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We address the interpretation proposed in the paper [Simon, Phys. Rev. B 97, 121406(R) (2018)]
of the thermal conductance data from [Banerjee et al., Nature 559, 205 (2018)]. We show that the
interpretation is inconsistent with experimental data and the sample structure. In particular, the
paper misses the momentum mismatch between contra-propagating modes. Contrary to the claim
of the paper, low energy tunneling involves a large momentum change. We consider only the “small
Majorana velocity” mechanism [Simon, Phys. Rev. B 97, 121406(R) (2018)]. Other mechanisms,
interpretations of the experiment, and their difficulties are beyond the scope of this Comment.

For a long time, there has been tension between numer-
ical and experimental findings about the quantum Hall
effect at ν = 5/2 in GaAs. A seminal paper [1] by Morf
established the non-Abelian Pfaffian state [2] as a viable
possibility. The numerical results [1] were later reinter-
preted as supporting also the anti-Pfaffian topological or-
der [3, 4]. At the same time, numerical results for the en-
ergy gap [5, 6] have remained many times higher [5] than
even the highest experimentally measured gap [7]. Tun-
neling experiments were interpreted [8, 9] as supporting
the Abelian 331 [10] and 113 [11] states in an apparent
conflict with numerics. More recently, it was proposed
[12] that the existing experimental data can be explained
by the non-Abelian PH-Pfaffian order [4, 13–15]. The
PH-Pfaffian hypothesis implies two predictions for the
thermal conductance. First, the heat conductance of a
large sample must be quantized at KT = 2.5κ0T , where
κ0T = π2k2BT/3h is one thermal conductance quantum
[12, 13]. Second, a peculiar edge structure of the PH-
Pfaffian liquid implies unusually rapid growth ofK above
the universal quantized value at sufficiently low temper-
atures [16] (Methods section). Both predictions are con-
sistent with the results of a recent experiment [16].

Yet, the interpretation of the thermal conductance
data is tricky. Indeed, assuming that the central Ohmic
reservoir [16] is in thermal equilibrium, the observed
thermal conductance should be understood as an up-
per bound on the universal theoretical heat conductance
along the edges of a large sample. One reason is the coex-
istence of edge and bulk heat transport. In particular, the
measured heat conductance includes a phonon contribu-
tion. That contribution can be subtracted with an inge-
nious trick [17]. Still, even the edge heat conductance can
exceed the universal quantized value. Indeed, the ther-
mal conductance of a long edge equals the difference of
the heat conductances of the upstream and downstream
edge modes [18]. In a very short sample, the contribu-
tions of the upstream and downstream modes add up.
The observed heat conductance can farther increase due
to edge reconstruction, which creates additional up- and
down-stream modes in a short sample [19]. Naturally, all
intermediate values between the sum and difference of
the upstream and downstream heat conductances might
also be observed, depending on the sample details.

Fortunately, the same experimental techniques as at
ν = 5/2 can be used to measure the thermal conduc-
tance at better understood filling factors. It turns out
that the measured heat conductance at the filling factors
1/3, 4/7, 3/5, 2/3, 7/3, and 8/3 is consistent with the
theoretical predictions for a long sample [16, 20]. The
greatest difference of the theoretical and experimental
thermal conductances was observed at ν = 2/3, but
even there the observed KT = 0.25κ0T − 0.33κ0T
is much closer to the universal value of 0 than to the
sum of the upstream and downstream heat conductances
2κ0T . Note also that the equilibration length is similar
at ν = 2/3 and other filling factors [20]. A greater devia-
tion from the theoretical value of the heat conductance is
due to an unusually slow dependence [20] of the thermal
conductance on the sample length at ν = 2/3. Based on
the results at multiple filling factors, it is thus natural to
conclude that the measured KT ≈ 2.5κ0T is close to the
universal quantized heat conductance of the 5/2 liquid,
in agreement with the PH-Pfaffian hypothesis.

An interesting recent paper [21] challenges this con-
clusion. It suggests that due to a slow velocity of the
Majorana mode and the smoothness of the random po-
tential in the sample, an upstream Majorana mode fails
to equilibrate with the rest of the edge modes. Then the
observed K might be compatible with the anti-Pfaffian
state.

The goal of this comment is to analyze the assumptions
behind the physical picture [21]. We find that they are
incompatible with the existing experimental data and the
sample structure. In particular, Ref. 21 misses the mo-
mentum mismatch between contra-propagating modes.
Contrary to the claim of the paper, low energy tunnel-
ing involves a large momentum change. Our only focus
is the “small Majorana velocity” mechanism [21]. A de-
tailed discussion of other mechanisms and interpretations
is beyond the scope of the Comment.

The edge-equilibration picture assumed in Ref. 21 dif-
fers from the classical Kane-Fisher-Polchiski picture [22]
of the equilibration in the disorder-dominated regime, as
extended to ν = 5/2 in Refs. 3 and 4. We will start with
a brief review of the classical picture. This will help us
translate the qualitative language of Ref. 21 into equa-
tions. Such translation is necessary to understand when
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the picture [21] is applicable. We will discover that it
does not apply to the sample from the experiment [16].
The anti-Pfaffian edge includes two downstream inte-

ger channels, an additional downstream charged Bose-
mode φ1 with the conductance e2/h, an upstream Bose-
mode φ2 with the conductance e2/2h, and an upstream
neutral Majorana ψ. There is Coulomb interaction be-
tween charged modes and electron tunneling between var-
ious channels. We summarize this picture with the fol-
lowing action, which omits integer modes for brevity:

L =
1

4π

∫
dxdt[∂xφ1(∂tφ1 − v1∂xφ1)− 2∂xφ2(∂tφ2 + v2∂xφ2)

−2v12∂xφ1∂xφ2] +

∫
dxdt[iψ(∂tψ + u∂xψ)] + Ltun,(1)

where v1, v2, and u are the mode velocities, v12 is the
Coulomb interaction, and Ltun describes tunneling with
a random complex amplitude W (x):

Ltun =

∫
dxdt[W (x)ψ exp(2iφ2 + iφ1) + H.c.]. (2)

The tunneling amplitude W (x) is assumed to have only
short-range correlations. The tunneling term is respon-
sible for charge equilibration and the observed quan-
tized electrical conductance. Tunneling is relevant in
the renormalization group sense in a strongly interact-
ing system. It is also likely strong since the unscreened
random potential is expected to exceed the energy gap
[23]. Hence, the problem is strongly coupled in the lan-
guage of the modes φ1,2 and ψ. The weak coupling de-
scription is possible on large scales in the language of
a single downstream charged boson and three emergent
upstream Majorana modes that propagate with the same
speed [3, 4]. Random tunneling Ltun disappears in that
language and weak residual random inter-mode interac-
tion is responsible for the energy equilibration between
upstream and downstream modes. In the absence of the
energy equilibration, the heat conductance is the sum of
3 quanta from the Bose modes and 1.5 quanta from Ma-
joranas. This exceeds the observed thermal conductance
of 2.5κ0T .
Ref. 21 proposes to use the language of Eqs. (1,2) at

all length scales. This implies the assumption of weak
W (x). In this picture, the effect of W (x) can be de-
scribed in terms of energy and momentum conservation
in scattering for elementary excitations of the Bose and
Majorana modes [we ignore v12 below; this does not sig-
nificantly affect the argument]. Ref. 21 assumes that
the correlation length of W (x) is large and hence the
random potential supplies low momentum in scattering
events. Finally, it is assumed that the Majorana mode is
considerably slower than the Bose modes. Based on Ref.
24, u is estimated as u ∼ 106 cm/s ∼ v1,2/6 − v1,2/8.
Let ∆k1,2 be the momentum changes of the modes φ1,2

in a scattering event. The momentum change of the Ma-

jorana mode is then q − (∆k1 + ∆k2), where the mo-
mentum q is supplied by W (x). The energy conservation
reads:

v1∆k1 − v2∆k2 − u(q −∆k1 −∆k2) = 0. (3)

The equilibration process involves energy exchange be-
tween the Bose modes with ~v1,2∆k1,2 ∼ kBT . Ref. 21
implies that ~u(q −∆k1 −∆k2) ≪ kBT so that the Ma-
jorana mode does not equilibrate. Since u ≪ v1,2 this is
equivalent to ~uq ≪ kBT . Thus, the maximal momen-
tum due to W (x) must satisfy

qmax ≪ kBT/~u. (4)

We are now ready to compare the above physical pic-
ture with what is known about the sample [16].
1) Let us substitute T ∼ 10 mK and u ∼ 106 cm/s in

Eq. (4). We discover that W (x) must be smooth on the
scales d ∼ 1/qmax on the order of microns. At the same
time, the distance between the 2D electron gas and the
remote ionized dopants in the sample [16] is 85 nm. That
distance sets the maximal momentum supplied in scat-
tering off an impurity. It is two orders of magnitude too
high for the picture [21] to apply. Note also that a small
number of impurities are inside the 2D gas. Ref. [21]
correctly observes that disorder is often assumed to be a
relatively long wavelength in high-mobility heterostruc-
tures. At the same time, this assumption is normally
made about disorder far from the edges, and the disorder
wavelength is assumed to be on the order of the setback
distance to the remote ionized impurities [25, 26].
2) Moreover, it would not save the mechanism [21], if

the random potential were smooth on the scale of mi-
crons [27] as the potential due to etched trenches might
be. Indeed, if the disorder were so smooth, an edge of
the length of microns would see a translationally invari-
ant impurity potential. Yet, W (x) would not be con-
stant on such length scales. Indeed, besides the disorder
effect, the amplitude W (x) contains information about
the momentum mismatch between different modes [3].
Eq. (2) describes electron tunneling in the presence of a
strong magnetic field. As is well known in the theory of
momentum resolved tunneling in translationally invari-
ant systems (see, e.g., Refs. 28, 29), W (x) ∼ exp(i∆kx),
where the momentum mismatch ∆k is set by microscopic
length-scales of the problem. The anti-Pfaffian state can
be understood as the Pfaffian state of holes inside an
integer quantum Hall liquid. ∆k is proportional to the
distance s between the outer integer edge and the inner
fractional edge. We thus have to substitute q = ∆k+ δk
in Eq. (3), where δk ≪ ∆k is a small contribution due to
the spatial variation of the impurity potential. We then
find that ~uq ≈ ~u∆k ≫ kBT and the system cannot
equilibrate at all. In particular, the rapidly oscillating
amplitude W (x) disappears under the action of renor-
malization group at the thermal length scale ∼ ~u/kBT .
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Hence, there should be no tunneling between the modes
at low temperatures and K = 4.5κ0.
3) The inequality ~u∆k ≫ kBT would not hold for a

very low u or ∆k. Then the equilibration process would
involve Majorana excitations with the momenta q ∼ ∆k.
Hence, the mechanism [21] would require that

∆k ≪ kBT/~u. (5)

We expect [30] that the momentum mismatch ∆k = s/l2m
is not much lower than 1/lm, where lm ≈ 10 nm is the
magnetic length. The velocity u ∼ 106 cm/s is three
orders of magnitude too high for Eq. (5) to hold [31].
4) What if for some unlikely unknown reason ∆k ≪

1/lm? The mechanism [21] still does not work since then
our starting point, Eq. (1), is no longer valid. Indeed,
besides random tunneling between the modes, the action
also contains nonrandom tunneling [3]. At a large mo-
mentum mismatch, weak nonrandom tunneling can be
neglected [3], as seen, e.g., from the perturbative renor-
malization group analysis of rapidly oscillating contribu-
tions to the action. The assumption of small ∆k implies
strong nonrandom tunneling since ∆k is proportional to
the distance between the modes. Moreover, the nonran-
dom tunneling amplitude does not oscillate on the ther-
mal length scale ~u/kBT . Hence, nonrandom tunneling
cannot be neglected. The analysis, based on Eq. (1),
does not apply [32].
5) At ν = 5/2, K exhibits a dramatically stronger

temperature dependence than at ν = 2/3. In contrast
to the PH-Pfaffian hypothesis, the picture [21] does not
explain the unusually rapid growth of K at the lowest
probed temperatures at ν = 5/2.
The above points apply to the scenario [21] and do not

mean that a different scenario of partial edge equilibra-
tion is impossible. A scenario, free from issues 1)-4), was
proposed in Ref. 33. The basic idea is in a sense oppo-
site to Ref. 21: The classical picture of edge equilibration
[3, 4, 22] is used; it is observed that the charged mode of
conductance 5e2/2h in a system of integer and fractional
channels may be much faster than the rest of the modes;
some additional assumptions are made. The mechanism
[33] faces its own challenges, but this comment is not an
appropriate venue for their discussion or a discussion of
any other mechanisms than [21] and their difficulties. We
will address the mechanism [33] elsewhere.
Here we limit our discussion of other mechanisms to a

modified version of the mechanism [21]. The modification
solves challenges 1)-4) but brings new issues. What if
the Majorana mode is so slow that its thermal length (4)
remains much shorter than 10 nm even at T ∼ 10 mK?
In other words, what if u < 103 cm/s?
6) The first new issue is the lack of evidence for such

slow edge velocities. The only relevant numerical data
[24] suggest u ∼ 106 cm/s. This is comparable with
the existing experimental data [34] for the neutral mode
velocity at ν = 2. This is also consistent with the sim-
plest theoretical estimate [11] of the edge mode velocity

∼ e2/ǫh, where ǫ is the dielectric constant.

At the same time, many scenarios for the neutral mode
velocity exist [11], and it is essential to see what the
existing data at ν = 5/2 imply for u. This leads us
to

7) Current oscillations were reported [35–37] in inter-
ferometers at ν = 5/2. According to Ref. 38, the ob-
served [36, 37] phase jumps by ≈ π reflect changes in
the number of Majorana fermions in the interferometer.
Such effect can only be observed if the thermal length
is not much shorter than the micron-size interferometer
[24]. This excludes u < 103 cm/s.

8) The assumption of u < 103 cm/s implies that the en-
ergy scale EM of neutral-mode excitations is much lower
than 10 mK even at the length scale of lm ≈ 10 nm. The
effective hydrodynamic model (1) does not apply at the
shorter scales 1/q > 1/lm and can only be used to de-
scribe low energy transport of the excitations with the
energies ǫ(q) < EM . The energy flux, carried by such
excitations, is not quantized at κ0T

2/4 in contradiction
with a basic assumption of the picture [21]. The model
(1) cannot be used to find the contribution of higher-
energy Fermi excitations. At a low EM , it is plausible
that the bulk gap for neutral excitations is not much
greater than the experimentally relevant [16] tempera-
tures of the central floating reservoir Tm ≤ 45 mK. Then
bulk neutral excitations are thermally excited and lead
to the thermal-metal-type behavior [39].

Points 1)-8) suggest that the mechanism [21] is not
likely to apply to the sample [16]. The PH-Pfaffian hy-
pothesis works better. Yet, it is important to look for
other interpretations, and more research is necessary un-
til the 5/2 state is fully understood. New experimen-
tal and numerical studies are needed, and it is crucial
to reconcile experiment and numerics. Since numerics
has strong record for the simplest filling factors, such as
1/3, it is useful to address similarities and differences
of ν = 1/3 and ν = 5/2. The quantum Hall effect at
ν = 1/3 can be seen as the integer quantum Hall effect
of composite fermions [40]. Weak disorder does not af-
fect this physics qualitatively. Strong disorder is known
to destroy the integer quantum Hall effect. There is ex-
perimental evidence [41, 42] for composite fermions at
ν = 5/2 too. The quantized plateau likely emerges due
to their Cooper pairing [43]. Multiple pairing channels
exist [44] and disorder may affect them in a nontrivial
way [45]. One possible mechanism was addressed in Refs.
25, 46, 47. We will discuss another mechanism elsewhere.
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[9] S. Baer, C. Rössler, T. Ihn, K. Ensslin, C. Reichl, and
W. Wegscheider, Phys. Rev. B 90, 075403 (2014).

[10] B. I. Halperin, Helv. Phys. Acta. 56, 75 (1983).
[11] G. Yang and D. E. Feldman, Phys. Rev. B 90, 161306(R)

(2014).
[12] P. T. Zucker and D. E. Feldman, Phys. Rev. Lett. 117,

096802 (2016).
[13] D. T. Son Phys. Rev. X 5, 031027 (2015).
[14] L. Fidkowski, X. Chen, and A. Vishwanath, Phys. Rev.

X 3, 041016 (2013).
[15] P. Bonderson, C. Nayak, and X.-L. Qi, J. Stat. Mech.

2013, P09016.
[16] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman,

Y. Oreg, and A. Stern, Nature 559, 205 (2018).
[17] S. Jezouin, F. D. Parmentier, A. Anthore, U. Gennser, A.

Cavanna, Y. Jin, and F. Pierre, Science 342, 601 (2013).
[18] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 55, 15832

(1997).
[19] C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227

(1994).
[20] M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E.

Feldman, A. Stern, and V. Umansky, Nature (London)
545, 75 (2017).

[21] S. H. Simon, Phys. Rev. B 97, 121406(R) (2018).
[22] C. L. Kane, M. P. A. Fisher, and J. Polchinski, Phys.

Rev. Lett. 72, 4129 (1994).
[23] N. d’Ambrumenil, B. I. Halperin, and R. H. Morf, Phys.

Rev. Lett. 106, 126804 (2011).
[24] Z.-X. Hu, E. H. Rezayi, X. Wan, and K. Yang, Phys.

Rev. B 80, 235330 (2009).
[25] C. Wang, A. Vishwanath, B. I. Halperin, Phys. Rev. B

98, 045112 (2018).

[26] V. Umansky and M. Heiblum, in Molecular Beam Epi-

taxy: From Research to Mass Production (ed. M. Henini)
121 (Elsevier, Amsterdam, 2013).

[27] Note that the correlation length of W (x) may exceed the
correlation length of the impurity potential.

[28] A. Seidel and K. Yang, Phys. Rev. B 80, 241309(R)
(2009).

[29] C. Wang and D. E. Feldman, Phys. Rev. B 81, 035318
(2010).
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