fig. 7a. Similarly, because spin-orbit coupling is strong for 5d metals and can split degen-

erate bands, we present the band structure of Hf in the generalized gradient approximation

(GGA [19]) with spin-orbit coupling in Fig. 7b. In both cases, the degenerate state with

λ2 = 0 is maintained at the special point S at EF , and the band-gap opens up for λ2 > 0.

3. Wave Function and Charge Density

With λ2 = 0, the oS4 structure shown in Fig. 1a becomes BCC, as can be verified from

its diffraction pattern illustrated in Fig. 8. As λ2 grows, superlattice peaks appear and grow

in amplitude proportionally to λ2. In real space the structure evolves an alternating pattern

of short and long next nearest neighbor bonds (see Fig. 1b). Notice that this alternation

doubles the periodicity along the y-axis of the charge density integrated over x and z. The

peak at the lowest k value arises at position G = b2 = 2kS in the notation of oS4 (see

Table IV) where kS is the position of the S point. This oS4 reciprocal lattice vector is
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FIG. 8: Diffraction pattern of oS4 with λ2 = 0.5. With λ2 = 0 only BCC peaks (red) are

present, while superlattice peaks (blue) grow linearly in λ2. Peaks are indexed according to

their positions within the conventional cubic unit cell.

equivalent to the super lattice peak (hkl = 11
2
1
2
) in conventional cubic unit cell indexing.

The modulation of the potential at wavevector b2 couples the degenerate electron states

ψk(r) = eik·ruk(r) of wave vectors k = kS and −kS to first order in perturbation theory,

leading to standing wave states that can localize in regions of low potential in the vicinity

of the short NNN bonds, and thereby reducing their energy to first order in λ2. Short NNN

bonds are strengthened (i.e. are more electron dense) and long NNN bonds are weakened.

Figure 9 plots the wavefunctions of the occupied and empty states that split off from EF

at the S-point (i.e. the dashed brown and indigo lines in Fig. 5a) in the yz-plane passing

through an atomic layer. ψk turn out to be real functions at the special k-point. This plot

reveals that they have dyz character in the vicinity of the atoms.

For the occupied state (dashed purple in Fig. 5a), the sign of the wavefunction (Fig. 9a)

alternates between atoms connected by short NNNS bonds, so that the signs of the lobes

of adjacent dxy orbitals match, creating bonding states with high electron density (Fig. 9b)

adjacent to the bonds between the atoms. In contrast, the sign of the wavefunction does

not reverse along NNNL bonds, causing the signs of the lobes of the dxy orbitals to conflict,

leading to low electron density between the atoms. The higher energy unoccupied state

(dashed brown in Fig. 5a) exhibits the opposite behavior (Fig. 9c, d), with charge density
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FIG. 9: S-point wavefunctions of Hf with λ2 = 0.5. The figures show a 2× 2 supercell of

the conventional cubic unit cell in the same orientation as Fig. 2. a) and b) show the

occupied state while c) and d) show the empty state. a) and c) show the real functions

ψkS
(r); b) and d) show the electron density |ψkS

(r)|2. The wavefunctions were obtained

from VASP using WaveTrans [35]. The red circles represent the position of atoms, and

blue/green lines are bonding of the shortened/enlongated NNN bonds.

concentrating adjacent to the long NNNL bonds. The entire effect is a three-dimensional

version of the classical Peierls transition [36].

A similar effect is observed in Ta (not shown), because setting λ2 6= 0 necessarily creates

a superlattice. However, in the case of Ta, both the upper and lower states of broken

degeneracy remain occupied, so the impact on band structure energy is reduced.
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TABLE V: Elastic constants (units of GPa) and unstable phonon frequencies (units of

THz) of TiV, NbZr and HfTa alloys in the cP2 structure. The left frequencies correspond

to the mode in Fig. 2a, while the right ones corresponds to Fig. 2b

Alloy Frequencies C11 C12 C44

TiV 3.44i, 3.43i 174 125 31

NbZr 1.17i, 2.41i 153 110 19

HfTa 2.04i, 2.28i 153 136 54

III. BINARY ALLOYS

A. Elasticity, Phonons and Energy Landscape

Given the instability of the BCC/HCP elements and the stability of the normal BCC ele-

ments, it is interesting to examine alloys containing both BCC/HCP and BCC elements. In

this section, we discuss binary alloys taking the Pearson type cP2 structure with BCC/HCP

elements at cube vertices and normal BCC elements at body centers.

Elasticity and phonon calculations for TiV, NbZr and HfTa binaries are summarized in

Table V. The cubic elastic constants obey the Born stability rules; C11+2C12 > 0, C11 > C12

and C44 > 0. However, there are two unstable phonon modes in the 2x2x2 cell, equivalent to

those illustrated for pure elements in Fig. 2. The modes with the upper imaginary frequencies

have degeneracy 6, and correspond to the same alternating slide displacement as in the pure

elemental case. The modes with the lower imaginary frequencies have degeneracy 3, rather

than 6, because only the normal BCC elements displace. Presumably this is because the

large HCP/BCC atoms force a large cubic lattice constant, and the smaller normal BCC

atoms displace to shorten the next-nearest neighbor bond lengths.

Taking the same oS4 structure as in Eqs. 1 and 2, setting atoms R1 and R2 to BCC/HCP

while R3 and R4 to normal BCC, λ1 = λ2 = 0 is a cP2 structure, while λ1 = λ2 = 1 corre-

sponds to a Pearson type oP4 structure with atoms at HCP positions but with the symmetry

reduced to orthorhombic due to the chemical order. Fig. 10 shows the energy landscapes of

these binary alloys. Unlike the pure BCC/HCP elements and pure BCC elements, neither

the BCC nor the HCP structures are stable. Instead, the BCC structures start with the
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FIG. 10: Energy landscapes of TiV, NbZr and HfTa (square: cP2, hexagon: oP4, star:

most stable state). The colorbars give the relative stability with respect to the BCC

structures.

same λ2 instability as in the pure BCC/HCP element case, but the transformation gets

“stuck” part way through. The atoms displace part way along λ2 while leaving λ1 nearly 0,

and these stable states are shown as stars in Fig. 10.

B. Electronic Structure

As in Fig. 4 for pure elements, we show the DOS of HfTa before and after the λ2 distortion

(λ2=0.5) in Fig. 11. Notice that the DOS has a similar shape to pure Hf and Ta, while the

Fermi energy lies 0.5eV above the pseudo-gap, compared with 0eV in the case of Hf and

1eV in the case of Ta. As in the case of pure elements, λ2 deepens the pseudogap and shifts

occupied states to lower energies.
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FIG. 11: DOS comparison of HfTa before and after the application of λ2 distortion.

Fig. 12 shows the band structure of HfTa before and after the λ2 distortion (λ2=0.1).

At the S point, brown and orange states correspond to the brown state in the pure Hf

and Ta cases (Fig. 5), and indigo and magenta states correspond to the indigo state in Hf

and Ta. It worth mentioning that, in the binary alloy cases, in order to achieve Pearson

type cP2 structure, a 4-atom unit cell of pearson type oS4 cell is required. Since a 2-

atom primitive cell of pearson type oS4 cell is used for pure element cases, the number

of bands doubles for binary alloys compared with the pure elements. For binary alloys,

before any λ2 distortion at S point, these four states already split into two sets of two-fold

degenerate states because of the symmetry breaking of the inequivalent atomic sites, but

this band gap opening does not stabilize the binary because the gap opening happens below

the Fermi energy. After λ2 distortion, those two sets of two-fold degenerate states further

split because of the further symmetry breaking that both nearest and next nearest neighbor

distance become inequivalent like shown in Fig. 1. This band gap opening makes the purple

state below the Fermi energy while the cyan state rises to slightly higher than the Fermi

energy, and this accounts for the fact that λ2 distortion lowers the net energy of binary

HfTa.

Table VI breaks down the alloy total energy into individual contributions, as was done

for pure elements in Table III. Again, the electrostatic energy (first three terms) of ionic

repulsion stabilizes the BCC structure, while the band energy stands out as a strong desta-
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FIG. 12: Band structure comparison of HfTa before and after the application of λ2

distortion.

bilizing factor. The net variation ∆2E/∆λ22 < 0 exhibits instability that is weaker than in

the case of pure Hf.

Bonding effects in the wave functions at kS are similar to those observed in Hf and Ta,

as shown in Fig. 13.

IV. CONCLUSIONS

This paper describes a complete mechanism of the Burgers distortion of BCC/HCP ele-

ments that are stable at high temperatures due to the their vibrational entropy but transition

to HCP at low temperatures. The two-stage distortion occurs through an alternating slide

displacement between (110) atomic layers followed by relaxation of lattice parameters. The

instability is apparent in the violation of elastic stability criteria and the presence of unsta-

ble imaginary frequency phonon modes in the BCC state. Electronic structure investigation

explains how the distortion lowers the energy: a pseudo-gap in the electronic density of

states, a band gap opening at a high symmetry k-point, and drop in energy of an occupied

bonding state vs. increased energy of an empty antibonding state.
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TABLE VI: Energy contributions E0 to cP2 HfTa, and their second variation as λ2 varies

from -0.1 to 0.1. αZ and EEwald give the electrostatic energy of the ions in the electron

gas. VH is the Hartree potential. Exc − Vxc and PAWdc are double counting corrections.

Eband is the sum of Kohn-Sham eigenvalues, and Eatom is an arbitrary offset approximating

the energy of an isolated atom. Units are eV/atom.

Contribution E0 ∆2E/∆λ22

αZ 105.02 -2.50

EEwald -847.38 +9.74

−VH -109.77 -4.58

Exc − Vxc 21.47 -0.07

PAWdc 12.51 -0.38

Eband -146.52 -2.66

Eatom 954.00 0

ETotal -10.66 -0.36

These effects are similar to the Jahn-Teller instability of molecules that break symmetry to

lower the energy of their highest occupied molecular orbital, and are also a three dimensional

version of the Peierls instability that creates a superlattice structure in order to open a band

gap that lowers the total band energy. They are most striking in tetravalent refractory

metals from the Ti column of the periodic table, because in this case the degenerate point

sits very close to the Fermi energy. They are also present in the trivalent refractory metals

of the Sc column, because in these cases a second degenerate point sits about 0.1 eV below

EF . By similar reasoning the effect should be present across the trivalent Lanthanide rare

earth series, and we have confirmed this in the case of Lu.

This work does not address the high temperature stability in the BCC state due to vibra-

tional entropy. The imaginary modes prevent application of usual techniques for vibrational

free energy calculation. Sophisticated techniques are required to incorporate the strong

phonon anharmonicity [37, 38] in order to explain stability of BCC at high temperatures.

Our present study addressed the instability in the limit of T=0K. While the electronic state

degeneracy and splitting that we report remain present at the temperatures of the BCC

to HCP transformation, conceivably some additional phonon-related effect could enter as
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FIG. 13: S-point wavefunctions of HfTa with λ2 = 0.5. The figures show a 2× 2 supercell

of the conventional cubic unit cell in the same orientation as Fig. 2. a) and b) show the

occupied state (indigo in Fig. 12) while c) and d) show the empty state (brown in Fig. 12).

a) and c) show the real function ψkS
(r); b) and d) show the electron density |ψkS

(r)|2. The

wavefunction was obtained from VASP using WaveTrans [35]. The red circles represent the

position of atoms, and blue/green lines are bonding of the shortened/enlongated NNN

bonds.

well. Normal BCC elements from the V and Cr columns have extra valence electrons so that

their Fermi energies sit well above the degenerate points. In these cases, ionic and electronic

repulsion prevent the instability, and their BCC structures are stable at all temperatures.

Finally, we addressed the case of alloys containing both BCC/HCP and normal BCC

elements. In this case the instability remains and leads to distortions in atomic positions

while leaving lattice constants almost cubic. Perhaps this effect can explain the large lattice

distortions reported [11] in refractory high entropy alloys containing BCC/HCP elements.
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