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The existence of two-inequivalent valleys in the band structure of graphene has motivated the
search of mechanisms that allow their separation and control for potential device applications.
Among the several schemes proposed in the literature, strain-induced out-of-plane deformations
(occurring naturally or intentionally designed in graphene samples), ranks among the best candi-
dates to produce separation of valley currents. Because valley filtering properties in these structures
is, however, highly dependent on the type of deformation and setups considered, it is important
to identify the relevant factors determining optimal operation and detection of valley currents. In
this paper we present a comprehensive comparison of two typical deformations commonly found in
graphene samples: local centro-symmetric bubbles and extended folds/wrinkles. Using the Dirac
model for graphene and the second-order Born approximation we characterize the scattering prop-
erties of the bubble deformation, while numerical transmission matrix methods are used for the
fold-like deformations. In both cases, we obtain the dependence of valley polarization on the geo-
metrical parameters of deformations, and discuss their possible experimental realizations. Our study
reveals that extended deformations act as better valley filters in broader energy ranges and present
more robust features against variations of geometrical parameters and incident current directions.

PACS numbers: 72.80.Vp, 73.63-b, 81.07.Gf, 85.85.+j

I. INTRODUCTION

In many materials, energy bands exhibit a discrete
number of inequivalent local minima or maxima for spe-
cific values of momenta, usually known as valleys, with
potential use as quantum numbers to encode, process
and carry information1–3. The field of valleytronics, i.e.
the manipulation of the valley degree of freedom for elec-
tronic purposes, has emerged in recent years as an ac-
tive area of research mainly due to two reasons: 1) The
availability of new mono- and few-layer materials that
possess two inequivalent valleys at the edges of the Bril-
louin zone. In some of these structures, these valleys
appear to be relatively easy to access, making them ideal
components of a binary variable or pseudo spin. 2) Val-
ley separation may reveal novel physical phenomena that
can be exploited in the development of the next genera-
tion of electronic devices, e.g. sensors, filters, etc; beyond
current semiconductor technologies4–8.

Among the wide variety of materials investigated,
graphene and monolayer transition metal dichalcogenides
(TMDs) stand out as the most promising candidates
for valleytronics4–7. These materials have a honeycomb
crystal structure that renders two inequivalent energy
minima, labeled K and K ′, acting as components of a
pseudospin degree of freedom in momentum space. For
graphene in particular, various schemes have been pro-
posed to achieve valley polarization (also referred to as
valley filtering), i.e., the generation of a charge current
composed of electronic states from only one valley. One
of the first proposals, advanced by Rycerz et al., con-
sisted of a sharp constriction within a long ribbon with
zigzag edges4. In this particular geometry an incident
current becomes valley polarized after crossing the con-
striction. The scheme exploits the very small number of

modes present in the constricted region (ideally one or
two to obtain maximum efficiency), with a filtering ca-
pacity very sensitive to the constriction size as well as
to the edge profile of the sample. Interestingly, small
constrictions in graphene have revealed very rich physics
-such as Coulomb blockade- with properties strongly de-
pendent on substrate materials9, features that preclude
their application as valley polarizers. As extensions of
these ideas, several authors proposed a filtering mech-
anism based on the same group velocities but different
band curvatures (effective masses) of states around the
two valleys and far away from Dirac points10,11. The ef-
fect, known as ’trigonal warping’, has the advantage of
eliminating the restriction imposed by a small-sized con-
striction, but has the drawback of being effective only
at large energies. In addition, the degree of valley po-
larization is very sensitive to the relative orientation of
the confined region with respect to crystalline directions,
as well as on perfect edge terminations. Other proposals
involve defects or crystal dislocations, or mirror symme-
try breaking potentials as scattering centers that would
result in valley polarization12–14, as well as the use of
polarized light for states in the ’trigonal warping’ energy
range15,16. Experimental realizations of these schemes
however, have proven to be quite challenging: line de-
fects have to be atomically controlled over long distances
in the first case, while high frequency lasers needed to
achieve polarization produce highly non-equilibrium elec-
tron populations, that may relax via plasmon excitations
and/or damage samples, thereby introducing unwanted
disorder effects17,18.

From a practical perspective, it is crucial to maintain
the quality of the material in order to exploit its metal-
lic conduction capabilities and thus obtain sizable valley
polarized currents. The importance of minimizing disor-
der effects was specifically demonstrated in non-pristine
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TMD materials where it was shown that a highly re-
duced valley polarization was due to inter-valley scatter-
ing introduced by impurities19. In this regard, graphene
has the advantage of featuring a higher crystal quality
that ensures longer inter-valley scattering lengths, even
at room temperatures20. Clearly, the scientific challenge
nowadays resides on finding out simple mechanisms that
exploit graphene’s quality to produce valley filtered cur-
rents in a controllable manner.

Following a traditional approach extensively used in
the semiconductor electronic industry1, mechanical de-
formations have been advanced as an alternative method
to produce valley polarization in graphene. For instance,
it has been proposed that a current incident into a re-
gion with uniaxial strain can exit with a varying degree
of valley polarization dependent on the incident angle
with respect to the sample crystalline orientation21–23.
A few other studies have focused on graphene sam-
ples with more complicated but realistic out-of-plane
deformations24,25. In all these two-terminal device mod-
els, time-reversal symmetry breaking fields, either as pe-
riodic time-dependent deformations, externally applied
magnetic fields or magnetic materials deposited as barri-
ers beyond the strained region, are necessary to produce
the final filtering. Furthermore, uniform strain profiles
on long length-scales and well-defined external magnetic
barriers are challenging to achieve in a controllable man-
ner without introducing effects such as strain or spin-
orbit coupling, which may provide likely reasons for the
absence of experimental implementations of all these pro-
posed devices.

In this regard, ideal valley filters should take advan-
tage of the exceptional electronic and mechanical prop-
erties of graphene, without the need of external magnetic
fields or materials, while producing sizable signals whose
detection should be relatively easy to achieve. Along
these lines, we note that recently, a tight-binding nu-
merical study reported separation of valley currents due
to a non-uniform strain produced by a local nanoscale
out-of-plane deformation (labeled ’nano-bubble’)26. In
this approach the filtering occurs by spatial separation
of valley currents, eliminating the need of some sort of
magnetic or time-dependent fields, as required in previ-
ous schemes. These authors exploit the existence of a
low-energy discrete resonance that enhances the angu-
lar separation between the two valley polarized currents.
However, the proposal has two important drawbacks: 1)
the resonant regime needs to be finely tuned to produce
polarization, and 2) as discussed in related works27, even
in these ideal conditions, the transmitted valley current
is a rather small fraction of the total incident current and
strongly depends on the location and size of the deforma-
tion with respect to the contacts, making it potentially
hard to detect in available setups. These results bring to
light the importance of efficiency not only in the genera-
tion but also in the detection of valley filtered currents.

Following these ideas as guiding principles, we focus
on bump-like and fold-like out-of-plane deformations as

shown in Fig. 1 that are commonly observed in graphene
samples, with the purpose of identifying key parameters
that may be used to optimize valley separation for exper-
imental valley current detection. In supported graphene
membranes these deformations are usually caused by
trapped impurities28, deposition on lattice mismatched
substrates29,30, by proper substrate engineering31,32, or
can be produced by appropriate manipulation techniques
such as AFM and STM tips33–37. We notice in partic-

FIG. 1. Schematics of the out-of-plane Gaussian bump (a)
and Gaussian fold (b).

ular that strained graphene with fold-like deformations
has already been the subject of experimental transport
studies recently38. Thus, the continuous progress in ex-
periments for controllable strained structures, points to
the need of determining which geometries and strain pro-
files optimize valley filtering properties.

The present study analyzes the transport properties
of graphene in the presence of local bubble-like and ex-
tended fold-like out-of-plane deformations in terms of the
resulting valley polarization of currents incident in the
deformed region. The ultimate purpose if to character-
ize the effectiveness of these structures as valley filters
in terms of parameters with experimental relevance in
available setups. As we will show below, our results sug-
gest that, of these two geometries, folds (or equivalent
extended non-homogeneous strain geometries) are bet-
ter valley filter devices in terms of degree of polarization
and sizable transmitted currents. The ultimate reason
for such improved performance relies on the strong con-
finement imposed by their structure that also contributes
to an optimal spatial separation between valley currents.

The paper is organized as follows: Section II presents
the general formalism in terms of the continuum descrip-
tion of strain in graphene, for the two deformations of
interest: a centro-symmetric Gaussian bump and an ex-
tended Gaussian fold. In Section III we present results
for valley polarization obtained with a model for a Gaus-
sian bump based on the continuum Dirac description and
standard Lippman-Schwinger scattering methods. In this
section, we calculate the corresponding cross sections and
introduce a measure of valley polarization based on them.
In Section IV we discuss the valley polarization produced
by the Gaussian fold. In this case, results are obtained
from numerical calculation of transmission coefficients,
using standard transmission matrix methods. A discus-
sion of possible experimental setups for the detection of
valley polarized currents in such systems is proposed in
Section V together with a summary of results.
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II. CONTINUUM FIELD DESCRIPTION OF
STRAIN IN GRAPHENE

To exploit the continuum description, we take advan-
tage of the low-energy limit of the standard one orbital
tight-binding model for electron dynamics in graphene
given in terms of two effective Dirac model Hamiltonians
for valleys K and K ′:

HK,K′ = vFσ · p (1)

where the Hamiltonian is written in the valley isotropic
basis39, vF ≈ 106 m/s is the Fermi velocity of pristine
graphene, and σ = (σx, σy) is the Pauli matrix vector.

Strain in graphene samples may have various different
origins and in order to incorporate its effects in realistic
models it is necessary to establish the specific conditions
in which it occurs. For our local bump-like structures,
we refer to graphene membranes deposited on top of a
locally rough substrate (of natural origin or with a de-
signed pattern to produce artificial ’roughness’32) or with
an intercalated impurity cluster between graphene and a
flat substrate. In the second case of fold-like structures,
graphene is positioned on top of an otherwise flat sub-
strate and it is either mechanically or naturally folded37

or wrinkled (due to relaxation of underlying lattice mist-
match induced strains), with the length of these struc-
tures much longer than their respective widths. Alterna-
tively, it may be deposited on top of carefully designed
substrates where folds form under deposition31. In the
bump scenario, the membrane bends out of plane to ac-
commodate to the roughness of the underlying surface
while in the fold, it bends as it folds or wrinkles. A nat-
ural mathematical description of this situation is given
by the Monge representation, that refers to a one-to-
one mapping between a continuum curved surface and
the (flat) Euclidean plane, i.e., h = h(x, y) where h rep-
resents the height of the membrane on top of the flat
plane40. The description is suitable for the situations de-
scribed above, as the presence of the substrate imposes
a firm constraint on the membrane, that impedes longi-
tudinal stretches beyond the deformed region41.

Within this approach, it has been shown that the two
most important effects produced by deformations involve:
1) changes in the local charge distribution, and 2) mod-
ifications in the local hopping parameters42–46. These
are included in the continuum theory as scalar Φ(r) and
pseudo-vector A(r) potentials42,43,47, defined by:

Φ(r) = gs(εxx + εyy) (2)

A(r) = − h̄β
2ae

(εxx − εyy,−2εxy) , (3)

where εij with i, j = {x, y} are the components of the
strain tensor, gs ≈ 3 eV48–51 and β ≈ 342,47–52 are the
corresponding coupling constants. a and e are the lattice
constant and magnitude of the electron charge respec-
tively. The strain tensor components are given by εij =
1
2 (∂jui+∂iuj+∂ih∂jh), where ui,j and h are in-plane and

out-of-plane displacement fields, respectively41. Time re-
versal symmetry imposes opposite signs for the pseudo-
vector field at K and K ′ valleys. As a consequence, the
low energy continuum model that includes the effect of
deformations is written as:

Hτ = vFσ · (p + τeA) + Φ(r)σ0, (4)

where τ = ± labels each valley, and σ0 = I2×2 is the
identity matrix. For the specific experimental realiza-
tions described above, the two types of deformations are
modeled by:

h(r) =

{
h0e
−r2/b2 Gaussian bump

h0e
−y2/b2 Gaussian fold

. (5)

In these deformed structures, the linear terms due to
the in-plane displacements in the strain tensor are ne-
glected, while those result from the out-of-plane displace-
ment are retained, consistent with expected experimental
constraints.

The centrosymmetric local structure of the Gaussian
bump shown in Fig. 1(a) produces scalar and vector po-
tentials given by

A(r) = −βη
2

evF
g
(r
b

)
(cos 2θ,− sin 2θ) (6)

Φ(r) = gsη
2g
(r
b

)
. (7)

Analogously, the extended Gaussian fold is translation-
ally invariant in x̂, chosen along the zigzag crystalline
direction as shown in Fig. 1(b), and producing strain-
induced potentials given by

A(r) =
βη2

evF
g
(y
b

)
(1, 0) (8)

Φ(r) = gsη
2g
(y
b

)
. (9)

In these expressions β = h̄βvF
2ae ≈ 7eV , g(z) =

2z2e−2z2

, θ is the polar angle measured with respect to
the zigzag crystalline orientation, and η = h0

b is a mea-
sure of the strain strength. Fig.2 shows typical profiles of
scalar potential and pseudo-magnetic field B = ∇×A for
K valley produced by these two deformations. Results
for the pseudo-magnetic field B at the K ′ valley are ob-
tained by the exchange of positive and negative regions.
In the following sections, we present results for Gaussian
folds along the zigzag direction, while those for a generic
orientation of the fold axis are given in Appendix C.

III. LOCAL GAUSSIAN BUMP DEFORMATION

Effects of a gaussian bump deformation on the elec-
tronic properties of graphene have been extensively stud-
ied by several authors. Here we briefly review their
main findings: Aharonov-Bohm interferences are pre-
dicted to occur due to the presence of strain induced
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FIG. 2. Strain induced pseudo-magnetic field B and Φ(r) for
bump and fold. B for bump (a), and fold (b). Φ(r) for bump
(c) and fold (d). Parameters: η = 0.1, and b = 15nm.

pseudo-magnetic fields53. A redistribution of both sub-
lattices’ electronic charge densities in equilibrium was
predicted49,50,54,55, which was afterward confirmed by ex-
perimental observation and quantitative characterization
of triangular patterns in local STM images of tip-lifted
graphene on SiO2

36. The sublattice symmetry breaking
phenomena was also confirmed on samples with defor-
mations produced by impurities intercalated between the
graphene membrane and its substrate (hBN)36. Further-
more, the bump deformation has also been predicted to
bend or focus currents56, and even produce valley polar-
ization under ’resonant conditions’ for deformations with
strong scattering potentials26,27.

In order to asses the efficiency of this geometry towards
the production of valley polarized currents and evaluate
conditions for its detection, we describe in detail its scat-
tering effects on an electron current composed of states
from both valleys.

A. Scattering within Born approximation
formalism

We evaluate the scattered wave function Ψk(r), using
the Lippmann-Schwinger equation as

Ψk(r) = ψk′(r) +

∫
G(r, r′)V (r′)Ψk(r′)dr′, (10)

where ψk′(r) is the incident wave function, G(r, r′) the
Green’s function, V (r′) the scattering potential due to
the deformation, and the integration is over the deformed
region. Within the first order Born approximation, the
scattered wave function is approximated as

Ψ
(1)
k (r) = ψk′(r) +

∫
G(r, r′)V (r′)ψk′(r

′)dr′, (11)

from which the second order is obtained by the standard
procedure:

Ψ
(2)
k (r) = ψk′(r) +

∫
G(r, r′)V (r′)Ψ

(1)
k (r′)dr′. (12)

Herein, r refers to the point of evaluation of Ψk(r), k′ and
k label incident and scattered wave vectors, respectively.
In the following, we will consider particle states with the
same group velocity

(
v = 1

h̄
∂E
∂k

)
irrespective from its val-

ley origin. With these considerations, the incident wave
function reads

ψk′(r) = uk′e
ik′·r =

1√
2

(
e−iθ

′/2

eiθ
′/2

)
eik
′·r, (13)

where k′ = k′eiθ
′
. The Green’s function is given by

G(r, r′) = − ik

4h̄vF

(
H

(1)
0 (kρ) ie−iθ̃H

(1)
1 (kρ)

ieiθ̃H
(1)
1 (kρ) H

(1)
0 (kρ)

)
,

(14)

where H
(1)
n (kρ) is the first kind Hankel functions of order

n, and ρ = r− r′ = ρeiθ̃.57 Following Eq. 4, the scatter-
ing potential contains the contribution of the scalar field
Φ(r) proportional to the identity matrix and that of the
pseudo vector potentials that reads

V τ (r′) = −τβη2g

(
r′

b

)(
0 ei2φ

e−i2φ 0

)
, (15)

where φ is the polar angle of r′.
In a scattering experiment, the detector is usually

placed far away from the scatterer, i.e. r → ∞. In
this case, one can make the approximations θ̃ ≈ θ and
ρ ≈ r − r̂ · r′, where r̂ is the unit vector along r. Us-
ing the asymptotic expression of the Hankel function

H
(1)
n (z) →

√
2
πz e

ize−i(
n
2 π+π

4 ) as z → ∞, one can then

easily verify that

G(r, r′) ≈−
√

ik

2πrh̄2v2
F

〈r|ψk〉 〈ψk|r′〉

=−
√

ik

2πh̄2v2
F

eikr√
r
uk (uk)

†
e−ik·r

′

, (16)

where we have used the fact that k = keiθ = kr̂58.
We first focus on the scattering produced by the pseudo

vector potential V τ (r′), the effects of the scalar field Φ(r)
will be discussed later. From Eqs. 11, 12, and 16 one
obtains

Ψ
(n),τ
k (r) = ψk′(r) + f (n),τ (θ, θ′)

eikr√
r
uk, (17)

where n = 1, 2 indicates the order of the expansion, and
the corresponding form factors are given by:

f (1),τ (θ, θ′) = −
√

ik

2πh̄2v2
F

V τk,k′

f (2),τ (θ, θ′) = f (1),τ (θ, θ′)−
√

ik

2πh̄2v2
F

(V GV )τk,k′

(18)
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with the shorthand notations

V τk,k′ = 〈ψk(r′)|V τ (r′)|ψk′(r
′)〉

(V GV )τk,k′ = 〈ψk(r′)|V τ (r′)G(r′, r′′)V τ (r′′)|ψk′(r
′′)〉
(19)

The differential cross section for each valley can be
obtained from the form factor as

σ
(n),τ
D (θ, θ′) =

∣∣∣f (n),τ (θ, θ′)
∣∣∣2 . (20)

One can verify that

V +
k,k′ = −V −k,k′

(V GV )+
k,k′ = (V GV )−k,k′

, (21)

The explicit expressions for these quantities are given in
Appendix A. Due to these identities, results for valley
K ′ can be written in terms of the quantities for valley
K. In the following discussion, expressions for Vk,k′ and
(V GV )k,k′ refer to K valley.

Identities in Eq. 21 clearly reveal identical cross sec-
tions for both valleys at first order but different ones at
2nd order (in the absence of scalar scattering) since:

σ
(2),+
D =

k

2πh̄2v2
F

|Vk,k′ + (V GV )k,k′ |2 ≈ σ(1)
D +

1

2
∆

σ
(2),−
D =

k

2πh̄2v2
F

|−Vk,k′ + (V GV )k,k′ |2 ≈ σ(1)
D −

1

2
∆

,

(22)
where

∆ = σ
(2),+
D − σ(2),−

D =
2k

πh̄2v2
F

< [Vk,k′ · (V GV )k,k′ ] (23)

is the difference between the differential cross sections of
the two valleys. < represents the real part. Note that ∆
scales with the strength intensity as η6.

In order to quantify the degree of valley filtering, we
use a standard definition of the angle dependent polar-
ization coefficient P , given by:

P =
σ

(2),+
D − σ(2),−

D

σ
(2),+
D + σ

(2),−
D

≈ ∆

2σ
(1)
D

. (24)

This expression indicates that increased polarization can
be achieved by larger strain intensities as P ∝ η4.

B. Results and discussion

We begin by presenting numerical results for the dif-
ferential cross section due to the pseudo-vector poten-
tial. The conditions for convergence for the series ex-
pansion are different in the low- and high-energy regimes
defined by kb � 1 (or E = h̄vF k � Eb), and kb � 1
(or E = h̄vF k � Eb) respectively. Here Eb = h̄vF /b
is the natural energy scale of the potential associated
with the width of the deformation b, playing the role of

the scattering length. In the low energy regime, con-
vergence is assured as long as Vmax � E � Eb, with
Vmax = β̄η2/2.71828... Equivalently, in the high energy
regime, convergence will occur for all energies satisfying
E � Eb � Vmax

59. Fig. 3 shows results in the low and
high energy regimes in the left and right columns respec-
tively, for an electronic state with incident momentum
k.

FIG. 3. Polar plots of the differential cross section (Å) for K
(red solid) and K′ (blue dotted) valleys with different inci-
dent angles indicated by the arrows and total cross section as
function of incident angles. (a-b) θ′ = 0◦, (c-d) θ′ = 30◦, (e-f)
θ′ = 60◦. (g-h) shows the total cross section versus the inci-
dent angle θ′. Left column corresponds to energy E = 20meV,
while right column corresponds to energy E = 300meV. Other
parameters: b = 15nm, η = 0.1, Eb ≈ 44meV.

The figures show that the degree of filtering is highly
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dependent on the incident direction, with maximum po-
larization (considering all outgoing directions) occurs for
the zigzag crystalline directions (integer multiples of 60◦)
in both low and high energy regimes, as clearly shown in
Fig. 3 (g, h) where the results of total cross section ver-
sus the incident angles are presented. Notice that the
polarization is reversed as the incident angle changes by
60◦, e.g. first and third rows of Fig. 3, reflecting the
changes in the underlying pseudo-magnetic field pattern
as the rotation is carried out60. This also suggests that
the magnitude of the polarization can be switched by
properly controlling the incident direction. Overall, the
filtering is more effective at high energies, giving bigger
differential cross sections. Notice however that currents
for both valleys coexist in the same spacial region making
the scattered currents only partially polarized.

FIG. 4. Schematics of classical trajectories of electron motion
in different magnetic field distributions. Top (bottom) panel
corresponds to antisymmetric (symmetric) field distribution
with respect to the incident direction, which is chosen as x̂.
Left (right) column corresponds to K (K′) valley.

The profile of the differential cross section can be in-
tuitively understood by considering the classical motion
of electrons in a magnetic field as depicted in Fig. 4.

The pseudomagnetic field B ∝ 4βη2

evF b
renders a magnetic

length lB =
√

h̄
eB = b1/2

√
h̄vF
4βη2

. Electrons in the low

(high) energy regime with kb � 1 (� 1) have incident
energy much smaller (larger) than the energy associated
with the mangetic field (∝ h̄vF /lB), thus are more likely
to be reflected (transmitted). Note also that the symmet-
ric features of the differential cross section are consistent
with the underlying distribution of the pseudo-magnetic
field: the scattering cross section for each valley is sym-

metric with respect to an axis going through the center of
the bump along the incident direction, i.e. θ′ = 2n× 30◦

(n integer), when the distribution of the pseudo-magnetic
field is antisymmetric (1st and 3rd rows of Fig. 3). This
results from a change in sign of the pseudo-magnetic
fields at the two sides of the axis that bend the electron’s
trajectory by equal amounts but opposite directions. The
first panel of Fig. 4 shows schematics of classical electron
trajectories in the presence of an anti-symmetric distri-
bution of pseudo-magnetic field with respect to the sym-
metry axis x̂ set by the incident direction. For a given
valley, the magnetic field satisfies B(x,−y) = −B(x, y)
and electron motion is completely opposite at (x, y) and
(x,−y). This results into a symmetric scattering cross
section profile with respect to x̂. For a more general
case where the pseudo-magnetic field distribution is not
anti-symmetric with respect to the incoming direction,
the scattering cross section is asymmetric (middle row of
Fig. 3).

The origin of valley polarization effect can also be un-
derstood by comparing the two panels in the first row of
Fig. 4. The pseudo-magnetic field, which is non-uniform
in space, exhibits opposite signs in the two valleys, i.e.
BK(x, y) = −BK′(x, y). Consequently, incident elec-
trons with the same initial conditions from the two val-
leys undergo different motions, not only with opposite
directions, but also along different paths. This is the
ultimate origin of the valley polarization phenomena.

Finally, for incident angles θ′ = (2n + 1) × 30◦, the
pseudo-magnetic field is symmetric with respect to an
axis crossing through the center of the bump along θ′

(shown for n = 0 in Fig. 4). As a consequence, the scat-
tering cross sections of the two valleys are symmetric with
respect to each other (middle row in Fig. 3). In this case,
the pseudo-magnetic field satisfies B(x, y) = B(x,−y) for
a given valley, and BK(x, y) = −BK′(x,−y) between the
valleys. Thus the path followed by an incident electron
from valley K through (x, y) is the same as the path fol-
lowed by an electron from valley K ′ through (x,−y) but
on opposite directions. This renders the symmetric scat-
tering cross section profiles shown in Fig. 3(c,d), thus the
two valleys exhibit identical total cross section as shown
in Fig. 3 (g, h).

To quantify the valley polarization effect, we calculate
the values for P and the product σDP as a measure of
the intensity of polarized currents. Fig. 5 shows the re-
sults corresponding to panels (a-d) of Fig. 3. In the low
energy regime (left column, black curves) large polar-
ization values can be obtained in wide angular regions.
However, the corresponding differential cross section has
small magnitude, indication of weak scattering. There-
fore, the product σDP , used to estimate the amount
of detected current, is small (red solid and blue dotted
curves). In the high energy regime (right column, Fig. 5),
the differential cross section reaches substantial values,
however, the scattering events are confined to very nar-
row angular regions around the incident direction. Con-
sequently, both P and σDP show narrow peaks and dips
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FIG. 5. Polarization P (black), σDP for K (red solid) and K′

(blue dotted) valley corresponding to panels (a-d) in Fig. 3.
The spikes in polarization plots correspond to directions with
zero values of the second order correction, around which
abrupt change of sign in the polarization occur as the angle
of incidence is changed

in the high energy regime. Note that the highly singu-
lar polarization peaks shown in panels (b) and (d) are a
consequence of the abrupt change of sign in the polar-
ization as the angle of incidence is changed. The nar-
row angular distribution and the close proximity to the
incident direction impose serious difficulties for the de-
tection of the scattered current: a detector (or contacts)
with high angular resolution is required, and the incident
current, usually fully unpolarized, is likely to overwhelm
the weakly polarized currents.

To identify the optimal conditions for generation and
detection of valley polarization in these geometries, total

σtot(θ
′) =

∫ 2π

0
σD(θ, θ′)dθ and transport cross sections

σtrans(θ
′) =

∫ 2π

0
[1−cos(θ′−θ)]σD(θ, θ′)dθ are calculated

for different incident directions θ′ (measured with respect
to the crystalline orientation). Transport cross sections
are maximum if both [1− cos(θ′ − θ)] and σD are simul-
taneously large, i.e. if σD is large in the direction per-
pendicular to the incident direction (θ′ − θ ' 90◦) and
vanishing otherwise. Panels (a) and (b) in Fig. 6 shows

FIG. 6. σtot and σtrans vs incident energy E for incident
angle (a) 0◦ and (b) 30◦. (c) Differential cross section for 0◦

incidence with E = 80 meV. (d) Differential cross section for
30◦ incidence with E = 93 meV. (e) Polarization P and σDP
corresponding to data in (c). (f) Polarization P and σDP
corresponding to data in (d).

results for σtot(θ) and σtrans(θ) vs incident energy for
two different incident angles θ. Note that σtot exhibits
resonance peaks at energies (e.g. around 80− 150 meV)
within the validity of the linear dispersion represented
by the Dirac model, and considerably smaller than the
high energy used in Fig. 3. Similarly, σtrans shows reso-
nances within this same energy regime, confirming that
the cross section is largest at near perpendicular direc-
tions with respect to the incident direction. Panels (c)
and (d) in Fig. 6 show differential cross sections for ener-
gies in the resonance regime for both incident directions.
Strong scattering is observed for θ = 30◦ with values for
the differential cross section comparable to those in the
high energy regime in Fig. 3. This would facilitate the
detection of polarized scattering current in experimental
settings since the contribution of the unpolarized inci-
dent current can be avoided. Finally, panels (e) and (f)
of Fig. 6 show the results of P and σDP corresponding to
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panels (c) and (d) above. σDP exhibits large amplitudes
over a wide angular range, indicating that strong scatter-
ing and high polarization can be achieved simultaneously
within a reasonably wide region. Comparison of results
for incident angles θ = 0◦ and θ = 30◦, suggests that
the former case is more promising due to wider regions
with vanishing values for σDP for one of the two valleys,
but with the disadvantage of a narrow angular amplitude
close to the incident direction.

Up to this point the scattering effects of the scalar
potential Φ has been discarded. By itself, the scalar po-
tential cannot give rise to valley filtered currents due to
its valley-independent nature. However when combined
with the pseudo-vector potential V τ , it renders a total
scattering potential equal to Φ + V τ . Because the differ-
ential cross section is given by the form factor squared,
it is clear from this expression that the two valleys will
display different behavior, already at first order due to
the opposite signs of V τ for the two valleys.

Results of similar scattering calculations but including
the scalar potential within first order Born approxima-
tion are shown in Fig. 7. Panel (a), in the low energy
regime, shows a much larger differential scattering cross
section for the scalar field than for the pseudo-vector po-
tential, while comparable values are obtained for the high
energy regime as shown in panel (b). Panels (c) and
(d) present results for the total scattering potential, i.e.,
Φ + V τ for valleys K and K ′ at low and high energy
regimes respectively. In both cases, the structure still ex-
hibits the valley filtering capability. However, the details
of the valley polarization effect are dramatically different
from those in the absence of the scalar potential as shown
in panels (e) and (f).

As a final remark for this section, we want to empha-
size that results presented are based on a perturbation
expansion, namely, the Born approximation and its series
expansion. For stronger potentials, i.e. larger values of η,
however, quasi-bound states can exist. The Born series
does not necessarily converge, and consequently scatter-
ing calculations are not reliable. For example, for a bump
with b = 150Å and η = 0.2, where Vmax ≈ 2.3Eb, the
2nd order contribution becomes comparable to the 1st
order. In this regime, the deformed region acts more like
a quantum dot structure with quasi-bound states that
act as resonant levels for transport. This is consistent
with reported results26, where optimal valley polariza-
tion is predicted at resonant energies of a strong poten-
tial induced by a local Gaussian deformation. Resonant
energies are strongly dependent on the details of the de-
formation and their determination needs to be done by
appropriate modeling. The phenomena, that is also ob-
served in fold-like deformations as we will show below,
suggests that optimization of valley filtering properties
in this regime requires a delicate tuning of the param-
eters of the deformation, in addition to precise angular
resolution.

FIG. 7. Polar plots of the differential cross section (Å) for con-
tributions of scalar (pink dotted) and pseudo-vector (green
solid) potentials for valley K and incident angle θ′ = 0◦.
Panel (a) corresponds to energy E = 20meV. Inset shows
a zoom in to visualize the magnitude of the pseudo-vector
potential contribution. Panel (b) corresponds to energy E =
300meV. Panels (c) and (d): differential cross section per val-
ley at low and high energy respectively for the total potential
V τ + Φ. Panels (e) and (f) show the corresponding polar-
ization P and σDP for the two valleys. Other parameters:
b = 15nm, η = 0.1, gs = 3eV.

IV. EXTENDED GAUSSIAN FOLD
DEFORMATION

In this section we analyze in detail the valley filtering
properties of an extended deformation, i.e. a Gaussian
fold with translation invariance along the x (zigzag) di-
rection (Fig. 1(b)). In contrast to the previous case, we
evaluate the transmission probabilities of electrons in-
jected towards the fold using the numerical transmission
matrix approach. We analyze the fold valley filtering
properties as the incident angle for the current as well as
its structural parameters are changed. We will first focus
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on the effect of the pseudo-vector potential. The effect
due to the scalar potential will be discussed at the end
of the section.

A. Method for calculation of transmission
probabilities

We implement standard numerical transmission ma-
trix methods to obtain transmission and reflection coef-
ficients. The procedure involves real space discretization
of either the pseudo vector potential Ax(y) or the pseu-
domagnetic field Bz(y), and matching wave functions in
adjacent regions. Discretization of Bz(y) avoids discon-
tinuous changes in Ax(y) that may produce spurious nu-
merical effects. However, wave functions become non-
trivial and the overall interpretation is less intuitive. We
present results based on the discretization of Ax(y) that
are fully consistent with those obtained via Bz(y) as dis-
cussed in Appendix B.

The gauge field Ax(y) is split into N − 1 slices in the
interval y ∈ [y0, yN−1], where the value for Ax,i (i =
1, 2 · · ·N − 1) is chosen as the mid-point value of the
continuum field in that region. We choose y0 and yN−1

symmetrically, i.e. y0 = −yN−1, and large enough such
that Ax(y) is negligibly small outside this region.

To evaluate the transmission probability, the wave
functions in different regions need to be calculated. Due
to translation invariance along x direction, the wave
function in region i reads Ψi(x, y) = eikxxψi(y), with
kx = k cos θ = E cos θ

h̄vF
, and θ ∈ [0, π] the incident an-

gle. For positive energies (E > 0), the wave function in
the region y < y0 is in general, a combination of spinors
written as

ψτ0 (y) =

(
1
eiθ

)
eikyy + rτ0

(
1

e−iθ

)
e−ikyy (25)

where τ = ± labels the valleys, rτ0 is the reflection coeffi-
cient, and ky = k sin θ. In analogy, the wave function in
region y > yN−1 reads

ψτN (y) = tτN

(
1
eiθ

)
eikyy (26)

where tτN is the transmission coefficient and we have as-
sumed a current incident from the y < y0 region.

Within the interval [y0, yN−1], the wave function for
valley τ in the i-th slice takes the form:

ψτi (y) = tτi

(
1

h̄vF kx−τvFAx,i+ih̄vF qτ,i
E

)
eiqτ,iy

+ rτi

(
1

h̄vF kx−τvFAx,i−ih̄vF qτ,i
E

)
e−iqτ,iy

(27)

where

qτ,i =

√
k2 −

(
kx − τ

Ax,i
h̄

)2

(28)

is the corresponding wave vector along the y direction.
Wave functions in different slices are connected via the

continuity condition. By employing the scattering matrix
method61, one can ensure the continuity of the wave func-
tions at the boundaries of each slice and solve for rτ0 and
tτN . The transmission probability can then be obtained

from Tτ = |tτN |
2
.

For a non-zero transmission, we distinguish two dif-
ferent regimes: the scattering regime with qτ,i real, i.e.
propagating waves exist in the fold region; and the tun-
neling regime with qτ,i imaginary, i.e, electrons tunnel
through the fold. Let us focus first on the scattering
regime. In this case Eq. 28 imposes the constraint:

− k + τ
Ax,i
h̄
≤ kx ≤ k + τ

Ax,i
h̄
. (29)

At the same time, k2
x + k2

y = k2 requires

− k ≤ kx ≤ k. (30)

By combining these two conditions and considering that
Ax,i ≤ 0, we obtain{

−k ≤ kx ≤ k +
Ax,i
h̄ , K valley

−k − Ax,i
h̄ ≤ kx ≤ k, K ′ valley

. (31)

As kx = k cos θ, the above results indicate that the Gaus-
sian fold allows different incident (transmission) windows
for K and K ′ valleys:

θ ∈


[
arccos

(
1 +

vFAx,min
E

)
, π
]
, K valley[

0, π − arccos
(

1 +
vFAx,min

E

)]
, K ′ valley

,

(32)
where Ax,min represents the minimum value of Ax.
Therefore, valley polarization is expected in the trans-
mitted beams if the incident angle is chosen appropri-

ately. Furthermore, when π − arccos
(

1 +
vFAx,min

E

)
≤

arccos
(

1 +
vFAx,min

E

)
, i.e. E ≤ −vFAx,min, the trans-

mission spectra of K and K ′ valleys are completely sep-
arated.

The tunneling regime, with qτ,i imaginary is solved nu-
merically. Results for both regimes are discussed below.

B. Results and discussion

Fig. 8 shows numerical results for the transmission
probability TK and T ′K for valleys K and K ′ respec-
tively, as functions of the incident angle θ (normalized
by π) for different values of energy (panels (a) and (b)),
strain strength (panels (c) and (d)) and fold width b
(panels (e) and (f)). Clearly, valley polarization is ob-
served, i.e. TK(θ) 6= TK′(θ), for a wide range of values
of θ. Regions with high transmission probability (dark
red) are consistent with Eq. 32 (see also Fig. 15 in Ap-
pendix B). Note that transmission probabilities satisfy
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TK(θ) = TK′(π − θ), consistent with the fact that the
pseudo-vector potential respects time-reversal symmetry.
In addition to the solid color regions, sharp lines in panels
(a) and (b) with finite transmission are distinguishable.
These correspond to energies in the ’tunneling regime’,
i.e., with imaginary values of qτ,i.

FIG. 8. Transmission probability versus incident angle θ for
K (left column) and K′ (right column) valleys. Results are
shown as a function of energy E in panels (a)-(b), as a func-
tion of the strain strength η in panels (c) and (d), and as
a function of the fold width b in panels (e) and (f) for each
valley respectively.

The figure shows that transmission probability and val-
ley polarization effects are robust for a large range of en-
ergies (in addition to the isolated resonant ones) and can
be tuned via the geometric parameters of the deforma-
tion, i.e. η and b for any given energy.

The profile of the transmission spectra can be intu-
itively understood by considering a simple model of a
symmetric double square pseudo-vector potential well
structure as shown in the inset of panel (b) of Fig. 9 in
dashed (magenta) lines, superimposed to the real pseudo-
vector potential profile in solid (black) lines.

The transmission spectrum of the symmetric double
square pseudo-vector potential well appears more defi-
nite due to the sharp structure of the edges, however it
reproduces the main features shown in Fig. 8(a), espe-

FIG. 9. Transmission probability versus incident angle θ for
K valley. Results are shown as a function of energy E. Panel
(a): transmission for a single barrier potential. Panel (b):
transmission for a double square barrier potential. Inset: solid
(black) line: profile of A(y), dashed (magenta) line: profile of
double square potential well. Parameters: b = 50nm, η = 0.1.

cially resonances at θ = π and nearby. These resonances,
already present in a single well potential (correspond-
ing to one of the wells in Ax(y)) spectrum as shown in
Fig. 9 (a), split due to the two-well structure. In the
case of a symmetric double square pseudo-vector poten-
tial well model, the resonances due to a single well occur
at qd = nπ, where q is the momentum inside the well, d
is the width of the well, and n is an integer. The solu-
tion of a double well model predicts the position of their
splittings and widths62.

In order to characterize the efficiency of the Gaussian
fold for inducing valley polarized transmitted currents,
we redefine the angle dependent polarization coefficient
in terms of transmission coefficients as:

P =
TK − TK′
TK + TK′

(33)

In the left column of Fig. 10 we present results for P
corresponding to data shown in Fig. 8 for both valleys.
P exhibits a mirror symmetric structure with respect to
θ = π/2 as expected. Large polarization regions appear
at large and small incident angles with respect to the fold
axis (oriented along the zigzag direction) at a large range
of parameters.

In analogy with the analysis carried out for the bump
deformation, we note that the degree of polarization is
not enough to ensure a measurable detection of polar-
ized currents. In addition to high polarization values, a
detectable signal must have a large transmission proba-
bility. Thus, it is convenient to evaluate the product of
these two quantities as an indicator of the efficacy of the
fold as a valley polarizer. The right column in Fig. 10,
shows the product of the transmission probability T and
valley polarization P for K valley.

A large parameter region (red area in Fig. 10 right col-
umn) with large values of both T and P can be identified,
indicating high efficiency for a wide range of energies. TP
results for valley K ′ are obtained from this data by ap-
plying the relation TK′(π − θ)P (π − θ) = −TK(θ)P (θ)
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which results on an antisymmetric profile with respect to
θ = π/2 (not shown here).

FIG. 10. Valley polarization P (left column) and TKP (right
column) versus incident angle θ and energy E, strain strength
η, and fold width b.

In addition to the aspects considered above, the fold
axis orientation affects the polarization and magnitude
of transmitted currents. The influence of the orientation
can be seen by considering an arbitrary direction γ for the
fold axis with respect to the zigzag direction. By choosing
the x̂ direction along the fold axis, the pseudo-magnetic
field in this case is obtained by applying the appropriate
rotation, and transforms as B → B cos(3γ)60,63. Re-
sults from Eq. 32 remain valid provided the transforma-
tion Ax → Ax cos(3γ) is performed (see details in Ap-
pendix C).

Fig. 11 shows the results for a fold along γ = 25◦

respective to the zigzag direction. The large transmis-
sion region increases (Red area in Fig. 11(a,b)) due
to a smaller pseudo-vector potential barrier (Ax →
Ax cos(3γ) ≈ 0.26Ax), and as a consequence, the extent
of the valley polarized regime decreases (Fig. 11 (c)). It
is clear, from the nature of the rotation that folds along
the zigzag (armchair) direction, e.g. γ = 0◦ (30◦), will
yield the largest (smallest) valley polarization effect.

Now let’s discuss the effect of the scalar potential. The

FIG. 11. Results for Gaussian fold with axis oriented at an
angle γ = 25◦ with respect to the zigzag direction. (a, b)
Transmission T for K and K′ valley, (c) Polarization P , and
(d) TP for K valley. Other parameters: b = 50nm, η = 0.1.

above formalism remains valid as long as the replace-
ments E → E − Φi and k → |k − Φi/(h̄vF )| are per-
formed in Eqs. 27, 28 and the corresponding following
discussions. One can easily see that the effect of the
scalar potential is to shift the energy, as clearly shown
in Fig. 12(b) where the transmission window is shifted
upward in energy. Due to the spatial dependence of the
scalar potential and its nontrivial effect on transmission
coefficients as shown in Fig. 12(a), the profile of the trans-
mission spectrum is slightly different from that without
the scalar potential in Fig.8(a). However, notice that
the valley polarization effect is preserved, and large po-
larization and strong transmission coexist as shown in
Fig. 12(c,d).

FIG. 12. Transmission T due to (a) only the scalar potential
and (b) both scalar and vector potentials for K valley. The
scalar potential contribution is valley independent, while (b)
is mirror symmetric with respect to θ = π/2 for K′ valley. (c)
Valley polarization P , and (d) TP for K valley.
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V. DISCUSSION OF PROPOSED
EXPERIMENTAL SETUPS

In Sec. III we showed that a Gaussian bump can in-
duce valley polarized currents, where the magnitude of
polarization can be controlled via appropriate tuning of
geometrical parameters that determine the strain (the ra-
tio η = h0/b), the incident energy E or the width of the
bump b. Furthermore, the sign of the polarization can be
reversed via rotating the incident angle by 60◦. However,
generation of simultaneous large scattering cross section
and high polarization values appears quite challenging
due to the narrow angular regions and overall small size
of transmitted signals. In the regime beyond perturba-
tion theory, where the bump is represented by a large
potential, it is possible to obtain large transmission sig-
nals at resonant energies26. This regime however limits
the tunability of the device and requires rather precise
determination of resonant energies.

Fortunately, valley filtering properties of folds appear
more promising. As shown above, incident currents at a
wide variety of angles show good transmission and polar-
ization properties, that can be tuned by modifying the
geometrical parameters in a large range of values. Fur-
thermore, folds with different orientations with respect
to crystalline axis, remain good valley filters, with those
aligned along zigzag directions being the most efficient.

In all these results, samples were considered to be pris-
tine, i.e., disorder introduced either by impurities or local
crystalline defects was neglected. These disorder sources,
being local in nature, enhance inter-valley scattering and
lead to a reduced polarization effect. However, for the
strain-induced mechanism proposed above, valley filter-
ing refers to the spatial separation of states originated in
different valleys. The range of the spatial separation is
determined by the effective width of the deformation for
folds and angular resolution for bumps. As these are tun-
ing parameters, it is conceivable that the role of disorder
may be made inconsequential, specially for rather clean
samples as the ones envisioned in these proposals.

As for the generation and detection of fully valley po-
larized currents, proposed setups would employ a dou-
ble fold structure. Fig. 13 shows two different setups.
In one, the first fold (middle fold in the figure) acts as
valley polarizer to generate valley polarized transmitted
beams while a set of secondary folds (side folds in the fig-
ure) would act as detectors. Alternatively, a double-fold
structure may be used to collect highly polarized electron
beams in the trench formed between two folds (left and
center folds in Fig. 13). This does not require a perfect
valley filtering by the fold (i.e. TK = 1) since multiple re-
flection and transmission events in the trench will make
the remaining electrons highly K ′ polarized, akin to a
Fabry-Perot interferometer.

Note added: While preparing this manuscript we be-
came aware of the work by R. Carrillo-Bastos et al.64, T.
Stegmann et al.65, and E. Muñoz et al.66, where similar
graphene bubble systems were studied and valley polar-

FIG. 13. Scheme of valley filtering and detection of polarized
beams with Gaussian folds (yellow areas). The local gates
(grey areas) are employed to tune the Fermi levels so that the
dependence of transmission probability on incident energy can
be measured. In the middle trench setup (see text), multiple
reflection and transmission events between the two folds can
generate highly polarized electron beams at the end of the
trench.

ization phenomena were observed.
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Appendix A: Evaluation of V τk,k′ , (V GV )τk,k′ , and Φk,k′

We evaluate (V GV )τk,k′ which requires the expression

for V τk,k′ , the Fourier transform of V τ (r). Using:

G(r′, r′′) =
1

(2π)2

∫
eip·(r

′−r′′)G(p, E)dp, (A1)

where

E = h̄vF k

G(p, E) = [E −H0(p)]
−1

=
E +H0(p)

(E + i0+)2 − h̄2v2
F p

2

H0(p) = h̄vF p

(
0 e−iθp

eiθp 0

)
θp = 6 p

, (A2)

where θp is measured with respect to the zigzag crys-
talline orientation.

From the definition of (V GV )τk,k′ :

(V GV )τk,k′ = 〈ψk(r′)|V τ (r′)G(r′, r′′)V τ (r′′)|ψk′(r
′′)〉
(A3)
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one can write

(V GV )τk,k′

=

∫
dp

(2π)2
〈uk|Ṽ τ (k− p)G(p, E)Ṽ τ (p− k′)|uk′〉

,

(A4)
with

Ṽ τ (q) =

∫
e−iq·rV τ (r)dr (A5)

the Fourier transform of the scattering potential.
To evaluate Ṽ τ (k− p) explicitly notice that

e−i(k−p)·r = ei(c cosφ+d sinφ)

= eiR(k,p) sin[φ+α(k,p)]
(A6)

where

c = −kr cos θ + pr cos θp

d = −kr sin θ + pr sin θp

α(k,p) = arctan
( c
d

)
= arctan

(
− cos θ + p̃ cos θp
− sin θ + p̃ sin θp

)
R(k,p, r) =

√
c2 + d2 = kr

√
1 + p̃2 − 2p̃ cos(θ − θp)

p̃ =
p

k

.

(A7)
Furthermore, in order to evaluate the integral of the

Fourier transform, we will employ

Jn(z) =
1

2π

∫ π

−π
e−inθeiz sin θdθ, (A8)

and∫ ∞
0

Jµ(at)e−γ
2t2tµ+1dt = aµ(2γ2)−µ−1e

− a2

4γ2 (A9)

when < (µ) > −1 and <
(
γ2
)
> 0.

One can verify that the angular integral yields∫ 2π

0

eiR sin(φ+α)ei2φdφ = e−i2α
∫ 2π

0

eiR sinφei2φdφ

= 2πe−i2αJ2(R)∫ 2π

0

eiR sin(φ+α)e−i2φdφ = ei2α
∫ 2π

0

eiR sinφe−i2φdφ

= 2πei2αJ2(R)
(A10)

The radial integral gives∫ ∞
0

g
(r
b

)
J2(R)rdr =

b2

4
g

(
1

4
R(k,p, b)

)
. (A11)

Therefore,

Ṽ τ (k− p) = −τ π
2
βη2b2g1

(
0 e−i2α1

ei2α1 0

)
, (A12)

where

g1 = g

(
1

4
R(k,p, b)

)
α1 = α(k,p)

. (A13)

In the case of p = k′, i.e. the incident wave vector, we
have α(k,k′) = −θ+ and R(k,k′, b) = 2kb| sin θ−|, where
θ− = (θ− θ′)/2 and θ+ = (θ+ θ′)/2. Using these results
we obtain

V +
k,k′ = −V −k,k′

= −1

2
πβb2η2 cos(3θ+)g

(
1

2
kb sin θ−

)
(A14)

which is a real function.
By the same token, one can obtain

Ṽ τ (p− k′) = −τ π
2
βη2b2g2

(
0 e−i2α2

ei2α2 0

)
, (A15)

where

g2 = g

(
1

4
R(k′,p, b)

)
α2 = α(k′,p)

. (A16)

Combing all the above results it is straightforward to
get

(V GV )τk,k′ =

(
kb

4
βη2b

)2 ∫∫
dθpdp̃

Eg1g2p̃

(E + i0+)2 − E2p̃2

× [cos (θ− − 2α1 + 2α2) + p̃ cos (θ+ − 2α1 − 2α2 + θp)]
(A17)

which is valley-independent.
To evaluate Φk,k′ , one can easily check that

Φk,k′ = gsη
2

∫
e−i(k−k

′)·rg
(r
b

)
cos θ−dr

= gsη
2 cos θ−

∫∫
ei2kr sin(θ+−φ) sin θ−g

(r
b

)
rdrdφ

(A18)
where θ− = (θ−θ′)/2 and θ+ = (θ+θ′)/2. From Eq. A8,
the integral over φ will yield a Bessel function such that

Φk,k′ = 2πgsη
2 cos θ−

∫
J0(2kr sin θ−)g

(r
b

)
rdr.

(A19)
Using integration by parts and Eq. A9 one can solve the
integral over r, which is given by

Φk,k′ =
1

2
πb2gsη

2 cos θ−

[
1− 1

2
(kb sin θ−)2

]
e−

1
2 (kb sin θ−)2

.

(A20)
By comparing this equation with Eq. A14 one can easily
realize that, in the low energy regime (kb � 1), scat-
tering due to the scalar potential is much stronger than
its pseudo-vector potential counterpart, as shown by the
numerical results presented in the main text.
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Appendix B: Evaluation of the transmission
probability by discretization of the pseudo-magnetic

field

In an analogous procedure to the one described in the
main text, the pseudo-magnetic field Bz is split into N−1
slices in the region y ∈ [y0, yN−1], where in each slice Bz,i
(i = 1, 2 · · ·N − 1) is taken as a constant (black lines in
Fig. 14) equal to the mid-point value. We choose y0 and
yN−1 symmetrically, i.e. y0 = −yN−1, and assume that
they are large enough such that Bz can be considered
zero outside this region. As Bz = −dAxdy , in each slice we

have Ax,i(y) = Ci − Bz,i(y − yi−1), where C1 = 0 and

Ci = −
∑i−1
j=1Bz,j(yj − yj−1) for i > 1 (red dashed lines

in Fig. 14).

FIG. 14. Scheme for discretization of the pseudo-magnetic
field into constant slices (black rectangles) and corresponding
gauge field segments (red dashed lines). Thick black and blue
curves represent continuous pseudo-magnetic field Bz and the
gauge fields Ax/b, respectively.

Due to translation invariance, the wave function in re-
gion i reads Ψi(x, y) = eikxxψi(y), where kx is the mo-
mentum in x direction. For the field-free regions y < y0

and y > yN−1, the wave functions are those given in
Eqs. 25, 26. Inside the region [y0, yN−1], the wave func-
tions are non-trivial to obtain, and special techniques are
required to obtain those at small values of Bz. For con-
stant magnetic field, the wave functions are commonly
expressed in terms of parabolic cylinder functions67,68.
However, these wave functions diverge when the mag-
netic field is vanishing. In the present case, because the
magnetic field vanishes at three points (thick black curve
in Fig.14), special care is needed for using parabolic func-
tions. Instead, we employ the series method and propose
well-behaved solutions in all slices in the whole region
[y0, yN−1]69.

Using the scattering matrix method61 to ensure the
continuity of the wave functions at the boundaries of
each slice, one can solve for rτ0 and tτN . The transmis-

sion probability is then obtained from Tτ = |tτN |
2
, which

is consistent with that described in the main text.

FIG. 15. Transmission probability versus E cos θ and energy
E for (A) K and (B) K′ valley. Parameters: b = 50nm,
η = 0.1. The black lines correspond to the left (K) and right
(K′) boundaries of Eq. 32.

Appendix C: Graphene with a Gaussian fold along
an arbitrary direction

Fig.16 shows the schematics of a Gaussian fold along an
arbitrary direction γ with respect to the zigzag crystalline
orientation. For simplicity, we define a rotated frame xoy
with the x axis along the axis of the fold. For the case of
γ = 0, the coordinate frame is named x0oy0, and all the
quantities in this frame will be identified by an index 0
in the following discussion.

FIG. 16. A Gaussian fold (yellow shaded area) along angle γ
with respect to the zigzag direction. The zigzag and armchair
directions define the original x0oy0 reference frame. The ro-
tated frame xoy is defined with the x axis lying along the fold
axis.

For γ = 0, the gauge field is given by

A0 =
(
A0
x, A

0
y

)T
=
h̄β

2a

(
ε0xx − ε0yy,−2ε0xy

)T
. (C1)

For γ 6= 0, the (counter-clockwise) rotated frame is
obtained from the rotation matrix R(γ):(

x
y

)
= R(γ)

(
x0

y0

)
, R(γ) =

(
cos γ sin γ
− sin γ cos γ

)
. (C2)
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For the symmetric strain tensor, using ε = Rε0RT one
can show that

ε0xx − ε0yy = cos 2γ(εxx − εyy)− 2 sin 2γεxy

ε0xy =
1

2
sin 2γ(εxx − εyy) + cos 2γεxy

. (C3)

Equivalently,

A′ = R(−2γ)A0, (C4)

where

A′ =
h̄β

2a
(εxx − εyy,−2εxy)

T
. (C5)

Plugging the above results together with p = R(γ)p0

back into the original Hamiltonian in the x0oy0 frame,
one can verify that the Hamiltonian is given by

H± = vF

(
0 e−iγ

(
π∓x − iπ∓y

)
eiγ
(
π∓x + iπ∓y

)
0

)
, (C6)

where π∓x,y = px,y ∓ Ax,y, the upper (lower) sign is for
valley K (K ′). The gauge field in the rotated frame reads

A = R(3γ)A′ = R(3γ)
h̄β

2a
(εxx − εyy,−2εxy)

T
. (C7)

This gauge field has a 2π/3 periodicity inherited from the
3-fold symmetry of the hexagonal lattice.

One can also get the above results simply by rotating
each vector in H0

± = vFσ
0 ·
(
p0 ∓A0

)
:

σ = R(γ)σ0

= (cos γσ0
x + sin γσ0

y,− sin γσ0
x + cos γσ0

y)T
, (C8)

i.e.

σx =

(
0 e−iγ

eiγ 0

)
, σy =

(
0 −ie−iγ
ieiγ 0

)
, (C9)

and

A = R(γ)A0 = R(3γ)A′, (C10)

where p0 is trivially written as p.
If we further perform a unitary transformation

U =

(
1 0
0 e−iγ

)
, (C11)

one obtains

H± = UH±U† = vFσ · (p∓A) , (C12)

which is the same Hamiltonian as the one in the origi-
nal x0oy0 frame. As an unitary transformation will not
change the transmission probability of the problem, we
will employ H± instead of H± in the following.

In the xoy frame, the Gaussian fold is always given by

h(r) = h0e
−y2/b2 , (C13)

which yields

A′ =
h̄β

2a
(εxx − εyy,−2εxy)

T
= −βη

2

vF
g
(y
b

)
(1, 0)

T
,

(C14)

with β = h̄βvF
2a ≈ 7eV , η = h0

b , and g(z) = 2z2e−2z2

.
Consequently, the gauge field in the rotated frame reads

A = −βη
2

vF
g
(y
b

)
(cos 3γ,− sin 3γ)

T
, (C15)

which only depends on the y coordinate, and the fold
orientation with respect to the zigzag direction γ.

In order to solve the Schrödinger equation:

HτΨτ (x, y) = vFσ · (p− τA) Ψτ (x, y)

= EΨτ (x, y)
, (C16)

we propose

Ψτ (x, y) = ψτ (y)eikxx =

(
ψτI (y)
ψτII(y)

)
eikxx (C17)

Using this ansatz, we arrive at(
0 h̄kx − τAx − iπ−τy

h̄kx − τAx + iπ−τy 0

)(
ψτI (y)
ψτII(y)

)
=

E

vF

(
ψτI (y)
ψτII(y)

) .

(C18)
This yields two coupled differential equations, which in
general cannot be solved analytically. We will separate
Ax and Ay into narrow slices in the y coordinate, where
in each slice they can be taken as constants. In the i-th
slice, keep in mind that Ax,i and Ay,i are independent of
y, one can verify that the two coupled equations can be
casted into[(

kx − τ
Ax,i
h̄

)2

+

(
py
h̄
− τ Ay,i

h̄

)2
]
ψτi (y) = k2ψτi (y),

(C19)

where k2 = E2

h̄2v2
F

. Rearranging the equation,(
d2

dy2
− τ2i

Ay,i
h̄

d

dy
−
A2
y,i

h̄2 + q2
τ,i

)
ψτi (y) = 0, (C20)

where

qτ,i =

√
k2 −

(
kx − τ

Ax,i
h̄

)2

. (C21)

The general solution to the equation is ψτi (y) =
(1, cτi )T eλτ,iy, where λτ,i satisfies

λ2
τ,i − τ2i

Ay,i
h̄
λτ,i −

A2
y,i

h̄2 + q2
τ,i = 0, (C22)

i.e.

λ±τ,i = i

(
τ
Ay,i
h̄
± qτ,i

)
. (C23)
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By replacing this solution back in the Schrödinger equa-
tion, one obtains

cτi =
1

E
(h̄vF kx − τvFAx,i ± ih̄vF qτ,i) . (C24)

In summary, in the i-th slice, one has

ψτi (y) = tτi

(
1

h̄vF kx−τvFAx,i+ih̄vF qτ,i
E

)
eiτ

Ay,i
h̄ yeiqτ,iy

+ rτi

(
1

h̄vF kx−τvFAx,i−ih̄vF qτ,i
E

)
eiτ

Ay,i
h̄ ye−iqτ,iy

(C25)
These expressions reveal that Ay(y) does not con-

tribute to the pseudo-magnetic, and it can be re-

moved from the Hamiltonian by a gauge transforma-
tion Ψτ = eiτF (y)/h̄Ψ̃τ , where F (y) =

∫ y
Ay(y′)dy′,

or equivalently dF (y)
dy = Ay(y). In other words, vFσ ·

(p− τA) Ψ̃τ (x, y) = EΨ̃τ (x, y) is satisfied, with A =

−βη
2

vF
g
(
y
b

)
(cos 3γ, 0)

T
. If A is assumed to be constant,

we recover the result given above in each slice of the gauge
field.

The above discussions focus on the pseudo-vector po-
tential, as to the scalar potential, one can easily check
that εxx+εyy is not affected by the rotation, so the scalar
potential remains the same.
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