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Motivated by the experimental difficulty to produce topological insulators (TIs) of the Bi2Se3

family with pure surface-state conduction, we study the effect that the bulk can have on the low-
temperature transport properties of gated thin TI films. In particular, we focus on interference
corrections, namely weak localization (WL) or weak-antilocalization (WAL), and conductance fluc-
tuations (CFs) based on an effective low-energy Hamiltonian. Utilizing diagrammatic perturbation
theory we first analyze the bulk and the surface separately and subsequently discuss WL/WAL and
CFs when a tunneling-coupling is introduced. We identify the relevant soft diffusion modes of the
coupled system and use this insight to make simultaneous predictions for both interference correc-
tions and conductance fluctuations in various parameter regimes. The results strongly suggest that
the combined measurement of both quantities can provide an improved understanding of the physics
underlying the low-temperature transport processes in thin TI films with bulk-surface coupling.

I. INTRODUCTION

During the last decade, the field of condensed-matter
physics witnessed the advent of a new class of mate-
rials, the three-dimensional (3D) topological insulators
(TIs). First discussed theoretically,1 their existence and
peculiar band structure has been verified experimentally
by ARPES measurements.2–5 3D TIs provide conduction
along their surfaces, while ideally their bulk is insulat-
ing.5,6 The experimental observation of a pure surface
conduction, however, proved to be a formidable task. In-
deed, a perfectly insulating bulk is difficult to obtain for
the well-studied topological insulator materials Bi2Se3

and Bi2Te3. These TIs have narrow bulk band gaps,
so that accidental impurities or vacancies tend to popu-
late the bulk conduction band. Electrical gating, using
thin film samples,7,8 doping and annealing9–11 can help
reducing the bulk electron density, but do not remove it
completely. The presence of bulk conduction electrons
and their coupling to the surface have profound conse-
quences for the low-temperature transport properties of
the 3D topological insulators.

Specifically, quantum interference corrections to the
Drude conductivity are sensitive to the presence of con-
ducting bulk states. 3D TI materials with a perfectly
insulating bulk are expected to exhibit a ‘single-channel’
weak anti-localization (WAL),12 i.e. a reduction of the
conductivity in response to a weak (perpendicular) mag-
netic field suppressing quantum interference effects. ‘Sin-
gle channel’ here refers to a single Dirac cone of sur-
face states and the positive magnetoresistance is a con-
sequence of strong spin-orbit coupling in the conduct-
ing surfaces. WAL has been observed in the majority
of experiments performed on thin TI films.7,8,13–15 Still,
the interpretation of experimental data is not always
straightforward. Ref. 13, e.g., reports on WAL chang-

ing from a ‘one-’ to a ‘two-channel contribution’ as the
gate voltage is varied, attributed to a change in the rela-
tion between bulk-surface scattering time and the phase-
coherence time. Ref. 14 observes a similar crossover in
very thin films, which is here explained by a change in
direct inter-surface tunneling. Further experiments re-
port on a crossover from a positive to a negative mag-
netoresistance, or weak localization (WL), in ultra-thin
samples (with thickness about 5 nm) when the applied
parallel16 or perpendicular17 magnetic field exceeds a re-
spective threshold. Finally, experiments on the TI ma-
terial Bi2Te2Se reported in Ref. 18 stressed the impor-
tance of a bulk-mediated coupling between opposite sur-
face states.

There have been several works on the conductivity of
topological insulators under non-ideal situations, study-
ing, e.g., effects of magnetic doping19 and spin-orbit
coupled impurities,20,21 and contributions from bulk
channels.20,22,23 We here build on the theoretical work by
Garate and Glazman24, and include conductance fluctu-
ations into the picture. In their work, Garate and Glaz-
man demonstrated that once bulk states are included into
the picture the conductivity of TIs shows a rich behavior
beyond the single-channel WAL.24 Building on a model
which accounts for both, bulk and surface states and their
coupling, they identified several different regimes exhibit-
ing WL or WAL and with varying number of contributing
channels. As already discussed, similar behavior has been
observed in experiment; however, a detailed comparison
with experiment can be complicated by the uncertainty
in the system parameters. In this situation, the study
of a further independent observable should be of help.
Conductance fluctuations (CFs) can be measured in par-
allel with the conductance. Examples of such measure-
ments on different TI materials include Bi2Se3Se,

25,26

Bi2Te2Se,
27,28 Bi2Se3,14,29 Bi1.5Sb0.5Te1.8Se1.2,30 and
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Bi2Te2S.31 In experiment, CFs become visible through
aperiodic patterns in the magnetoresistance. Similar as
the interference corrections to conductivity, CFs are ex-
pected to depend sensitively on the presence of conduct-
ing bulk states. In this paper, we employ the model of
Garate and Glazman to calculate CFs for thin TI films
of the Bi2Se3 family. When combined with the results
for the conductivity, we arrive at a set of simultaneous
predictions for WL/WAL corrections and CFs for the dif-
ferent characteristic transport regimes.

The paper is structured as follows. Sec. II introduces
the model and summarizes main results of this work. The
following sections elaborate on the results, and present
technical details of the calculation. In Sec. III we discuss
the soft diffusion modes that govern the low-temperature
transport in the system. We first analyze bulk and sur-
face soft modes separately and then discuss a finite bulk-
surface-coupling. Sections IV and V are devoted to, re-
spectively, the calculation of WL/WAL corrections to the
conductivity and CFs. We conclude in section VI. Sev-
eral appendices cover further details of the calculations
presented in the main text.

II. MODEL AND RESULTS

A. Model

To describe the clean 3D TI thin film we start out from
the Hamiltonian,

Ĥ0 = Ĥbulk + Ĥsurf. + Ĥcoupl.. (1)

Here the bulk- and surface-Hamiltonian have the stan-
dard Dirac form,

Ĥbulk = M12 ⊗ τz + ~vBk · σ ⊗ τx, (2)

Ĥsurf. = ~vSk‖ · σ, (3)

with k‖ = (kx, ky), k = (k‖, kz) surface- and bulk-
momenta, respectively, and Pauli matrices τi and σi op-
erating in the space of orbitals and spin, and i = x, y, z.
The bulk-Hamiltonian, Ĥbulk, is in the strong topologi-
cal phase which guarantees the presence of a single Dirac
cone, Ĥsurf., at its surfaces. In the following we assume
that the TI is electrically gated on one of its surfaces.
The corresponding surface states are separated from the
bulk, and the tunneling matrix, Ĥcoupl., accounts for a
local coupling between the latter and bulk states. The
coupling is due to (random) tunneling processes which
neither conserve spin or momentum of the charge carrier.
It is modeled by a random matrix drawn from the sym-
plectic ensemble, as discussed in more detail in Sec. III C.

The above Hamiltonian (1), e.g., provides an effective
low-energy description of a clean gated topological insula-
tor thin film from the Bi2Se3 family.4 The bulk spectrum
is that of massive Dirac electrons with mass-gap M ,

εk± = ±
√
~2v2

Bk
2 +M2, (4)

where the index ± distinguishes between the two bands
of Kramer’s degenerate states. Relevant to us is the con-
duction band, spanned by the eigenspinors

|1,k〉 =
√

εk+M
2εk

(
1, 0, ~vBkzεk+M , ~vBk+εk+M

)
,

|2,k〉 =
√

εk+M
2εk

(
0, 1, ~vBk−εk+M , −~vBkzεk+M

)
. (5)

Here k± = kx ± iky, and components are given in the
τz ⊗ σz-eigenbasis which in the following are denoted
by {|T ↑〉 , |T ↓〉 , |B ↑〉 , |B ↓〉}. The twofold degeneracy
of bulk-bands reflects the presence of time-reversal and
inversion symmetries in the model. The spectrum of
surface-states is εα(k) = α~vk, and corresponding eigen-
spinors read

|α,k〉 =
1√
2

(αe−iφk , 1)t, α = ±, (6)

with sinφk = ky/k, cosφk = kx/k. In the following we
assume that the surface Fermi energy lies above the Dirac
point, εF,S > 0, and introduce the simplified notation
|k〉 ≡ |+,k〉.

Any realistic TI inevitably contains some degree of dis-
order, which can be accounted for by

Ĥ = Ĥ0 + V̂dis. (7)

We here restrict to weak disorder, which is uncorre-
lated for bulk and surface and does not couple to or-
bital or spin degrees of freedoms. That is, V̂dis(r) =
V (r)14(2) in the bulk (surface), where V is gaussian dis-
tributed white noise characterized by the second moment

〈V (r)V (r′)〉 = u
B(S)
0 δ(r−r′), and weak disorder refers to

(εF,B −M)τ0B � 1 (εF,Sτ0S � 1). Notice that although
we are considering isotropic disorder, the internal struc-
ture of model (1) implies a difference in the corresponding
elastic scattering and mean transport times, τ0B(S) and
τB(S).

Physical properties of model (1) depend on the rela-
tive position of the bulk Fermi energy εF with respect
to the gap M , and the strength of coupling between sur-
face(s) and bulk states. The latter is defined by the ratio
of tunneling rates and soft-mode masses, as discussed
in detail in the next section. Both, the Fermi energy
and the couplings are changed by modifying the electri-
cal gate on the surface. Based on the Hamiltonian (1)
we will specifically discuss two models describing differ-
ent physical realizations of TI films. Common to both
models is the gate-induced depletion layer between one
of the two surfaces, which we will refer to as S1, and the
bulk. Correspondingly, the surface S1 and the bulk are
coupled only through tunneling processes. For the TI
thin film with one active surface, the second surface (S2)
is assumed to be weakly coupled and its diffusion modes
gapped. A possible realization, suggested in Ref. 24, is
based on introducing random magnetic impurities in or-
der to generate strong phase decoherence on surface S2.
A second gate has also been proposed24 as a means for
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diminishing the coupling between S2 and the bulk. The
second model, the TI thin film with two active surfaces
is motivated by the observation that in the presence of
only one gate and without further provisions, surface S2
can be expected to be well coupled to the bulk and to
participate in transport at low temperatures. Within our
approach, this situation can be modeled through a strong
tunneling coupling between bulk and surface S2. Even in
this limit, however, we will assume that the tunneling
rate remains smaller than the disorder scattering rate.

B. Main results

We next summarize the main results in the limits of
small and large Fermi energies and weak and strong cou-
pling for TI films with one or two active surfaces. Con-
centrating on low temperatures, we assume that temper-
ature broadening can be neglected and temperature de-
pendencies originate primarily from inelastic scattering
processes. General expressions covering regimes of inter-
mediate coupling are provided in the subsequent sections
of this paper and the enthusiastic reader can derive from
these results in regimes of his interest. The role of tem-
perature broadening is briefly discussed at the end of this
summary in Sec. II B 3.

Interference corrections to the magneto-conductance,
∆G(H) = G(H) − G(0), and conductance fluctuations,

δG2, are governed by the soft diffusion modes of the
weakly disordered system. The identification of the soft
modes in the different parameter regimes can provide us
with a qualitative understanding of the main results. In
this summary, we will discuss magneto-conductance and
CFs for system sizes much larger than all phase-coherence
lengths. We will also comment on the opposite limit, in
which phase-coherence lengths are large as compared to
system sizes and the CFs become universal.

We define the strong coupling limit by the condition
that the tunneling lengths in the system are much smaller
than the phase coherence lengths. The opposite case will
be called weak coupling limit. In the limiting cases dis-
cussed below, the magneto-conductance and CFs in the
strong coupling limit can be written in the form

∆G(H) ' α e
2

πh
f(xϕ), δG2 ' β

(
e2

h

)2
3

2π

(
lϕ
L

)2

.

(8)

Here, f(z) = ln(z) − Ψ(1/2 + z) with f(z) ≈ ln(z) for
z � 1 and f(z) = −1/(24z2) for z � 1. Moreover,
xϕ = ~/(4eHl2ϕ) and lϕ is the effective phase coherence
length in the strongly coupled system of lateral size L.
In the weak coupling limit we further need to sum over
separate surface and bulk contributions, which will be
labelled by the letters S and B. The coefficients α and β
encode information on the soft diffusion modes present in
the regime of interest. The coefficient α derives from the
number of relevant soft Cooperon modes. Each singlet

Cooperon mode gives a contribution of 1/2 to α, while
the contribution of each triplet Cooperon mode is −1/2.
The coefficient β, in turn, simply counts the number of
relevant soft diffusion modes, including both Cooperons
and diffusons irrespective of their spin structure. In the
universal limit, the result for the CF reads

δG2 ' γβ(e2/h)2, (9)

where γ ' 0.093 is a geometry-dependent factor and β =
βS + βB in the weak coupling limit.

1. TI thin film with one active surface

a. Strong coupling limit: In the strong coupling
limit one obtains

α = 1/2, β = 2, (10)

independent of the position of the Fermi energy or the
system-size L, provided that L remains larger than the
tunneling lengths. The value β = 2 for conductance fluc-
tuations indicates the presence of two soft modes, that is,
each one diffuson- and one Cooperon-mode (see Sec. III
for details). The enhancement of conductivity (WAL)
and negative magnetoresistance, 2α = 1, on the other
hand, implies that the Cooperon mode, and by time-
reversal symmetry also the diffuson mode, is in the spin-
singlet channel. That is, at strong coupling the system
possesses each one gapless spin-singlet mode in diffuson
and Cooper channels, respectively, viz., the ‘fundamen-
tal’ gapless modes of the symplectic symmetry class.

b. Weak coupling limit: Results for weak couplings,
when the tunneling lengths are much larger than the
phase-coherence lengths, are more interesting. They de-
pend on both, the position of the Fermi level and system-
size. This reflects the presence of additional small-gap
modes besides the fundamental soft modes of the sym-
plectic class. The precise number and gap-values of the
former depend on the position of the Fermi level, and
gaps introduce new length scales, L∆, which should be
compared to the system-size.
lϕS/B � L∆:— If this condition is fulfilled, contribu-

tions from small-gap modes can be neglected and

αS = 1/2, αB = 1/2, βS = 2, βB = 2. (11)

Physical properties are again determined by the funda-
mental soft modes of the symplectic class, which at weak
coupling exist separately in bulk and surface. The rela-
tion β = 4 also holds for the CFs in the universal regime
(lϕS/B � L) as long as the system size exceeds L∆.
lϕS/B � L∆:— In this limit, small gap-modes give

contributions comparable to those of the fundamental
singlet modes, and have to be considered separately for
small and large Fermi energies in the bulk. In case of the
former

αS = 1/2, αB = −1, βS = 2, βB = 8, εF,B −M �M.
(12)



4

The value β = 10 signals the presence of each five soft
or small gap modes in the diffuson and Cooperon chan-
nels, respectively, while 2α = −1 indicates that these
five modes are composed of three spin-triplet modes in
the bulk and two spin-singlet modes, one in the bulk
and one on the surface. That is, at small Fermi ener-
gies three additional bulk spin-triplet modes contribute.
Notice that only the combined information on the inter-
ference correction to conductivity and conductance fluc-
tuations provide a complete picture of the underlying
physics. As from the interference corrections to conduc-
tivity alone one may, e.g., erroneously conclude on the
presence of a single soft surface mode. In the universal
regime, β = 10 holds even under the somewhat weaker
condition L � (L∆, lϕS/B). In the limit of large Fermi
energies,

αB = 1, αS = 1/2 βS = 2, βB = 4, εF,B −M �M.
(13)

Here, the value β = 6 is understood from the presence
of each three soft or small gap modes in the diffuson and
Cooperon channels, which now all manifest in the spin-
singlet channel, i.e. leading to WAL 2α = 3. Again, in
the universal regime the condition for β = 6 is somewhat
weaker, L� (L∆, lϕS/B).

c. Intermediate coupling: The complete result for
interference corrections to the Drude conductivity cover-
ing arbitrary couplings can be found in Sec. IV, Eq. (69)
for small and large Fermi energies. The corresponding
results for the universal conductance fluctuations can be
found in Sec. V, Eq. (80).

2. TI thin film with two active surfaces

a. Strong coupling limit: Suppose that the system
consisting of the surface S1 and the effective bulk/S2 sub-
system is in the strong coupling limit. Then, one finds

α = 1/2, β = 2, (14)

independent of the Fermi energy. As for the case with
one active surface, these values of α and β have their ori-
gin in the two fundamental soft modes of the symplectic
symmetry class, the diffuson and the Cooperon.

b. Weak coupling limit: In the weak coupling limit,
one obtains

αS = 1/2, αB = 1/2, βS = 2, βB = 2, (15)

independent of the position of the Fermi energy. The
main difference to the corresponding case for one active
surface is that the relation between the coherence lengths
and L∆ is not crucial here: The small-gap bulk modes
are strongly suppressed due to the tunneling coupling to
surface S2, only the fundamental modes in the bulk and
in the surface S1 remain active.

c. Intermediate coupling: Eq. (80) of Sec. V can be
used to describe the intermediate coupling regime for the
CFs. The relevant formula for the magneto-conductance
is Eq. (73) of Sec. IV.

3. Temperature dependence

The results presented above are applicable if the ther-
mal length LT =

√
D/T is the largest length scale in

the problem. In this case, temperature broadening can
be neglected and the CFs depend on temperature only
through the coherence length(s). In practice, this con-
dition may not always be fulfilled. The formalism can
in principle be adapted to this situation.32–34 While we
did not perform such a calculation explicitly in this work,
we can draw certain conclusions about the expected de-
pendence on LT from previous works on CFs in metallic
systems. Previous results suggest the following gener-
alization of our results: (i) If both LT and all relevant
coherence lengths are much larger than the system size,
then the results in the universal limit can be expected to
remain valid. (ii) If the coherence lengths are the short-
est length scales, then non-universal results are expected
carry over. (iii) If LT is the smallest relevant length
scale, then LT essentially takes the role otherwise played
by the coherence lengths in the non-universal limit. For
example, the (lϕ/L)2 dependences can be expected to be
replaced by a (LT /L)2 dependence (it is known, however,
that logarithmic corrections exist in 2D and that prefac-
tors are modified). Nevertheless, the general scheme for
determining the relevance of the different diffusion modes
should remain intact.

III. SOFT MODES

We proceed with a discussion of soft diffusion modes
in the system. Readers not interested in technical de-
tails may proceed with Secs. IV and V. We first review
in Sec. III A surface diffusion modes in the absence of
bulk-surface coupling. This allows us to introduce the
general formalism in a situation where the number of in-
volved states is small. We then proceed in Sec. III B with
a discussion of bulk diffusion-modes in the different pa-
rameter regimes, and discuss in Sec. III C consequences of
a finite bulk-surface coupling. We closely follow Ref. 24,
who studied soft-modes of the Cooperon type relevant
for WL/WAL corrections to the Drude conductivity, and
extend the analysis to diffuson soft-modes relevant for
CF.

A. Surface modes

Taking into account disorder-scattering in the Born
approximation, the single-particle propagator on the TI
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FIG. 1: Diagrammatic representation of the Bethe-Salpeter
equation for the surface-diffuson, Eq. (19), expressed in the
basis of spin-eigenstates. Solid (dashed) lines represent re-
tarded (advanced) Green’s functions, and crosses with dotted
lines disorder scattering.35

surface takes the form

G
R/A
ε,S (k) = [ε− ~vkσ ± i~/2τ0S ]

−1
, (16)

were the elastic scattering time

~
τ0S

= 2πuS0

∫
(d2k′) |〈k|k′〉|2 δ(εF,S − εk′) = πuS0 νS ,

(17)

and for notational convenience we write k ≡ k‖, the
two-dimensional momentum of surface states. Here νS
is the density of states at the Fermi-energy per band and
unit volume, (ddk) = ddk/(2π)d, and we already men-
tioned that throughout the work we assume weak dis-
order εF,Sτ0S � ~. The single-particle propagator (16)
decays on a scale set by the mean free path `0S = vSτ0S ,
and the dynamics on longer length-scales is governed by
soft modes in the system. The latter describe the com-
bined scattering of particle- and hole-excitations from the
same scattering centers and are reviewed next. For later
convenience we also recall the transport scattering time

(k̂ = k/|k|)

~
τS

= 2πuS0

∫
(d2k′)(1− k̂ · k̂′) |〈k|k′〉|2 δ(εF,S − εk′),

(18)

and which relates as τS = 2τ0S .

1. Surface-diffuson

Diffuson-modes D describe the combined propagation
of a particle and a hole following the same sequence of
scattering events, as encoded in the Bethe-Salpeter equa-
tion diagrammatically depicted in Fig. 1,

Dmnm′n′(q) = uS0 δmnδm′n′ +
∑

l,l′=↑,↓
Umlm′l′(q)Dlnl′n′(q).

(19)

Here Umlm′l′(q) = uS0
∫

(d2k)GRml(k)GAl′m′(k−q), and equa-
tions are written in the basis of spin eigenstates of σz,
| ↑〉 and | ↓〉, diagonalizing disorder. For our purposes, it

is sufficient to restrict to zero-energy Green’s functions,

GR/A(k) ≡ GR/AεF,S (k),

GR/A(k) =
εF,S ± i~/2τ0S + ~vSkσ

(εF,S ± i~/2τ0S)
2 − (~vSk)2

. (20)

The explicit form of the matrix U then reads

Umlm′l′(q) = a(q) δmlδm′l′ + bi(q) δmlσ
i
l′m′

+ ci(q)σimlδm′l′ + dij(q)σimlσ
j
l′m′ , (21)

where summation over repeated indices i, j = 1, 2 is im-
plicit, and we introduced the following coefficient func-
tions

a(q) = 1/2− `20Sq2/4,

bi(q) = ci(q) = −i`0Sqi/4,
dii(q) = 1/4− `20S(q2 + 2q2

i )/16,

d12(q) = d21(q) = −`20Sqxqy/8, (22)

We only kept leading orders in qi. Notice that U is not
hermitian and thus has a different set of left and right
eigenvectors.

The formal solution to Eq. (19) reads

Dq = uS0 (114 − Uq)
−1
, (23)

and we next identify most singular contributions in the
limit q → 0. To this end it is convenient to introduce
the matrices of left and right eigenvectors of Uq, denoted
as Gq and Fq, for which we fix normalization GqFq =
114. This allows us to decompose the diffuson as Dq =

FqD̂qGq, where D̂−1
q = Gq(114 − Uq)Fq/u

S
0 evaluates to

D̂−1
q =

1

uS0


DSq

2τ0S 0 0 0

0 1
2 + DSq

2τ0S
8 0 0

0 0 1
2 −

DSq
2τ0S
8 0

0 0 0 1

 ,

(24)

with DS = v2
SτS/2. Eq. (24) reveals the presence of

one soft mode with vanishing eigenvalue in the long
wave-length limit q → 0. Disregarding massive modes
we project onto the corresponding eigenspace and find

Dq ' uS0
DSq2τ0S

F0diag(1, 0, 0, 0)G0. Neglecting then non-

singular momentum-dependencies of F and G, we arrive
at

Dq '
uS0

2DSq2τ0S

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , (25)

which is diagonalized by the state 1√
2

(|↑↑〉+ |↓↓〉). De-

spite its unusual basis-state, Eq. (25) describes the spin-
singlet singlet diffuson. (Recall that the diffuson is
formed of retarded and advanced propagators, see also
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FIG. 2: Bethe-Salpeter equation for the surface-Cooperon,
Eq. (28), written in the basis of spin-eigenstates.

Ref. 34). For further calculations it is also convenient
to express the diffuson in the eigenbasis of the Dirac-
Hamiltonian,

D(k1,k2,q) =
∑

m,m′=↑,↓

∑
n,n′=↑,↓

〈k1|m〉 〈n|k2 + q〉×

× 〈m′|k1 − q〉 〈k2|n′〉Dmnm′n′(q), (26)

and we recall that we assume εF,S > 0 and restrict to the
upper band. In the long-wavelength-limit we may neglect
small momentum-transfer q in wave-function overlaps,
and find

D(k1,k2,q) =
~

2πνSτ2
0S

1

DSq2
. (27)

Unlike for the calculation of average quantities, for the
calculation of the CFs it becomes necessary to account
for phase decoherence not only of the Cooperon but also
of the diffuson. The corresponding phase relaxation rate
will be introduced phenomenologically in this paper.

2. Surface-Cooperon

Given time-reversal invariance of the system a second
type of soft modes exists, which describes the collective
propagation of a particle- and a hole-excitation along
the same sequence of scattering events in opposite di-
rection. A diagrammatic representation of the Cooperon
mode and its defining Bethe-Salpeter equation is shown
in Fig. 2. It takes the form

Cmnm′n′(q) = uS0 δmnδm′n′ +
∑
l,l′

Umlm′l′(q)Clnl′n′(q), (28)

where Umlm′l′(q) = uS0
∫

(d2k)GRml(k)GAm′l′(−k + q). The
matrix U can be represented as,

Umlm′l′(q) = a(q) δmlδm′l′ + bi(q) δmlσ
i
m′l′

+ ci(q)σimlδm′l′ + dij(q)σimlσ
j
m′l′ , (29)

with coefficients

a(q) = 1/2− `20Sq2/4,

bi(q) = −ci(q) = i`0Sqi/4,

dii(q) = −1/4 + `20S(q2 + 2q2
i )/16,

d12(q) = d21(q) = `20Sqxqy/8, (30)

where we again only kept leading orders in qi.
A solution to Eq. (28) is derived following the previ-

ous discussion for the diffuson mode.24 The Cooperon is
expressed in terms of matrices Fq, Gq of right- and left-
eigenvectors of Uq (normalized by GqFq = 114). That

is, Cq = FqĈqGq where Ĉ−1
q = Gq(114 − Uq)Fq/u

S
0 , or

explicitly,

Ĉ−1
q =

1

uS0


DSq

2τ0S 0 0 0

0 1
2 + DSq

2τ0S
8 0 0

0 0 1
2 −

DSq
2τ0S
8 0

0 0 0 1

 .

(31)

Concentrating again on the soft mode with vanishing
eigenvalue as q → 0, we neglect non-singular momentum

dependencies and find Cq ' uS0
Dq2τ0S

F0diag(1, 0, 0, 0)G0,
or

Cq '
uS0

2DSq2τ0S

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 , (32)

which is diagonalized by the spin-singlet state |0〉 =
1√
2

(|↑↓〉 − |↓↑〉). For latter convenience we give the

transformation to the spin-orbit basis in which disorder
is diagonal,

C(k1,k2,q) =
∑

m,m′=↑,↓

∑
n,n′=↑,↓

〈k1|m〉 〈n| − k2 + q〉

× 〈−k1 + q|m′〉 〈n′|k2〉 Cmnm′n′(q), (33)

where we again projected onto the upper band. Neglect-
ing non-singular q-dependencies of the wave-function
overlaps we arrive at the Cooperon in the spin-orbit ba-
sis,

C(k1,k2,q) = − ~
2πνSτ2

0S

ei(φk1−φk2 )

DSq2
. (34)

As for the diffuson, sources of phase decoherence for the
Cooperon mode will not be treated microscopically in
this paper, and corresponding rates are introduced phe-
nomenologically.

B. Bulk modes

The above discussion of soft surface-modes readily ex-
tends to the bulk. The single particle propagator in the
self-consistent Born approximation reads

GR/Aε (k) = (ε−Mτz − ~vBk · σ τx ± i~/2τ0B)
−1
,
(35)

and elastic and transport scattering times are24

~/τ0B = πuB0 νB
(
1 +M2/ε2F,B

)
, (36)

~/τB = (2/3)πuB0 νB
(
1 + 2M2/ε2F,B

)
. (37)
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Here, νB is the density of states per band and per unit
volume at the bulk Fermi energy εF,B and we assume
weak disorder (εF,B −M)τ0B � ~. The Bethe-Salpeter
equation for the diffuson in the basis of eigenstates
|m,m′〉 of τz ⊗ σz, where m,m′ ∈ {T ↑, T ↓, B ↑, B ↓},
is

Dmn
m′n′(q) = uB0 δmnδm′n′ +

∑
l,l′

Umlm′l′(q)Dln
l′n′(q), (38)

with Umlm′l′(q) = uB0
∫

(d3k)GRml(k)GAl′m′(k − q), and

GR/A(k) ≡ GR/AεF (k). U is expanded as

Umlm′l′ = a δmlδm′l′ +
∑
µ

bµδmlΛ
µ
l′m′

+
∑
µ

cµΛµmlδm′l′ +
∑
µν

dµνΛµmlΛ
ν
l′m′ , (39)

with Λi = σiτx for i ∈ {1, 2, 3}, Λ4 = τz, and the summa-
tion in µ, ν runs from 1 to 4. Explicit expressions for coef-
ficient functions a, bµ, cµ, dµν are given in Appendix A 1.

The formal solution to Eq. (38) now results from the in-

version D = uB0 (1116− Û)−1. Diagonalization of the non-

hermitian Û , similar to Eq. (24), and expansion in small
momentum q reveals one gapless mode with eigenstate
in the spin-singlet and orbital-triplet sector, see Table I
and Appendix A 1 for details. This is the fundamental
soft mode of the symplectic class, protected by particle-
number conservation. (As already mentioned above, this
protection does, however, not apply to diffusons describ-
ing ensemble fluctuations like CFs).

Additional modes with parametrically small masses
emerge in the limit of large and small Fermi-energies.
Specifically, in the limit (εF,B − M)/M � 1 there are

three modes with masses ∆g1 = (2/9)(1−M/εF,B)2τ−1
0B .

These are spanned by the eigenvectors given in Table II.
The mass ∆g1 is due to spin-flip transitions induced by
the spin-orbit interaction of the bulk Hamiltonian. In the
limit (εF,B −M)/M � 1 one finds one additional spin-

singlet mode with small mass ∆g2 = 2(M/εF,B)2τ−1
0B , and

eigenvector which is in the triplet sector in orbital-space
(see Table II). The mass ∆g2 is now due to inter-valley
scattering |T 〉+ |B〉 → |T 〉−|B〉, which, in turn, is due to
the finite mass M . Finally, the diffuson in the eigenbasis
of the clean bulk Hamiltonian (upon projection onto the
conduction band α, β = 1, 2) takes the form,

Dββ′

α′α(k1,k2,q) =
∑
m,m′

∑
n,n′

〈β,k1|m〉 〈α,k2|n′〉

× 〈n|β′,k2 + q〉 〈m′|α′,k1 − q〉Dmn
m′n′(q). (40)

The calculation of the Cooperon bulk mode proceeds
along similar lines,24 and is detailed in Appendix A 2.
The soft diffusion modes in bulk and surface are summa-
rized in Tables I and II.

Surface diffuson |D0〉 ∝ (| ↑↑〉+ | ↓↓〉)

Cooperon |C0〉 ∝ (| ↑↓〉 − | ↓↑〉)

Bulk diffuson |D0〉 ∝ |Λ0〉 ⊗ (| ↑↑〉+ | ↓↓〉)

Cooperon |C0〉 ∝ |Λ0〉 ⊗ (| ↑↓〉 − | ↓↑〉)

TABLE I: Eigenvectors of the fundamental soft modes. The
existence of these modes is generally guaranteed by particle-
number conservation, while in case of CFs they are also
damped by a decoherence-rate 1/τϕ. For the definition of
the orbital vector |Λ0〉 see Table III.

C. Bulk-surface coupling

With these preparations we now return to the gated
films of interest, and discuss soft modes in the presence
of a finite coupling between bulk and surface states.

Following the previous work Ref. 24, we assume that
coupling between surface and bulk states occurs ran-
domly, i.e. at points {ri} where the inhomogeneous de-
pletion layer happens to be thin. The local tunneling
operator is modeled as a random matrix within the sym-

εF,B −M�M diffuson |Dt,1〉 ∝ |Λ1〉 ⊗ | ↑↓〉
|Dt,0〉 ∝ |Λ1〉 ⊗ (| ↑↑〉 − | ↓↓〉)
|Dt,−1〉 ∝ |Λ1〉 ⊗ | ↓↑〉

Cooperon |Ct,1〉 ∝ |Λ1〉 ⊗ | ↑↑〉
|Ct,0〉 ∝ |Λ1〉 ⊗ (| ↑↓〉+ | ↓↑〉)
|Ct,−1〉 ∝ |Λ1〉 ⊗ | ↓↓〉

Mass ∆g1 = (1−M/εF,B)2(2/9τ0)

εF,B −M�M diffuson |Ds〉 ∝ |Λ2〉 ⊗ (| ↑↑〉+ | ↓↓〉)

Cooperon |Cs〉 ∝ |Λ2〉 ⊗ (| ↑↓〉 − | ↓↑〉)

Mass ∆g2 = (M/εF,B)2(2/τ0)

TABLE II: Eigenvectors of bulk soft-modes with parametri-
cally small gaps. In the presence of decoherence these modes
are damped by ∆gi + 1/τϕB . For definitions of the orbital
vectors |Λ1〉 and |Λ2〉, see Table III.

|Λ0〉 ∝ α+|TT 〉+ α−|BB〉 α± = (εF,B ±M)

|Λ1〉 ∝ λ1,T |TT 〉+ λ1,B |BB〉 λ1,T = 1 +O([εF,B/M − 1]2)

λ1,B = O(εF,B/M − 1)

|Λ2〉 ∝ |TB〉+ |BT 〉

TABLE III: Orbital parts of the bulk soft-mode eigenfunc-
tions.
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plectic symmetry class,

T̂ = N
∑
{ri}

∑
τ=T,B

3∑
l=0

tτl (ri)σ̃
l ⊗ πτ |r‖i 〉〈ri|+ h.c. (41)

Here, σ̃l = (112, iσx, iσy, iσz)
t is a 4-vector composed

of Pauli matrices acting on the spin degree of freedom,
and operators πτ project the orbital degree of freedom
(τ = T,B) onto the surface-state in the conduction
band. Tunneling-amplitudes {tτl (ri)}l=0,...,3 are gaussian
distributed random variables, with vanishing mean and
second moments 〈tτl (ri) t

σ
m(rj)〉 = δlmδστδij(t

2/2). The

normalization factor is defined as N =
√
V S/Ni, where

V and S are the volume and the surface area of the film,
respectively, and Ni =

∑
{ri} is the number of tunneling

centers. The projection of ri onto the two-dimensional

surface is denoted as r
‖
i .

The bulk-surface-coupling Eq. (41) opens an additional
channel for elastic scattering, and thus modifies elastic
scattering-rates of the single-particle propagators. The
corresponding rates, accounting for tunneling of bulk-
states into the surface and vice versa, are found from
Fermi’s golden rule

~/τtB =
2π

V

∫
(d2p)|〈α,k|T̂ |p〉|2δ(εα,k − εp), (42)

~/τtS =
2π

S

∑
α=1,2

∫
(d3k)|〈p|T̂ |α,k〉|2δ(εα,k − εp), (43)

and calculate to

~/τtB = 2πSνSt
2, ~/τtS = 4πV νBt

2. (44)

In the following we assume that scattering occurs pre-
dominantly due to disorder inside the bulk and surface,
so that the bulk and surface scattering rates are larger
than the respective tunneling rates given in Eq. (44).
In appendix B, we discuss the corrections to the single-
particle propagators and soft modes induced by the bulk-
surface coupling in detail, and here only summarize the
results that are important for our further investigations.

Bulk-surface coupling changes single particle propaga-
tors, Eqs. (20) and (35), only in the form of a small
correction to the elastic scattering rate, i.e. τ−1

0B/S 7→
τ−1
0B/S + τ−1

tB/S . The impact on soft modes is more in-

teresting, and it is instructive to recall their spin struc-
ture in absence of tunneling. Due to spin-orbit coupling
two-particle propagators involving spin-triplet states are
suppressed on the surface by spin-scattering processes,
and surface soft-modes D0, C0 are spin-singlet modes.
Similarly, the fundamental soft modes in the bulk, C0

and D0, are singlet. Bulk modes with small gaps, on
the other hand, can have finite spin in certain regimes.
Indeed, a brief glance at Tables I and II shows that
at small and large Fermi-energies the small-gap modes
are spin-triplet, Ct,−1/0/1 and Dt,−1/0/1 and spin-singlet,
Cs and Ds, respectively. A finite coupling, Eq. (41),

then affects the soft modes in the following way: (i)
the small-gap bulk modes acquire an additional damping
∆gi + 1/τϕB → ∆gi + 1/τϕB + 1/τtB for i ∈ {1, 2} due
to the tunneling to the surface, (ii) the fundamental soft
modes in bulk and surfaces hybridize. In the following,
we elaborate on these two points.

(i) Small-gap bulk soft modes do not couple to the
soft surface modes. As explained in more detail in ap-
pendix B, even though in cases they manifest in the sin-
glet channel the spin structure would allow for their cou-
pling to surface soft modes, this coupling is not allowed
by the orbital structure of the bulk modes (i.e. char-
acterized by |Λ2〉, see Table. III). This does not imply,
however, their unaffectedness by a finite coupling, and
they rather acquire an additional gap. Specifically, at
small Fermi energies (εF − M)/M � 1, they take the
form Xt(q) ≡ 〈Xt|Cq|Xt〉 with

Ct,1/0/−1(q) =
uB0 /τ0B

DBq2 + ∆g1 + 1/τϕB + 1/τtB
, (45)

Dt,1/0/−1(q) =
uB0 /τ0B

DBq2 + ∆g1 + 1/τϕB + 1/τtB
, (46)

where we introduced the phenomenological bulk-phase
decoherence rate 1/τϕB . At large Fermi energies (εF,B −
M)/M � 1, on the other hand, slightly gapped bulk soft
modes at finite coupling read Xs(q) ≡ 〈Xs|Cq|Xs〉, with

Cs(q) =
uB0 /τ0B

DBq2 + ∆g2 + 1/τϕB + 1/τtB
, (47)

Ds(q) =
uB0 /τ0B

DBq2 + ∆g2 + 1/τϕB + 1/τtB
. (48)

(ii) At finite coupling fundamental bulk- and surface-
Cooperon modes, CB0 (q) = 〈C0|Cq|C0〉 and CS0 (q) ≡
〈C0|Cq|C0〉, hybridize taking the form (see appendix B for
details)

CX0 (q) =
uX0

τ0XDX

[
AX

q2 + q2
a

+
BX

q2 + q2
b

]
, (49)

where X ∈ {S,B}. Here, we introduced the momenta

2q2
a/b = (l−2

S + l−2
B )±

√
(l−2
S − l−2

B )2 + 4l−2
tS l
−2
tB , (50)

with DX l
−2
X = (1/τtX + 1/τϕX), l2tX = DXτtX , and co-

efficients

AS/B = 1−BS/B =
l−2
B/S − q2

a

q2
b − q2

a

. (51)

Similarly, fundamental bulk- and surface-diffuson modes,
DB

0 (q) ≡ 〈D0|Dq|D0〉 and DS0 (q) ≡ 〈D0|Dq|D0〉, hy-
bridize, taking the same form as in Eq. (49).

Two limiting cases are particularly illuminating. If
tunneling rates for both surface and bulk exceed respec-
tive phase decoherence rates, τtS/B � τϕS/B , then

q2
a ≈ l−2

tS + l−2
tB , (52)
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while qb is much smaller of the order of the inverse phase
coherence lengths,

q2
b ≈ l−2

ϕS

l−2
tB

l−2
tB + l−2

tS

+ l−2
ϕB

l−2
tS

l−2
tB + l−2

tS

. (53)

This will be referred to as the strong-coupling case.
This implies that fundamental bulk and surface modes
strongly hybridize and qb serves as a common cut-off for
the infrared divergence in q. If, in turn, both phase re-
laxation rates exceed respective tunneling rates, τtS/B �
τϕS/B , then we are dealing with the case of weak-coupling,
in which

qa ≈ max (1/lϕS , 1/lϕB) , qb ≈ min (1/lϕS , 1/lϕB) ,
(54)

and fundamental bulk and surface modes remain sepa-
rate. Infrared divergences in q in this case are cut off by
the respective bulk and surface inverse phase coherence
lengths.

In view of points (i) and (ii), described above, conse-
quences of a finite coupling on the soft modes are readily
understood in the limits of weak and strong coupling-
strengths. These limits correspond to cases in which scat-
tering rates Eqs. (44) are smaller, respectively larger than
the masses of the soft modes (including phase decoher-
ence rates) of the decoupled system, and corresponding
results were summarized in the previous section. That is,
only fundamental soft-modes survive strong bulk-surface
coupling, and the gated film can be viewed as one single
system with strong spin-orbit scattering with hybridized
singlet modes Ch0 and Dh

0 , the fundamental soft modes of
the symplectic universality class. At weak bulk-surface
coupling, on the other hand, soft modes in surface and
bulk remain (to a first approximation) decoupled. At
large bulk Fermi energies the gated film is then charac-
terized by three diffuson and three Cooperon soft-modes.
At small bulk Fermi energies, the system has five diffuson
and five Cooperon soft-modes, respectively. At the low-
est temperatures, when the bulk phase decoherence rate
is much smaller than the gap ∆g2 (∆g1), the “fundamen-
tal” modes dominate the low-energy transport proper-
ties. The above qualitative considerations are summa-
rized in Table IV and intermediate regimes can be in-
ferred from the general expression derived above.

IV. INTERFERENCE CORRECTIONS TO
TRANSPORT

We have now prepared the stage to discuss interfer-
ence corrections to the Drude conductivity and CFs. The
former have been previously discussed in Ref. 24 and,
some minor differences notwithstanding, we mostly con-
firm their results in this section. CFs, to our knowledge,
have not been addressed so far within a model taking
into account finite coupling to bulk states, and will be
discussed in the next section. In this section, we will first

diffuson Cooperon

strong coupling

εF −M �M Dh
0 Ch

0

εF −M �M Dh
0 Ch

0

weak coupling

εF −M �M D0, D0, Dt,1/0/−1 C0, C0, Ct,1/0/−1

εF −M �M D0, D0, Ds C0, C0, Cs

TABLE IV: Soft modes characterizing the gated films at dif-
ferent surface-bulk coupling strengths and positions of the
bulk Fermi energy. Strong coupling refers to a situation where
tunneling rates exceed phase decoherence rates, the weak cou-
pling regime refers to the opposite limit. For strong coupling,
fundamental bulk and surface diffusion modes hybridize and
form modes denoted by Dh

0 and Ch
0 , while at weak coupling

they remain mostly separate. The evolution of fundamen-
tal soft modes in the full cross-over regime between strong
and weak coupling is described by Eq. (49) (and a corre-
sponding formula for the diffuson). When expressed through
the parameters q2

a and q2
b , strong and weak coupling regimes

correspond to the limiting cases discussed around Eqs. (52),
Eqs. (53), and Eq. (54), respectively.

be concerned with a single TI surface separated from the
bulk by a depletion layer, the latter being due to the
presence of a gate. Subsequently, we will complete the
system and include the second TI surface as well.

Bulk and surface currents flowing in response to a
spatially uniform electric field may be written as ji =∑
j=B,S σijEj , i ∈ B,S. For the sake of simplicity, we

assume that both bulk and surface are subject to the
same electric field E = ES = EB . In this set-up, the
total current flowing through the sample is obtained as
j = jB + jS = σE with σ =

∑
i,j=B,S σij . Before we

turn to the magneto-conductance of the gated film, it
is instructive to briefly recall known expressions for the
conductivities of bulk and surface considered as isolated
systems.

TI bulk:—The bulk conductivity reads

σ0B =
e2~
2π

∑
αβ

∫
d3k

(2π)3
vxαβ(k)ṽxβα(k)GRα (k)GAβ (k),

(55)

where vαβ(k) = 〈αk|v|βk〉 are matrix ele-
ments of the velocity operator fulfilling the re-
lation vαβ(k) = ~v2δαβk/Ek. Matrix elements
ṽαβ(k) = vαβ(k)(τB/τ0B) additionally include disorder-
induced vertex corrections. With only the conduction
band being active, the Drude result is obtained as
σ0B = 2e2νBDB . The result for the surface is found in
an analogous way, σ0S = e2νSDS .

Diagrams contributing to interference corrections to
the Drude conductivity are depicted in Fig. 3. For both
bulk and surface, three diagrams need to be calculated,
in the following accounted for by δσ1X (diagram a), and
δσ2X (diagrams b and c) with X ∈ {B,S}. Notice that
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C

C

C

a)

b) c)

FIG. 3: Diagrams giving the leading interference corrections
to the Drude conductivity.

the correction δσ2X becomes small in cases where the
momentum-dependence of the disorder matrix elements
is negligible.

Concentrating first on the bulk contribution, one
finds24

δσ1B = −6
e2

~2
νBDBτBτ0B

1

W

∫
d2q

(2π)2
CB(q), (56)

CB(q) =

∫
(dnk)(nxk)2

∑
α,α′=1,2

Cαα
′

B,α′α(kF ,kF ,q), (57)

where
∫

(dnk) denotes the normalized integral over the
solid angle specifying directions of the 3d-momenta on
the Fermi surface, and W � lϕB is the thickness of the
film.

For small Fermi energies, (εF,B −M)/M � 1, three
triplet Cooperon modes with gap ∆g1 contribute, be-
sides the fundamental singlet mode, to the averaged bulk
Cooperon

CB(q) =
−~

6πνBτ2
B

[
1

DBq2 + τ−1
ϕB

− 3

DBq2 + τ−1
ϕB + ∆g1

]
.

(58)

Moreover, momentum dependency of eigenstates |αk〉 is
weak, and δσ2B is negligible compared to δσ1B . Perform-
ing then momentum integration in (56) with 1/

√
DBτH

as an upper cut-off, τ−1
H = τ−1

ϕB + 2eDBH/~, one obtains
in absence of an external magnetic field δGB = WδσB .
In presence of a weak (perpendicular) magnetic field
∆GB(H) = GB(H) − GB(0) ≈ δGB(H) − δGB(0), and
the integration in q is replaced by an appropriate sum
over Landau levels, resulting in

∆GB(H) =
1

2
Gq [f (xϕB)− 3f (x1)] , (59)

with Gq = e2/2π2~, xα ≡ Hα/H where HϕB =
~/4eDBτϕB , H1 = (~/4eDB) [1/τϕB + ∆g1], and the
function f(z) was defined in Sec. II. The above expres-
sion simplifies in two limiting cases,

∆GB(H) =
α

2
Gqf (xϕB) , (60)

with

α =

{
1 τH � ∆−1

g1 ,

−2 τH � ∆−1
g1 .

(61)

In the first case, the singlet mode gives the main contri-
bution, while in the second triplet modes also need to be
accounted for.

For large Fermi energies, (εF,B −M)/M � 1, the sin-
glet mode with gap ∆g2 contributes besides the funda-
mental Cooperon mode, and

CB(q) =
−3~

8πνBτ2
B

[
1

DBq2 + τ−1
ϕB

+
1

DBq2 + τ−1
ϕB + ∆g2

]
.

(62)

Moreover, in this limit momentum dependencies of the
eigenstates are not negligible and δσ2B and δσ1B be-
come comparable in size. An explicit calculation gives24

δσ2B = −δσ1B/3, so that δσB = 2δσ1B/3. Quantum
corrections are found in analogy to the case discussed
above, and the magneto-conductance reads

∆G(H) =
1

2
Gq [f (xϕB) + f (x2)] , (63)

where xα ≡ Hα/H with H2 = (~/4eDB) [1/τϕB + ∆g2],
and the limits Eq. (60) with

α =

{
1 τH � ∆−1

g2 ,

2 τH � ∆−1
g2 ,

(64)

where the first case is the result from the fundamental
singlet mode, and the second accounts for the small-gap
singlet mode.

TI surface:—The contribution of a single surface
reads24

δσ1S = −4
e2

~2
νSτSτ0SDS

∫
d2q

(2π)2
CS(q), (65)

CS(q) =

∫
(dnk)(nxk)2C(kF ,kF ,q), (66)

and CS evaluates to

CS(q) = − ~
4πνSτ2

0S

1

DSq2 + τ−1
ϕS

. (67)

Noting that δσ2S = −δσ1/2 and δσS = δσ1S/2, the
magneto-conductance is19,24,36

∆G(H) =
1

2
Gqf (xϕS) , (68)

where xϕS ≡ HϕS/H with HϕS = ~/4eDSτϕS .
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A. TI thin film with one active surface

Results become more interesting once a finite tun-
neling between bulk and surface is introduced. Noting
that24 the velocity vertex does not couple bulk and sur-
face states one anticipates that δσij = 0 for i 6= j. That
is, only Cooperon modes starting and ending or in the
bulk or on the surface contribute. These modes have
been discussed in Sec. III C, and to account for a fi-
nite tunneling we have to adjust the above calculation
in the following way: (i) Replacing contributions of the
singlet Cooperon in CB(S) in Eqs. (58), (62) (Eq. (67))

by coupled mode CB0 (CS0 ) of Eq. (49), and (ii) inclu-
sion of the tunneling-induced damping in the small-gap
modes (see Eqs. (45) and (47)). Employing then identi-
ties AB +BB = AS +BS = 1 for coefficients in Eq. (49),
one finds the magneto-conductance of the coupled system
in the limits of small and large Fermi energies,

∆G(H) =
1

2
Gq

{
f (xa) + f (xb)− 3f (x̃1) ,

f (xa) + f (xb) + f (x̃2) ,
(69)

where the first and second line applies for εF −M �M
and εF −M �M , respectively. Here xα ≡ Hα/H, x̃α =

H̃α/H withHa/b = ~q2
a/b/4e and H̃i = Hi+(~/4eDBτtB)

(i ∈ 1, 2), and H1 and H2 were defined below Eqs. (59)
and (63).

It is instructive to consider the following limiting cases.
Both for τ̃H � ∆−1

g1 at small Fermi energies and for τ̃H �
∆−1
g2 at large Fermi energies, where τ̃−1

H = τ−1
ϕB + τ−1

tB +

2eDBH/~, one finds

∆G(H) =
1

2
Gq [f (xa) + f (xb)] . (70)

Yet, in the opposite limit τ̃H � ∆−1
g1 at small Fermi

energies one gets

∆G(H) =
1

2
Gq [f (xa) + f (xb)− 3f(x̃ϕB)] , (71)

where x̃ϕB = (~/3eDB)(τ−1
ϕB + τ−1

tB )/H, and for τ̃H �
∆−1
g2 at large Fermi energies one obtains

∆G(H) =
1

2
Gq [f (xa) + f (xb) + f(x̃ϕB)] . (72)

The above results are very similar to those obtained by
Garate and Glazman. The difference occurs in the limit
of large Fermi energies, where in our approach a cou-
pling of small-gap singlet bulk Cooperons to the funda-
mental surface Cooperon mode is excluded, as explained
in Sec. III C. This results in a change of the fields Ha

and Hb in the case τ̃B � ∆−1
g2 , compared to those found

in Ref. 24. In the corresponding fields entering the ex-
pression of these authors, the scattering rate τ−1

tB enters
with an additional factor of 2 due to the additional de-
cay channel. The limits of weak and strong coupling are
further discussed in Sec. II.

B. TI thin film with two active surfaces

So far, we studied a gated TI film with only one active
surface (S1). The key idea is that an external gate intro-
duces a depletion layer between the bulk and the active
surface, so that only a weak tunneling coupling remains.
Yet, there is also the second surface (S2) which has not
been treated explicitly so far. The previously derived
results are still applicable if the second surface is pas-
sive. Indeed, considering first the system of bulk and S2
separately with the arguments given above, S2 becomes
passive if (i) the coupling of bulk and S2 is weak (weak
coupling limit) and (ii) the phasing decoherence rate in
the bulk is much smaller than that in S2. Subsequently
taking the first surface into account, one arrives at the
results presented in the previous section.

In this section we discuss the case that surface S2 and
the bulk are well connected and surface S2 is active. The
main idea is again to consider S2 and the bulk as one
subsystem and to subsequently couple it to S1. Due to
the strong coupling in the S2/bulk subsystem, the fun-
damental hybridized singlet modes are dominant. When
considering the coupling to S1, these modes acts analo-
gously to a bulk singlet modes in the previous discussion,
albeit with a modified decoherence rate. This modifica-
tion reflects in the coefficients qa and qb, which should
now be calculated with the effective bulk/S2 hybrid co-
herence length. Notice that q2

b in Eq. (53), evaluated for

the bulk/S2 subsystem, acts as the effective l−2
ϕB when

calculating qa and qb for the S1/effective-bulk system.
The final result reads

∆G(H) =
1

2
Gq[f(xa) + f(xb)]. (73)

As is clear from the result, only WAL is allowed in this
case, since only the fundamental singlet modes survive
the strong coupling to S2. A discussion of weak and
strong coupling cases can be found in Sec. II.

V. CONDUCTANCE FLUCTUATIONS

We next turn to the discussion of the conductance fluc-
tuations. We first briefly recall the calculation of con-
ductance fluctuations in conventional weakly disordered
metals in the presence of a single soft diffusion mode, and
then turn to the system of interest, emphasizing differ-
ences to the former.

Consider spin-polarized electrons in a weakly disor-
dered metal. For simplicity we assume isotropic scatter-
ers for which the elastic free path and the transport mean
path are identical, and the presence of a weak magnetic
field which gaps out the Cooperon mode. Starting out
from the Einstein relation, σ ∝ e2νD, one notices that
fluctuations of the density of states and diffusion coeffi-
cient, δν and δD, are typically uncorrelated. The conduc-
tance fluctuations then can be written as a sum of two in-
dependent contributions, (δσ/σ)2 = (δν/ν)2 + (δD/D)2.
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FIG. 4: Diagrams contributing to the CFs. In the first and
last line, DOS-type and DCF-type diagrams, respectively, are
shown. The shaded regions correspond to Hikami boxes. Full
and dashed lines represent retarded and advanced Green func-
tions, respectively, dotted lines with crosses depict scattering
on impurities, and wavy lines with black triangles stand for
current vertices with their corresponding vertex corrections.

This separation reflects in the the diagrammatic repre-
sentation, Fig. 4, consisting of two classes of diagrams
which describe the respective fluctuations. Leading di-
agrams are made of two diffuson modes connected to
two boxes containing the single Green’s functions and
a varying number of impurity lines. (Notice that the
two mentioned classes of diagrams differ in the way cur-
rent vertices are arranged inside the boxes.) In case
of the conventional weakly disordered metal, contribu-
tions from soft modes and single-particle propagators
decouple. Each diagram, therefore, factorizes into the
product of a contribution from diffuson modes and from
the respective box. The latter can be summed indepen-
dently for different diagrams entering the same class (the
‘Hikami box’) and determine the overall numerical pref-
actor of a given class of diagrams. The result of such
calculation reads

δG2 = (2 + 4)

(
e2

h

)2∑
q

D2(q), (74)

where D(q) =
(
L2[q2 + L−2

∆ ]
)−1

is the zero-frequency

diffuson in units of the Thouless energy Eth = D/L2, and
we have added a small mass 1/L2

∆ = ∆/D to the propa-
gator. e2/h is the conductance quantum and the overall
factor sums contributions from fluctuations of the den-
sity of states (contributing a factor 2) and the diffusion
constant (contributing a factor 4). The relative factor
1/2 between the two classes of contributions is due to
the renormalization of the Hikami-box by a single impu-
rity line present for diagrams representing δν but absent
for those describing δD in case of isotropic scatterers.

The sum over momenta in Eq. (74) depends on the ra-
tio of length-scales involved (we assume that the thermal

length
√
D/T is the largest length scale in the problem).

Performing the sum over discrete momenta, one arrives
at

δG2 = (e2/h)2 F(L/L∆), (75)

where in the limit L � L∆ the function F(L/L∆) (de-
fined in Appendix C 4, Eq. (C30)) becomes a universal
number which only depends on the sample geometry. In
the opposite limit L � L∆ it is quadratic in L∆/L.
Specifically, for the quasi two-dimensional sample with
open boundary conditions

F(L/L∆) '
{

0.093, L� L∆,

3/(2π)(L∆/L)2, L� L∆.
(76)

Eqs. (74) and (75) are the result for a single soft dif-
fusion mode. In the absence of a magnetic field the
Cooperon mode gives an identical contribution, result-
ing in an additional overall factor 2. Accounting further
for the electron-spin, another overall factor 22 = 4 arises
(in absence of spin-orbit scatterers) in Eqs. (74) and (75).
Finally, for anisotropic scattering, soft modes depend on
the transport mean path which differs from elastic scat-
tering length. The latter, on the other hand, enters the
Hikami boxes and, accounting for the renormalization of
current vertices by diffuson modes, e.g. shown in Fig. 4,
universality of CF is recovered in the limit L� L∆.

We now return to the system of interest, first con-
centrating on the contribution from the bulk topolog-
ical insulator. The more involved internal structure
of the Hamiltonian Eq. (2) compared to the conven-
tional weakly disordered metal reflects in a band- and
momentum-dependency of the disorder matrix elements.
The latter implies that, similar to the case of anisotropic
scattering discussed above, vertex corrections to the cur-
rent operators have to be accounted for. More crucially,
however, it implies that a factorization of contributions
from diffusion modes and single particle propagators does
no longer hold. That is, instead of accounting for all di-
agrams contributing to one class of fluctuations in terms
of a single Hikami box, one now has to calculate each dia-
gram separately. There are nine non-vanishing diagrams
contributing each to fluctuations of the density of states
and the diffusion constant. In both cases these consist of
one ‘bare’ diagram in which single impurity lines are ab-
sent, and each four diagrams dressed by a single or two
impurity lines, see also Fig. 4. Similar considerations
apply to the CFs of an isolated topological-insulator sur-
face (in this case we reproduce the results of Ref. 37, see
below).

A. TI thin film with one active surface

For a gated film with finite bulk-surface coupling, we
are interested in the fluctuations of the total conductance
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G = GS +GB . The calculation of the fluctuation contri-
butions for the coupled system involves cross-correlations
of the bulk and surface conductances, in addition to the
individual fluctuations of the bulk and surface conduc-
tances. These can again be classified into fluctuations
of the density of states and fluctuations of the diffusion
coefficients. A more detailed explanation of the calcula-
tion is provided in appendix C. Table V summarizes how
each of the 2× 9 diagrams contributes to the fluctuation
of the surface and bulk conductances as well as the cross-
correlations for large and small Fermi energies. Here, we
only summarize our findings,

δG2 = (2 + 4)

(
e2

h

)2∑
α

∑
q

X2
α(q), (77)

where 2+4 results again from fluctuations of the diffusion
constant and density of states, respectively. The sum is
over all (zero-frequency) soft modes (normalized by Eth)
Xα

Xα(q) =
1

L2

1

q2 + 1/L2
∆α

. (78)

In Eq. (77), α runs over all soft diffusion modes in the
relevant regime, including the hybridized fundamental
modes and soft spin-singlet and triplet modes, where ap-
plicable.

Notice that the result (77) is common to the limits
of large (εF,B −M � M) and small (εF,B −M � M)
Fermi energies. The relevant soft modes, however, differ
in number and spin structure in these two limits and also
depend on the strength of the tunneling, as summarized
in Table IV. The fundamental singlet modes are active
irrespective of the limit under consideration. Choosing
the Cooperon as an example, the fundamental singlet
mode(s) enter in the form

∑
α=a,b

X2
α(q) =

1

L4

[
1

(q2 + q2
a)2

+
1

(q2 + q2
b )2

]
, (79)

where qa and qb are defined in Eq. (50) (The fundamen-
tal diffuson enters in an analogous form). We recall from
Sec. III C that in the case of weak coupling the two terms
labelled by a and b represent the separate fundamental
bulk and surface soft modes, while in the case of strong
coupling these modes hybridize with qb remaining small
of the order of the inverse phase coherence length, while
qa becomes large (of the order of the inverse tunneling
length). We also recall that for the remaining (non-
fundamental) soft modes Xα in Eq. (77) the coupling
increases the mass and finally suppresses their contribu-
tions in the strong-coupling limit, where the hybridized
fundamental modes remains as the only active soft mode.
In Appendix C, Eq.(77) is cast in a more explicit form
for the interested reader. Finally, we notice that, as is
clear from the above discussion, a similar Eq. (77) also
holds for the isolated surface of the topological insulator,

as well as for the isolated bulk, only in this case the sum
is over the corresponding surface soft modes or bulk soft
modes (Appendix C provides more details for these cases
as well).

We now collect pieces and discuss the conductance
fluctuations in different limits of interest. These are
the limits of weak and strong bulk-surface coupling, and
large and small Fermi energies, respectively. Assuming
again sufficiently low temperatures and that

√
D/T is

the largest length scale, we start out from the general
expression

δG2 = (e2/h)2
∑
α

F(L/L∆α
), (80)

and recall our discussion of soft modes in the different
regimes. While formula (80) is quite general and covers
the entire range between the universal and non-universal
regime, it is instructive to discuss these limiting cases,
where simple results may be obtained.

1. Universal regimes

At sufficiently small temperatures the phase coherence
length sets the largest length scale and conductance fluc-
tuations become universal. In the TI films we can iden-
tify universal regimes corresponding to the strong and
weak coupling limits, respectively. In both regimes we
only need to count the number of soft modes which are
present. In all expression given below we assume that all
coherence lengths exceed the system size.

Strong coupling limit:—A brief glance at Tables I
and II shows that for strong coupling

δG2 = (e2/h)2 × 0.093× 2, (81)

independent of the Fermi energy. Indeed, if the tunnel-
ing lengths are much smaller than the system size only
the two fundamental hybridized Cooperon and diffuson
modes give a sizable contribution.

Weak coupling limit:—At weak coupling and system
sizes L� L∆α

for all α

δG2 = (e2/h)2 × 0.093×
{

10, εF,B −M �M

6, εF,B −M �M.
(82)

Here, all bulk and surface soft modes contribute. In this
limit, the surface is entirely decoupled from the bulk.

If L∆α
� L holds for all non-fundamental soft modes,

then

δG2 = (e2/h)2 × 0.093× 4, (83)

independent of the Fermi energy. This is the contribution
of the two fundamental surface and the two fundamental
bulk soft modes.
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2. Non-universal regime

Finally, we consider the case of strong decoherence in
which the phase coherence length is much smaller than
the system size and results for the conductance fluctua-
tions become non-universal.

In this case, one obtains

δG2 = 2×
(
e2

h

)2

× 3

2π

(
Lϕ
L

)2

(84)

in the strong coupling limit. Here, Lϕ is the effective
phase coherence length obtained from Eq. (53) and the
contribution comes from the two fundamental hybridized
diffusion modes.

At weak coupling, if the bulk and surface phase coher-
ence lengths lϕB , lϕS are the shortest length scales in the
problem, one finds

δG2 =

(
e2

h

)2

× 3

2π

[
βB ×

(
lϕB
L

)2

+ βS ×
(
lϕS
L

)2
]

(85)

where

βB = 8, βS = 2, εF,B −M �M, (86)

βB = 4, βS = 2, εF,B −M �M. (87)

In this limit, all soft modes give a similar contribution.
If, however, the non-fundamental bulk soft modes are
gapped out (the related lengths L∆α are much smaller
than the phase coherence lengths) in the weak coupling
limit, then βB = 2 in Eq. (85) for both large and small
Fermi energies.

B. TI thin film with two active surfaces

The results presented in the previous section remain
valid if the second surface (S2) is weakly coupled and
passive, as explained in Sec. IV B. If S2 is active and
strongly coupled, however, all but the fundamental soft
modes in the bulk/S2 subsystem are suppressed. This is
the regime we will discuss in this section. Simple results
can be obtained in the following limits.

1. Universal regimes

Here we discuss cases in which all phase coherence
lengths exceed the system size L.

Strong coupling limit:— If L is much larger than the
tunneling lengths, then the combination of surface S1 and
the effective bulk/S2 subsystem is in the strong coupling
limit. In this case one finds

δG2 = (e2/h)2 × 0.093× 2. (88)

This contribution originates from the hybridized
Cooperon and diffuson modes of the film.

Weak coupling limit:— This limit is reached if tun-
neling events between the surface S1 and the bulk/S2
subsystem are so rare that the tunneling length exceeds
even the phase coherence length. It means that S1 and
the bulk are well separated. Then only 4 modes remain
active, two on the surface S1 and two in the bulk/S2
subsystem. Therefore,

δG2 = (e2/h)2 × 0.093× 4. (89)

This case is closely related to Eq. (83), only in the present
situation the non-fundamental modes are inactive not
due to their gaps but due to the strong tunneling to S2.

2. Non-universal regime

Here we consider cases in which the system size L is
by far the largest relevant length scale.

Strong coupling limit:— If all phase coherence lengths
exceed the tunneling lengths, then one finds

δG2 = 2×
(
e2

h

)2

× 3

2π

(
Lϕ
L

)2

(90)

where Lϕ is the effective phase coherence length result-
ing from the combination of the effective length for the
B/S2 subsystem and the phase coherence length of the
surface S1 weighted with the tunneling rates according
to Eq.(53). This case is akin to Eq. (84), albeit with a
new phase coherence length.

Weak coupling limit:— If the phase coherence length
of the surface S1, lϕS1, and the effective phase coherence
length of the bulk/S2 subsystem, lϕB/S2, are shorter than
the tunneling length between bulk and surface S1, then

δG2 =

(
e2

h

)2

× 3

2π

[
2×

(
lϕB/S2

L

)2

+ 2×
(
lϕS
L

)2
]
,

(91)

for both large and small Fermi energies. The difference
to (85) lies in the replacement βB → βB/S2 = 2, which
occurs due to the strong coupling to S2 irrespective of
the position of the Fermi level.

VI. CONCLUSION

In this work, we presented a combined study of mag-
netoresistance and CFs in thin gated TI films with bulk-
surface coupling. For these quantities, the interpreta-
tion of experimental data is often complicated by their
dependence on various characteristic length scales and
energy scales of the system. Combined studies of both
effects promise additional insight. The underlying rea-
son is the sensitivity of both magnetoresistance and CFs
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at low temperatures to the number, spin-structure and
masses of the slow diffusion modes in the system. At
the same time, the interpretation of experimental results
also requires theoretical predictions in different param-
eter regimes. In line with this reasoning, the main aim
of this paper was to derive results for both effects based
on the same theoretical model. To this end, we adopted
the model proposed in Ref. 24, where WL/WAL correc-
tions to magnetoresistance were already calculated, and
generalized the study to include CFs.

The results for the magnetoresistance and the CFs can
be characterized by the coefficients α and β introduced
in Eqs. (8) and (9). We studied TI insulator films with
one or two active surfaces as detailed in Sec. II A. For the
model with two active surfaces we restricted our consid-
erations to the case that (at least) one surface is strongly
tunneling-coupled to the bulk. Generally speaking, the
position of the bulk Fermi energy relative to the bulk
gap determines the number of active diffusion modes in
the bulk and has therefore a strong influence on the low
temperature transport properties of these TI films. In
this paper we studied two cases, large Fermi energies far
exceeding the bulk band gap and small bulk Fermi ener-
gies that are close to the bottom of the conduction band.
Several length scales are of crucial importance, the phase
coherence lengths and tunneling lengths in bulk and sur-
face(s) as well as additional length scales L∆α

=
√
D/∆α

related to the gaps ∆α of the (non-fundamental) bulk dif-
fusion modes.

Simple analytical results have been obtained in the
strong coupling limit, when all phase coherence lengths
are much larger than the tunneling lengths, or in the
opposite case, the weak coupling limit. In the strong
coupling limit, only the hybridized fundamental diffusion
mode for the combined system of bulk and surface(s) is
active and the result is α = 1/2 and β = 2 both for
one and two active surfaces. For our model of films with
two active surfaces small-gap bulk modes are suppressed
even in the weak coupling limit due to the frequent tun-
neling events between bulk and the surface that is al-
ways assumed to be strongly coupled. Correspondingly,
the subsystem consisting of the bulk and the strongly
coupled surface on one hand and the weakly coupled sur-
face on the other hand contribute additively, leading to
αS = 1/2, αB = 1/2, βS = 2, βB = 2. A richer be-
havior is found for TI thin films with one active sur-
face in the weak coupling limit as illustrated in Fig. 5.
One obtains different results depending on the position
of the bulk Fermi energy and the relation between the de-
phasing lengths and the gap-related length scales. This
regime has also been addressed in earlier works. Val-
ues αB in the weak coupling limit are in agreement with
the study of Ref. 23 considering only the bulk Hamilto-
nian Eq. (2), and coefficient βS , describing conductance
fluctuations for the surface, has previously been found in
Ref. 37 where an isolated TI surface was studied. Results
for weak localization coefficients αS and αB for surface
and bulk coincide with those obtained in Ref. 24 for the
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"F,B � M
<latexit sha1_base64="K5bpUiuCoEmJVBv8ryYctFGBl6o=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK40JKIoMtSQdwIFewD2lAm00k7dDIJM5NCCPVX3LhQxK0f4s6/cdpmoa0HLpw5517m3uPHnCntON/Wyura+sZmYau4vbO7t28fHDZVlEhCGyTikWz7WFHOBG1opjltx5Li0Oe05Y9upn5rTKVikXjUaUy9EA8ECxjB2kg9u9QdY0ljxbh5Zbdntcn5fc8uOxVnBrRM3JyUIUe9Z391+xFJQio04VipjuvE2suw1IxwOil2E0VjTEZ4QDuGChxS5WWz5SfoxCh9FETSlNBopv6eyHCoVBr6pjPEeqgWvan4n9dJdHDtZUzEiaaCzD8KEo50hKZJoD6TlGieGoKJZGZXRIZYYqJNXkUTgrt48jJpXlRcp+I+XJartTyOAhzBMZyCC1dQhTuoQwMIpPAMr/BmPVkv1rv1MW9dsfKZEvyB9fkDWlSUjQ==</latexit><latexit sha1_base64="K5bpUiuCoEmJVBv8ryYctFGBl6o=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK40JKIoMtSQdwIFewD2lAm00k7dDIJM5NCCPVX3LhQxK0f4s6/cdpmoa0HLpw5517m3uPHnCntON/Wyura+sZmYau4vbO7t28fHDZVlEhCGyTikWz7WFHOBG1opjltx5Li0Oe05Y9upn5rTKVikXjUaUy9EA8ECxjB2kg9u9QdY0ljxbh5Zbdntcn5fc8uOxVnBrRM3JyUIUe9Z391+xFJQio04VipjuvE2suw1IxwOil2E0VjTEZ4QDuGChxS5WWz5SfoxCh9FETSlNBopv6eyHCoVBr6pjPEeqgWvan4n9dJdHDtZUzEiaaCzD8KEo50hKZJoD6TlGieGoKJZGZXRIZYYqJNXkUTgrt48jJpXlRcp+I+XJartTyOAhzBMZyCC1dQhTuoQwMIpPAMr/BmPVkv1rv1MW9dsfKZEvyB9fkDWlSUjQ==</latexit><latexit sha1_base64="K5bpUiuCoEmJVBv8ryYctFGBl6o=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK40JKIoMtSQdwIFewD2lAm00k7dDIJM5NCCPVX3LhQxK0f4s6/cdpmoa0HLpw5517m3uPHnCntON/Wyura+sZmYau4vbO7t28fHDZVlEhCGyTikWz7WFHOBG1opjltx5Li0Oe05Y9upn5rTKVikXjUaUy9EA8ECxjB2kg9u9QdY0ljxbh5Zbdntcn5fc8uOxVnBrRM3JyUIUe9Z391+xFJQio04VipjuvE2suw1IxwOil2E0VjTEZ4QDuGChxS5WWz5SfoxCh9FETSlNBopv6eyHCoVBr6pjPEeqgWvan4n9dJdHDtZUzEiaaCzD8KEo50hKZJoD6TlGieGoKJZGZXRIZYYqJNXkUTgrt48jJpXlRcp+I+XJartTyOAhzBMZyCC1dQhTuoQwMIpPAMr/BmPVkv1rv1MW9dsfKZEvyB9fkDWlSUjQ==</latexit><latexit sha1_base64="K5bpUiuCoEmJVBv8ryYctFGBl6o=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK40JKIoMtSQdwIFewD2lAm00k7dDIJM5NCCPVX3LhQxK0f4s6/cdpmoa0HLpw5517m3uPHnCntON/Wyura+sZmYau4vbO7t28fHDZVlEhCGyTikWz7WFHOBG1opjltx5Li0Oe05Y9upn5rTKVikXjUaUy9EA8ECxjB2kg9u9QdY0ljxbh5Zbdntcn5fc8uOxVnBrRM3JyUIUe9Z391+xFJQio04VipjuvE2suw1IxwOil2E0VjTEZ4QDuGChxS5WWz5SfoxCh9FETSlNBopv6eyHCoVBr6pjPEeqgWvan4n9dJdHDtZUzEiaaCzD8KEo50hKZJoD6TlGieGoKJZGZXRIZYYqJNXkUTgrt48jJpXlRcp+I+XJartTyOAhzBMZyCC1dQhTuoQwMIpPAMr/BmPVkv1rv1MW9dsfKZEvyB9fkDWlSUjQ==</latexit>

�S = 2, �B = 8
<latexit sha1_base64="g7c+hVchEBfX1EpnkQwPkJYGsZA=">AAAB/nicbZDLSsNAFIZPvNZ6i4orN8EiuJCSFMGCFErduKxoL9CEMJlO2qGTSZiZCCUUfBU3LhRx63O4822ctllo6w8DH/85h3PmDxJGpbLtb2NldW19Y7OwVdze2d3bNw8O2zJOBSYtHLNYdAMkCaOctBRVjHQTQVAUMNIJRjfTeueRCElj/qDGCfEiNOA0pBgpbfnmsRsQhfz7WuXCvZ5zo1b1zZJdtmeylsHJoQS5mr755fZjnEaEK8yQlD3HTpSXIaEoZmRSdFNJEoRHaEB6GjmKiPSy2fkT60w7fSuMhX5cWTP390SGIinHUaA7I6SGcrE2Nf+r9VIVVr2M8iRVhOP5ojBlloqtaRZWnwqCFRtrQFhQfauFh0ggrHRiRR2Cs/jlZWhXyo5ddu4uS/VGHkcBTuAUzsGBK6jDLTShBRgyeIZXeDOejBfj3fiYt64Y+cwR/JHx+QNPj5Rn</latexit><latexit sha1_base64="g7c+hVchEBfX1EpnkQwPkJYGsZA=">AAAB/nicbZDLSsNAFIZPvNZ6i4orN8EiuJCSFMGCFErduKxoL9CEMJlO2qGTSZiZCCUUfBU3LhRx63O4822ctllo6w8DH/85h3PmDxJGpbLtb2NldW19Y7OwVdze2d3bNw8O2zJOBSYtHLNYdAMkCaOctBRVjHQTQVAUMNIJRjfTeueRCElj/qDGCfEiNOA0pBgpbfnmsRsQhfz7WuXCvZ5zo1b1zZJdtmeylsHJoQS5mr755fZjnEaEK8yQlD3HTpSXIaEoZmRSdFNJEoRHaEB6GjmKiPSy2fkT60w7fSuMhX5cWTP390SGIinHUaA7I6SGcrE2Nf+r9VIVVr2M8iRVhOP5ojBlloqtaRZWnwqCFRtrQFhQfauFh0ggrHRiRR2Cs/jlZWhXyo5ddu4uS/VGHkcBTuAUzsGBK6jDLTShBRgyeIZXeDOejBfj3fiYt64Y+cwR/JHx+QNPj5Rn</latexit><latexit sha1_base64="g7c+hVchEBfX1EpnkQwPkJYGsZA=">AAAB/nicbZDLSsNAFIZPvNZ6i4orN8EiuJCSFMGCFErduKxoL9CEMJlO2qGTSZiZCCUUfBU3LhRx63O4822ctllo6w8DH/85h3PmDxJGpbLtb2NldW19Y7OwVdze2d3bNw8O2zJOBSYtHLNYdAMkCaOctBRVjHQTQVAUMNIJRjfTeueRCElj/qDGCfEiNOA0pBgpbfnmsRsQhfz7WuXCvZ5zo1b1zZJdtmeylsHJoQS5mr755fZjnEaEK8yQlD3HTpSXIaEoZmRSdFNJEoRHaEB6GjmKiPSy2fkT60w7fSuMhX5cWTP390SGIinHUaA7I6SGcrE2Nf+r9VIVVr2M8iRVhOP5ojBlloqtaRZWnwqCFRtrQFhQfauFh0ggrHRiRR2Cs/jlZWhXyo5ddu4uS/VGHkcBTuAUzsGBK6jDLTShBRgyeIZXeDOejBfj3fiYt64Y+cwR/JHx+QNPj5Rn</latexit><latexit sha1_base64="g7c+hVchEBfX1EpnkQwPkJYGsZA=">AAAB/nicbZDLSsNAFIZPvNZ6i4orN8EiuJCSFMGCFErduKxoL9CEMJlO2qGTSZiZCCUUfBU3LhRx63O4822ctllo6w8DH/85h3PmDxJGpbLtb2NldW19Y7OwVdze2d3bNw8O2zJOBSYtHLNYdAMkCaOctBRVjHQTQVAUMNIJRjfTeueRCElj/qDGCfEiNOA0pBgpbfnmsRsQhfz7WuXCvZ5zo1b1zZJdtmeylsHJoQS5mr755fZjnEaEK8yQlD3HTpSXIaEoZmRSdFNJEoRHaEB6GjmKiPSy2fkT60w7fSuMhX5cWTP390SGIinHUaA7I6SGcrE2Nf+r9VIVVr2M8iRVhOP5ojBlloqtaRZWnwqCFRtrQFhQfauFh0ggrHRiRR2Cs/jlZWhXyo5ddu4uS/VGHkcBTuAUzsGBK6jDLTShBRgyeIZXeDOejBfj3fiYt64Y+cwR/JHx+QNPj5Rn</latexit>

↵S = 1/2, ↵B = �1
<latexit sha1_base64="IrdVU574AC6/I/SnjD72rbqwLWY=">AAACA3icbVDLSgMxFM34rPU16k43wSK40DopgoIUSt24rGgf0BmGTJq2oZnMkGSEMhTc+CtuXCji1p9w59+YtrPQ1gMXTs65l9x7gpgzpR3n21pYXFpeWc2t5dc3Nre27Z3dhooSSWidRDySrQArypmgdc00p61YUhwGnDaDwfXYbz5QqVgk7vUwpl6Ie4J1GcHaSL6972Ie97F/V0ZnpRP3KntWy6fItwtO0ZkAzhOUkQLIUPPtL7cTkSSkQhOOlWojJ9ZeiqVmhNNR3k0UjTEZ4B5tGypwSJWXTm4YwSOjdGA3kqaEhhP190SKQ6WGYWA6Q6z7atYbi/957UR3L72UiTjRVJDpR92EQx3BcSCwwyQlmg8NwUQysyskfSwx0Sa2vAkBzZ48TxqlInKK6Pa8UKlmceTAATgExwCBC1ABN6AG6oCAR/AMXsGb9WS9WO/Wx7R1wcpm9sAfWJ8/OtOV8w==</latexit><latexit sha1_base64="IrdVU574AC6/I/SnjD72rbqwLWY=">AAACA3icbVDLSgMxFM34rPU16k43wSK40DopgoIUSt24rGgf0BmGTJq2oZnMkGSEMhTc+CtuXCji1p9w59+YtrPQ1gMXTs65l9x7gpgzpR3n21pYXFpeWc2t5dc3Nre27Z3dhooSSWidRDySrQArypmgdc00p61YUhwGnDaDwfXYbz5QqVgk7vUwpl6Ie4J1GcHaSL6972Ie97F/V0ZnpRP3KntWy6fItwtO0ZkAzhOUkQLIUPPtL7cTkSSkQhOOlWojJ9ZeiqVmhNNR3k0UjTEZ4B5tGypwSJWXTm4YwSOjdGA3kqaEhhP190SKQ6WGYWA6Q6z7atYbi/957UR3L72UiTjRVJDpR92EQx3BcSCwwyQlmg8NwUQysyskfSwx0Sa2vAkBzZ48TxqlInKK6Pa8UKlmceTAATgExwCBC1ABN6AG6oCAR/AMXsGb9WS9WO/Wx7R1wcpm9sAfWJ8/OtOV8w==</latexit><latexit sha1_base64="IrdVU574AC6/I/SnjD72rbqwLWY=">AAACA3icbVDLSgMxFM34rPU16k43wSK40DopgoIUSt24rGgf0BmGTJq2oZnMkGSEMhTc+CtuXCji1p9w59+YtrPQ1gMXTs65l9x7gpgzpR3n21pYXFpeWc2t5dc3Nre27Z3dhooSSWidRDySrQArypmgdc00p61YUhwGnDaDwfXYbz5QqVgk7vUwpl6Ie4J1GcHaSL6972Ie97F/V0ZnpRP3KntWy6fItwtO0ZkAzhOUkQLIUPPtL7cTkSSkQhOOlWojJ9ZeiqVmhNNR3k0UjTEZ4B5tGypwSJWXTm4YwSOjdGA3kqaEhhP190SKQ6WGYWA6Q6z7atYbi/957UR3L72UiTjRVJDpR92EQx3BcSCwwyQlmg8NwUQysyskfSwx0Sa2vAkBzZ48TxqlInKK6Pa8UKlmceTAATgExwCBC1ABN6AG6oCAR/AMXsGb9WS9WO/Wx7R1wcpm9sAfWJ8/OtOV8w==</latexit><latexit sha1_base64="IrdVU574AC6/I/SnjD72rbqwLWY=">AAACA3icbVDLSgMxFM34rPU16k43wSK40DopgoIUSt24rGgf0BmGTJq2oZnMkGSEMhTc+CtuXCji1p9w59+YtrPQ1gMXTs65l9x7gpgzpR3n21pYXFpeWc2t5dc3Nre27Z3dhooSSWidRDySrQArypmgdc00p61YUhwGnDaDwfXYbz5QqVgk7vUwpl6Ie4J1GcHaSL6972Ie97F/V0ZnpRP3KntWy6fItwtO0ZkAzhOUkQLIUPPtL7cTkSSkQhOOlWojJ9ZeiqVmhNNR3k0UjTEZ4B5tGypwSJWXTm4YwSOjdGA3kqaEhhP190SKQ6WGYWA6Q6z7atYbi/957UR3L72UiTjRVJDpR92EQx3BcSCwwyQlmg8NwUQysyskfSwx0Sa2vAkBzZ48TxqlInKK6Pa8UKlmceTAATgExwCBC1ABN6AG6oCAR/AMXsGb9WS9WO/Wx7R1wcpm9sAfWJ8/OtOV8w==</latexit>

↵S = 1/2, ↵B = 1/2
<latexit sha1_base64="EX2XC5IQmd6v9EBCQWcR48Eo+2M=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFcSE2KoCBCqRuXFe0DmhAm02k7dDIJMxOhhC7c+CtuXCji1o9w5984abPQ1gMD555zL3fuCWJGpbLtb2NpeWV1bb2wUdzc2t7ZNff2WzJKBCZNHLFIdAIkCaOcNBVVjHRiQVAYMNIORteZ334gQtKI36txTLwQDTjtU4yUlnyz5CIWD5F/d+WcVk/cy7ysZ6Vvlu2KPYW1SJyclCFHwze/3F6Ek5BwhRmSsuvYsfJSJBTFjEyKbiJJjPAIDUhXU45CIr10esTEOtJKz+pHQj+urKn6eyJFoZTjMNCdIVJDOe9l4n9eN1H9Cy+lPE4U4Xi2qJ8wS0VWlojVo4JgxcaaICyo/quFh0ggrHRuRR2CM3/yImlVK45dcW7PyrV6HkcBSnAIx+DAOdTgBhrQBAyP8Ayv8GY8GS/Gu/Exa10y8pkD+APj8we3IpYx</latexit><latexit sha1_base64="EX2XC5IQmd6v9EBCQWcR48Eo+2M=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFcSE2KoCBCqRuXFe0DmhAm02k7dDIJMxOhhC7c+CtuXCji1o9w5984abPQ1gMD555zL3fuCWJGpbLtb2NpeWV1bb2wUdzc2t7ZNff2WzJKBCZNHLFIdAIkCaOcNBVVjHRiQVAYMNIORteZ334gQtKI36txTLwQDTjtU4yUlnyz5CIWD5F/d+WcVk/cy7ysZ6Vvlu2KPYW1SJyclCFHwze/3F6Ek5BwhRmSsuvYsfJSJBTFjEyKbiJJjPAIDUhXU45CIr10esTEOtJKz+pHQj+urKn6eyJFoZTjMNCdIVJDOe9l4n9eN1H9Cy+lPE4U4Xi2qJ8wS0VWlojVo4JgxcaaICyo/quFh0ggrHRuRR2CM3/yImlVK45dcW7PyrV6HkcBSnAIx+DAOdTgBhrQBAyP8Ayv8GY8GS/Gu/Exa10y8pkD+APj8we3IpYx</latexit><latexit sha1_base64="EX2XC5IQmd6v9EBCQWcR48Eo+2M=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFcSE2KoCBCqRuXFe0DmhAm02k7dDIJMxOhhC7c+CtuXCji1o9w5984abPQ1gMD555zL3fuCWJGpbLtb2NpeWV1bb2wUdzc2t7ZNff2WzJKBCZNHLFIdAIkCaOcNBVVjHRiQVAYMNIORteZ334gQtKI36txTLwQDTjtU4yUlnyz5CIWD5F/d+WcVk/cy7ysZ6Vvlu2KPYW1SJyclCFHwze/3F6Ek5BwhRmSsuvYsfJSJBTFjEyKbiJJjPAIDUhXU45CIr10esTEOtJKz+pHQj+urKn6eyJFoZTjMNCdIVJDOe9l4n9eN1H9Cy+lPE4U4Xi2qJ8wS0VWlojVo4JgxcaaICyo/quFh0ggrHRuRR2CM3/yImlVK45dcW7PyrV6HkcBSnAIx+DAOdTgBhrQBAyP8Ayv8GY8GS/Gu/Exa10y8pkD+APj8we3IpYx</latexit><latexit sha1_base64="EX2XC5IQmd6v9EBCQWcR48Eo+2M=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFcSE2KoCBCqRuXFe0DmhAm02k7dDIJMxOhhC7c+CtuXCji1o9w5984abPQ1gMD555zL3fuCWJGpbLtb2NpeWV1bb2wUdzc2t7ZNff2WzJKBCZNHLFIdAIkCaOcNBVVjHRiQVAYMNIORteZ334gQtKI36txTLwQDTjtU4yUlnyz5CIWD5F/d+WcVk/cy7ysZ6Vvlu2KPYW1SJyclCFHwze/3F6Ek5BwhRmSsuvYsfJSJBTFjEyKbiJJjPAIDUhXU45CIr10esTEOtJKz+pHQj+urKn6eyJFoZTjMNCdIVJDOe9l4n9eN1H9Cy+lPE4U4Xi2qJ8wS0VWlojVo4JgxcaaICyo/quFh0ggrHRuRR2CM3/yImlVK45dcW7PyrV6HkcBSnAIx+DAOdTgBhrQBAyP8Ayv8GY8GS/Gu/Exa10y8pkD+APj8we3IpYx</latexit>

�S = 2, �B = 2
<latexit sha1_base64="DWqOB1jXGWfl5+aC+20Df8LxThw=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3ASL4EJKUgQFKZS6cVnRXqAJYTI9aYdOJmFmIpRQ8FXcuFDErc/hzrdx2mahrT8MfPznHM6ZP0gYlcq2v43Cyura+kZxs7S1vbO7Z+4ftGWcCgItErNYdAMsgVEOLUUVg24iAEcBg04wupnWO48gJI35gxon4EV4wGlICVba8s0jNwCF/fta9dy9nnOjVvXNsl2xZ7KWwcmhjHI1ffPL7cckjYArwrCUPcdOlJdhoShhMCm5qYQEkxEeQE8jxxFIL5udP7FOtdO3wljox5U1c39PZDiSchwFujPCaigXa1Pzv1ovVeGVl1GepAo4mS8KU2ap2JpmYfWpAKLYWAMmgupbLTLEAhOlEyvpEJzFLy9Du1px7Ipzd1GuN/I4iugYnaAz5KBLVEe3qIlaiKAMPaNX9GY8GS/Gu/Exby0Y+cwh+iPj8wdGd5Rh</latexit><latexit sha1_base64="DWqOB1jXGWfl5+aC+20Df8LxThw=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3ASL4EJKUgQFKZS6cVnRXqAJYTI9aYdOJmFmIpRQ8FXcuFDErc/hzrdx2mahrT8MfPznHM6ZP0gYlcq2v43Cyura+kZxs7S1vbO7Z+4ftGWcCgItErNYdAMsgVEOLUUVg24iAEcBg04wupnWO48gJI35gxon4EV4wGlICVba8s0jNwCF/fta9dy9nnOjVvXNsl2xZ7KWwcmhjHI1ffPL7cckjYArwrCUPcdOlJdhoShhMCm5qYQEkxEeQE8jxxFIL5udP7FOtdO3wljox5U1c39PZDiSchwFujPCaigXa1Pzv1ovVeGVl1GepAo4mS8KU2ap2JpmYfWpAKLYWAMmgupbLTLEAhOlEyvpEJzFLy9Du1px7Ipzd1GuN/I4iugYnaAz5KBLVEe3qIlaiKAMPaNX9GY8GS/Gu/Exby0Y+cwh+iPj8wdGd5Rh</latexit><latexit sha1_base64="DWqOB1jXGWfl5+aC+20Df8LxThw=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3ASL4EJKUgQFKZS6cVnRXqAJYTI9aYdOJmFmIpRQ8FXcuFDErc/hzrdx2mahrT8MfPznHM6ZP0gYlcq2v43Cyura+kZxs7S1vbO7Z+4ftGWcCgItErNYdAMsgVEOLUUVg24iAEcBg04wupnWO48gJI35gxon4EV4wGlICVba8s0jNwCF/fta9dy9nnOjVvXNsl2xZ7KWwcmhjHI1ffPL7cckjYArwrCUPcdOlJdhoShhMCm5qYQEkxEeQE8jxxFIL5udP7FOtdO3wljox5U1c39PZDiSchwFujPCaigXa1Pzv1ovVeGVl1GepAo4mS8KU2ap2JpmYfWpAKLYWAMmgupbLTLEAhOlEyvpEJzFLy9Du1px7Ipzd1GuN/I4iugYnaAz5KBLVEe3qIlaiKAMPaNX9GY8GS/Gu/Exby0Y+cwh+iPj8wdGd5Rh</latexit><latexit sha1_base64="DWqOB1jXGWfl5+aC+20Df8LxThw=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3ASL4EJKUgQFKZS6cVnRXqAJYTI9aYdOJmFmIpRQ8FXcuFDErc/hzrdx2mahrT8MfPznHM6ZP0gYlcq2v43Cyura+kZxs7S1vbO7Z+4ftGWcCgItErNYdAMsgVEOLUUVg24iAEcBg04wupnWO48gJI35gxon4EV4wGlICVba8s0jNwCF/fta9dy9nnOjVvXNsl2xZ7KWwcmhjHI1ffPL7cckjYArwrCUPcdOlJdhoShhMCm5qYQEkxEeQE8jxxFIL5udP7FOtdO3wljox5U1c39PZDiSchwFujPCaigXa1Pzv1ovVeGVl1GepAo4mS8KU2ap2JpmYfWpAKLYWAMmgupbLTLEAhOlEyvpEJzFLy9Du1px7Ipzd1GuN/I4iugYnaAz5KBLVEe3qIlaiKAMPaNX9GY8GS/Gu/Exby0Y+cwh+iPj8wdGd5Rh</latexit>
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l',S/B
<latexit sha1_base64="hSwKAhmiakVk483gpchAgRG7VFk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIHqQmIuix1IvHivYD2hA22027dLMJu5tCDf0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFuFtfWNza3idmlnd2+/bB8ctlScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjG5nfntMpWKxeNSThHoRHggWMoK1kXy7zP2sN8YyGbLzh4v61LcrTtWZA60SNycVyNHw7a9ePyZpRIUmHCvVdZ1EexmWmhFOp6VeqmiCyQgPaNdQgSOqvGx++BSdGqWPwliaEhrN1d8TGY6UmkSB6YywHqplbyb+53VTHd54GRNJqqkgi0VhypGO0SwF1GeSEs0nhmAimbkVkSGWmGiTVcmE4C6/vEpal1XXqbr3V5VaPY+jCMdwAmfgwjXU4A4a0AQCKTzDK7xZT9aL9W59LFoLVj5zBH9gff4AU6OS2g==</latexit><latexit sha1_base64="hSwKAhmiakVk483gpchAgRG7VFk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIHqQmIuix1IvHivYD2hA22027dLMJu5tCDf0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFuFtfWNza3idmlnd2+/bB8ctlScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjG5nfntMpWKxeNSThHoRHggWMoK1kXy7zP2sN8YyGbLzh4v61LcrTtWZA60SNycVyNHw7a9ePyZpRIUmHCvVdZ1EexmWmhFOp6VeqmiCyQgPaNdQgSOqvGx++BSdGqWPwliaEhrN1d8TGY6UmkSB6YywHqplbyb+53VTHd54GRNJqqkgi0VhypGO0SwF1GeSEs0nhmAimbkVkSGWmGiTVcmE4C6/vEpal1XXqbr3V5VaPY+jCMdwAmfgwjXU4A4a0AQCKTzDK7xZT9aL9W59LFoLVj5zBH9gff4AU6OS2g==</latexit><latexit sha1_base64="hSwKAhmiakVk483gpchAgRG7VFk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIHqQmIuix1IvHivYD2hA22027dLMJu5tCDf0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFuFtfWNza3idmlnd2+/bB8ctlScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjG5nfntMpWKxeNSThHoRHggWMoK1kXy7zP2sN8YyGbLzh4v61LcrTtWZA60SNycVyNHw7a9ePyZpRIUmHCvVdZ1EexmWmhFOp6VeqmiCyQgPaNdQgSOqvGx++BSdGqWPwliaEhrN1d8TGY6UmkSB6YywHqplbyb+53VTHd54GRNJqqkgi0VhypGO0SwF1GeSEs0nhmAimbkVkSGWmGiTVcmE4C6/vEpal1XXqbr3V5VaPY+jCMdwAmfgwjXU4A4a0AQCKTzDK7xZT9aL9W59LFoLVj5zBH9gff4AU6OS2g==</latexit><latexit sha1_base64="hSwKAhmiakVk483gpchAgRG7VFk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEIHqQmIuix1IvHivYD2hA22027dLMJu5tCDf0lXjwo4tWf4s1/47bNQVsfDDzem2FmXpBwprTjfFuFtfWNza3idmlnd2+/bB8ctlScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjG5nfntMpWKxeNSThHoRHggWMoK1kXy7zP2sN8YyGbLzh4v61LcrTtWZA60SNycVyNHw7a9ePyZpRIUmHCvVdZ1EexmWmhFOp6VeqmiCyQgPaNdQgSOqvGx++BSdGqWPwliaEhrN1d8TGY6UmkSB6YywHqplbyb+53VTHd54GRNJqqkgi0VhypGO0SwF1GeSEs0nhmAimbkVkSGWmGiTVcmE4C6/vEpal1XXqbr3V5VaPY+jCMdwAmfgwjXU4A4a0AQCKTzDK7xZT9aL9W59LFoLVj5zBH9gff4AU6OS2g==</latexit>

FIG. 5: Summary of results in the weak-coupling limit. Here
lϕ,S/B refers to the phase decoherence lengths in surface and
bulk, respectively, and L∆ is the length associated to small
gaps of soft modes discussed in Tables II and III.

same model, and we here add coefficients βS and βB to
the picture.

A more detailed discussion of the main theoretical pre-
dictions obtained in this paper can be found Sec. II,
where we also comment on the temperature dependence.
Expressions for the intermediate coupling regime have
also been derived in this paper and can be found in the
respective sections on interference corrections, Sec. IV,
and universal conductance fluctuations, Sec. V. Let us
only remark here that the obtained predictions indeed
confirm the potential of simultaneous measurements of
magnetoresistance and CFs for resolving ambiguities in
the interpretation of experimental results. We hope that
in this way the present work can contribute to a better
understanding of the low-temperature transport proper-
ties of TI materials.

Acknowledgments

The authors thank P. Brouwer, I. Garate,
A. Levchenko and P. Silvestrov for useful discus-
sions. H. V. is a recipient of a DFG-fellowship through
the Excellence Initiative by the Graduate School Mate-
rials Science in Mainz (GSC 266). T. M. acknowledges
financial support by Brazilian agencies CNPq and
FAPERJ. G. Schwiete was partially supported by the
Alexander von Humboldt Foundation, the College of
Arts and Sciences at the University of Alabama, and
the National Science Foundation under Grant No.
DMR-1742752. We acknowledge the hospitality of the
Spin Phenomena Interdisciplinary Center (SPICE),
where parts of the work were done.



16

Appendix A: U-matrices for bulk diffusion modes

For the sake of notational simplicity, we suppress the
bulk index B in this appendix.

In order to calculate the components of the U -matrices
in Eqs. (39) and X for the diffuson and Cooperon, respec-
tively, it is useful to write the Green’s functions (35) in
the form

GR/Aε (k) =
εR/A +

∑4
µ=1 ηµ(k)Λµ

[εR/A]2 − ε2k
, (A1)

where εR/A = ε ± i~/(2τ0), ηi(k) = ~vki for i ∈ {1, 2, 3}
and η4(k) = M . The matrices Λµ are defined below
Eq. (39). Note that with this notation the clean bulk

Hamiltonian reads H3D(k) =
∑4
µ=1 ηµ(k)Λµ.

1. Bulk Diffuson

The coefficients a, b, c and d appearing in the represen-
tation (39) of the matrix U are defined through integrals
of the form (Y ∈ {a, bµ, cµ, dµν}),

Y = u0

∫
(d3k)

χY (k,q)

([εRF ]2 − ε2k)([εAF ]2 − ε2k−q)
, (A2)

and the functions χY for the different cases are given by

χa(k,q) = εRF ε
A
F , (A3)

χbµ(k,q) = εRF ηµ(k− q), (A4)

χcµ(k,q) = ηµ(k)εAF , (A5)

χdµν (k,q) = ηµ(k)ην(k− q). (A6)

Next, we list the results for the coefficients in the limit
vF qτ0 � 1 (to leading order in qi). To start with,

a = a0

(
1− (`0q)

2/3
)
, (A7)

where a0 = (2
(
1 +M2/ε2F

)
)−1 and `0 = vF τ0. Further,

for i ∈ {1, 2}, and with β = vF /v = (1−M2/ε2F )

bi = ci = −i(a0/3)β`0qi, (A8)

dii = (a0/3)β2
[
1− `20(q2 + 2q2

i )/5
]
, (A9)

di4 = d4i = −i(a0/3)β(M/εF )l0qi, (A10)

and further

b4 = c4 = (M/εF )a, (A11)

d12 = d21 = −2(a0/15)β2`20q1q2, (A12)

d33 = (a0/3)β2
[
1− `20q2/5

]
, (A13)

d44 = (M2/ε2F )a. (A14)

The omitted elements are zero.

2. Bulk Cooperon

A detailed discussion of the bulk Cooperon has al-
ready been presented in Ref. 24. In order to make the
manuscript self-contained, we display the most important
relations below.

The Bethe-Salpeter equation for the Cooperon reads,

Cmnm′n′(q) = u0δmnδm′n′ +
∑
l,l′

Umlm′l′(q)Clnl′n′(q), (A15)

with Umlm′l′(q) = u0

∫
(d3k)GRml(k)GAm′l′(−k + q).

The matrix U appearing in Eq. (A15) can be written
as

Umlm′l′(q) = ac(q) δmlδm′l′ +
∑
µ

bcµ(q)δmlΛ
µ
l′m′ (A16)

+
∑
µ

ccµ(q)Λµmlδm′l′ +
∑
µν

dcµν(q)ΛµmlΛ
ν
m′l′ .

The coefficients appearing in this formula can be related
to those listed in Eqs. (A7), (A8)-(A10) and (A11)-(A14).
One finds ac = a, for i ∈ {1, 2}

bci = −cci = −bi, (A17)

dcii = dii, dci4 = −dc4i = di4, (A18)

and further

bc4 = cc4 = b4, (A19)

dc12 = dc21 = −d12, (A20)

dc33 = −d33, dc44 = d44. (A21)

The elements omitted in this list are again equal to zero.
Finally, we write the transformation to the spin-orbit

basis with projection onto the conduction band as

Cββ
′

αα′(k1,k2,q) =
∑

m,m′,n′n′

〈β,k1|m〉〈n|β′,−k2 + q〉×

× 〈α,−k1 + q|m′〉〈n′|α′,k2〉Cmnm′n′(q). (A22)

This is the analogue of Eq. (40) for the bulk diffuson.

Appendix B: Diffusion modes with bulk-surface
coupling

In this appendix, we discuss the soft diffusion modes,
diffusons and Cooperons, for a gated TI thin film, in
which the bulk is coupled to a single surface through a
tunneling barrier. We focus our attention on the limit
in which the tunneling rates 1/τtB and 1/τtS , Eq. (44),
are much smaller than the disorder scattering rates 1/τ0B
and 1/τ0S in both bulk and surface. In this limit, one can
conveniently use the bulk and surface soft modes in the
absence of tunneling as building blocks for the construc-
tion of the soft modes of the coupled system. In order
to structure the discussion, we follow a two-step proce-
dure based on Ref. 24: (i) We define auxiliary diffusion
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= +C̃SCS C̃S CS
C̃B

FIG. 6: Diagrammatic representation of the Bethe-Salpeter
equation for the surface Cooperon in the presence of bulk-
surface coupling, Eq. (B4). The dotted line with a dot repre-
sents correlated tunneling events.

modes, labeled by a tilde sign, which are obtained from
the bulk and surface diffusion modes by incorporating the
tunneling-induced change of the single-particle propaga-
tors. (ii) We obtain the soft modes of the combined bulk-
surface system by coupling the auxiliary diffusion modes
through correlated particle-hole or particle-particle tun-
neling events.

For step (i) we need to account for the change of the
surface and bulk Green’s functions. These are modi-
fied due to the increase of the single-particle scatter-
ing rates caused by inter-layer tunneling. The mod-
ified Green’s functions for bulk and surface, obtained
from Eqs. (35) and (16), respectively, by the replacement

τ−1
0B/S → τ̃−1

0B/S = τ−1
0B/S + τ−1

tB/S , will be denoted by G̃.

It is convenient to define auxiliary soft modes, both for
the surface (C̃ and D̃), and bulk (C̃ and D̃), which incor-
porate the change of the single-particle propagators. As
an example, the auxiliary surface diffuson is defined by
the Bethe-Salpeter equation,

D̃mnm′n′(q) = u0δmnδm′n′ +
∑

l,l′=↑,↓
Ũmlm′l′(q)D̃lnl′n′(q),

(B1)

where Ũmlm′l′(q) = u0

∫
(d2k)G̃Rml(k)G̃Al′m′(k − q). The

other auxiliary soft modes are obtained in analogy. The
explicit form of these modes is easily deduced from the
formulas already provided for the separate bulk and
surface soft modes. The most important change is
the emergence of an additional mass term of the form
1/τtB/S(1 + τ0/τtB/S) ≈ 1/τtB/S . This mass competes
with the phase decoherence rates 1/τϕB/S and, in the
case of the almost gapless modes, with the masses ∆g1

and ∆g2.

The auxiliary soft modes allow formulating the gen-
eralized Bethe-Salpeter equations (BSEs) for the soft
modes of the coupled system in a compact form. One
may distinguish modes for which the initial and the final
states all live on the surface or all in the bulk from those
modes for which surface states eventually transform into
bulk states, or vice versa. Only the first kind of modes is
relevant for the weak-localization corrections, while the
second kind of modes becomes important for the CFs.
Here, we will discuss the surface-to-surface modes only,
the other modes are obtained in analogy. The BSE for
the surface Cooperon mode is shown diagrammatically in
Fig 6 as an example. Written in the eigenbasis of τz⊗σz

and σz for bulk and surface, respectively, the BSEs read

CS = C̃S + γC̃SJSBC C̃BJBSC CS , (B2)

DS = D̃S + γD̃SJSBD D̃BJBSD DS , (B3)

where γ = [(8πνBτt2)(4πνSτt1)(uS0 u
B
0 )2]−1. For the sake

of clarity, we introduced explicit labels S and B for sur-
face and bulk quantities and C and D for Cooperon
and diffuson related quantities, respectively. The junc-
tion matrices J connecting bulk and surface modes
read JSBC/D = ŨSC/DT

SB
C/DŨ

B
C/S , JBSC/S = ŨBC/ST

BS
C/SU

S
C/S .

The newly defined matrices T
SB/BS
C/D reflect the or-

bital and spin structure of the correlated tunneling
events, (TSBC )aba′b′ =

∑
τ,k〈a|σ̃k ⊗ πτ |b〉〈a′|σ̃k ⊗ πτ |b′〉 and

(TBSC )aba′b′ =
∑
τ,k〈a|(σ̃k)†⊗πTτ |b〉〈a′|(σ̃k)†⊗πTτ |b′〉 for the

Cooperon and (TSBD )aba′b′ =
∑
τ,k〈a|σ̃k ⊗ πτ |b〉〈b′|(σ̃k)† ⊗

πTτ |a′〉 and (TBSD )aba′b′ =
∑
τ,k〈a|(σ̃k)† ⊗ πTτ |b〉〈b′|σ̃k ⊗

πτ |a′〉 for the diffuson. The form of the presented equa-
tions implies that two consecutive tunneling rungs are
excluded in the ladders. This approximation is justified
in the limit of small tunneling rates which we assume.

When writing Eqs. (B2) and (B3), the relation between
the correlated tunneling matrix elements (cf. Eq. (41)
with the corresponding correlator for tτl ) and the tunnel-

ing rates τ−1
tB/S of Eq. (44) has been used. Further, we

made use of the fact that the bulk soft modes are effec-
tively two-dimensional, so that all diffusion modes and
the matrices Ũ depend on a common two-dimensional
momentum.

The junction matrices J connect soft bulk and sur-
face modes. These modes are listed in Tables I and II.
They are characterized by their spin structure and, in
case of the bulk modes, also by their orbital structure.
The matrices T determine allowed couplings between soft
modes. For the sake of illustration, we discuss the junc-
tions for the Cooperons in more detail. As one can see
from the relations TSBC ∝ |χSs 〉〈χBs | ⊗ (〈TT |+ 〈BB|) and

TBSC ∝ |χBs 〉〈χSs | ⊗ (|TT 〉 + |BB〉), where |χS/Bs 〉 denote
spin singlet modes on surface and bulk, respectively, only
spin singlet modes couple to each other. Both bulk and
surface host the fundamental singlet modes. In addition,
in the limit εF,B −M � M , a slightly gapped singlet
mode is effective in the bulk. This mode, however, does
not couple to the surface singlet mode due to the struc-
ture of its orbital part |Λ2〉 ∝ |TB〉 + |BT 〉. We may
therefore conclude that in both limiting cases considered
in this paper, (εF,B−M)/M � 1 and (εF,B−M)/M � 1,
only the fundamental singlet modes in bulk and surface
are coupled to each other.

It will be useful to derive the modified bulk and surface
fundamental modes explicitly, using again the Cooperon
modes as an example. To this end we use the auxiliary
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fundamental bulk and surface modes in the form

C̃Sq =
uS0
τ0S

|C0〉〈C0|
DSq2 + 1

τtS
+ 1

τϕS

, (B4)

C̃Bq =
uB0
τ0B

|C0〉〈C0|
DBq2 + 1

τtB
+ 1

τϕB

, (B5)

where |C0〉 = |χSs 〉 and |C0〉 = |χBs 〉 ⊗ |Λ0〉. Solving the
Bethe-Salpeter equations, one obtains

CS0 (q) ≡ 〈C0|CSq |C0〉 =

uS0
τ0S

DBq
2 + 1

τtB
+ 1

τϕB

(DSq2 + 1
τtS

+ 1
τϕS

)(DBq2 + 1
τtB

+ 1
τϕB

)− 1
τtSτtB

,

(B6)

CB0 (q) ≡ 〈C0|CBq |C0〉 =

uB0
τ0B

DSq
2 + 1

τtS
+ 1

τϕS

(DBq2 + 1
τtB

+ 1
τϕB

)(DSq2 + 1
τtS

+ 1
τϕS

)− 1
τtSτtB

,

(B7)

where DB = v2
F τB/3 is the bulk diffusion coefficient with

vF = v
√

1−M2/ε2
F,B , and the surface diffusion coeffi-

cient DS was introduced below Eq. (24). When writ-
ing Eqs. (B4), (B5), (B6) and (B7), we kept the lead-
ing order in the small parameter(s) τ0S/τtS and τ0B/τtB
only. We added phenomenological phase decoherence
rates 1/τϕS/B for the surface and bulk Cooperons. These
expressions can be rewritten in the form given in Eq. (49)
of the main text. The expressions for the coupled diffu-
sons DS

0 and DB
0 are found by analogous considerations

and take the same form as those stated for CS0 and CS0
above.

Appendix C: Conductance fluctuations

In this section, we present details on the calculation of
the conductance fluctuations.32,33,38–40 The calculation
of CFs in disordered systems has a long history and is well
documented.34,38,40 This is why we mainly stress those
aspects that are characteristic for the problem at hand.
CFs on the surface of a 3d topological insulator in the
absence of bulk-surface coupling have been studied in
Ref. 37, and our results for this specific case agree with
those reported there.

The conductance fluctuations can be obtained from the
fluctuations of the conductivity with the help of the re-
lation G = σLd−2, where L is the linear dimension of
the sample. We will therefore be concerned with the cal-
culation of the second moment of the conductivity, av-
eraged over impurity configurations. The fluctuations of
the conductivity may be decomposed into two contribu-
tions - fluctuations of the diffusion coefficient (DCF) and
fluctuations of the density of states (DOS).34,40 On a di-
agrammatic level, both contributions involve the pairing
of four trajectories, instead of two as was the case for the

WL corrections. To leading order in the small parameter
(kF l)

−1 � 1, only diagrams involving products of two
Cooperons or two diffusons contribute, see Fig. 4. The
main building blocks for the calculation, the disorder-
averaged Green’s functions for the bulk and the surface
and the soft Cooperon and diffuson modes for the sur-
face, the bulk, and the coupled system have already been
discussed in Sec. III.

For the DOS contribution the diagrams depicted in
Fig. 7 need to be supplemented with their complex-
conjugate partner diagrams, in which retarded and ad-
vanced Green’s functions are interchanged. The dia-
grams of Fig. 7 give a real contribution, so we can ac-
count for the complex-conjugate partners by multiplying
the result by a factor 2. Further, both DOS and DCF-
type contributions can also be realized with two diffu-
sons. Even though the Cooperon and diffuson matrices
differ, in the end both give the same results for the con-
ductance fluctuations. In this appendix, we will discuss
the calculation of the conductance fluctuations based on
the diagrams depicted in Figs. 7 and 8. According to
the arguments given above, we can obtain the final re-
sult by multiplying the obtained results by a factor of 4
for the DOS-type diagrams and by a factor of 2 for the
DCF-type diagrams.

In the following, we first discuss CFs in bulk and sur-
face separately, and then generalize to the tunneling-
coupled system. In all cases we investigate the x-
component of the conductivity (xx-component of the
conductivity fluctuations).

1. Bulk

In this section, DOS and DCF-type fluctuations will
be discussed separately for the bulk of the TI. The ‘bulk’
label B will be suppressed in this section since we are
dealing with bulk quantities exclusively.

a. DOS-type contributions

As a model example, we discuss the diagram labeled
as DOS 1 in Fig. 7, when the soft modes are Cooperons.

The correction to the conductivity fluctuation origi-
nating from this diagram reads as

δσ2
DOS 1, C =

(
e2~
2πL

)2 ∫
k,k′

[ṽxkṽ
x
k′ ]

2 [
GRkG

A
k

]2 [
GRk′G

A
k′
]2

× 1

W 2

∫
q

2∑
α,α′β,β′=1

Cβ
′β

αα′(k,k
′,q)Cββ

′

α′α(k′,k,q), (C1)

where it was used that the (renormalized) current vertices
ṽ as well as the Green’s functions are diagonal in the band
indices α, β, etc. Important momenta k and k′ under the
integral are close to the Fermi surface. This is why the
angular integral in the solid angles nk and nk′ may be
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DOS 1

DOS 2 DOS 3

DOS 4 DOS 5

DOS 6 DOS 7

DOS 8 DOS 9

FIG. 7: DOS-type diagrams for the calculation of the CFs as
discussed in Appendix C.

separated from the integration over the moduli of k and
k′. For the purpose of the discussion we define

I(q) =
∑

α,α′β,β′

∫
dnkdnk′

(4π)2
ê2
kê

2
k′C

β′β
αα′(kF ,k

′
F ,q)

× Cββ
′

α′α(k′F ,kF ,q). (C2)

At small momenta, the integral I(q) is dominated by the
soft Cooperon modes discussed in Sec. III. In the limits
of large and small Fermi energies one obtains

I(q) =

{
1
36

[
C2

0 (q) + C2
s (q)

]
, εF −M �M,

1
9

[
C2

0 (q) +
∑
m C

2
t,m(q)

]
, εF −M �M.

(C3)

Here, we employed the fundamental Cooperon mode
C0(q) = 〈C0|Cq|C0〉 as well as the soft modes in limits of
large and small Fermi energies, Cs(q) = 〈Cs|Cq|Cs〉 and
Ct,m(q) = 〈Ct,m|Cq|Ct,m〉 for m ∈ {1, 2, 3}, respectively.
With the help of this result, one finds

δσ2
DOS 1, C =

{
lDOS
1

sDOS
1

}(
e2

hL

)2(
τ

τ0

)2 IS
W 2

, (C4)

where lDOS
1 = sDOS

1 = 4. IS stands for the momentum

DCF 1

DCF 2 DCF 3

DCF 4 DCF 5

DCF 6 DCF 7

DCF 8 DCF 9

FIG. 8: DCF-type diagrams for the calculation of the CFs as
discussed in Appendix C.

integral over the soft diffusion modes,

IS =

∫
q


1

(q2+l−2
ϕ )

2 + 1

(q2+l−2
g2 +l−2

ϕ )
2 , εF −M �M,

1

(q2+l−2
ϕ )

2 + 3

(q2+l−2
g1 +l−2

ϕ )
2 , εF −M �M,

(C5)

where l−2
ϕ = 1/Dτϕ and l−2

gi = ∆gi/D.

The contributions from diagrams DOS 2-DOS 9 can
also be written in the form of Eq. C4 with varying coef-
ficients lDOS

i and sDOS
i . They are listed in table V. These

diagrams contain additional disorder lines as compared
to DOS 1. For the calculation, one should remember
that the matrix elements of the disorder potential are
non-trivial the eigenbasis.

From table V, we read off
∑9
i=1 l

DOS
i = 4/9 and∑9

i=1 s
DOS
i = 1. Further, taking into account τ ≈ 3τ0/2

for εF −M/�M and τ ≈ τ0 for εF −M �M , we find

δσ2
DOS,C =

9∑
i=1

σ2
DOS i,C =

(
e2

hL

)2 IS
W 2

. (C6)
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bare one imp.ln. two imp.lns. total

i=1 i=2-5 i=6-9

Bulk

εF −M �M

lDOS
i 4 − 2

3
− 2

3
− 2− 2 1

3
+ 1

3
+ 1 + 1

9
4
9

lDCF
i 4 − 2

3
− 2

3
− 2

3
− 2

3
1
9

+ 1
9

+ 1
9

+ 1
9

16
9

εF −M �M

sDOS
i 4 0 + 0− 2− 2 0 + 0 + 1 + 0 1

sDCF
i 4 0 + 0 + 0 + 0 0 + 0 + 0 + 0 4

Surface

cDOS
i 4 −1− 1− 2− 2 1

2
+ 1

2
+ 1 + 1

4
1
4

cDCF
i 4 −1− 1− 1− 1 1

4
+ 1

4
+ 1

4
+ 1

4
1

Coupling

εF −M �M

l̃DOS
i 8 − 5

3
− 5

3
− 4− 4 5

6
+ 5

6
+ 2 + 1

3
2
3

l̃DCF
i 8 − 5

3
− 5

3
− 5

3
− 5

3
1
3

+ 1
3

+ 1
3

+ 1
3

8
3

εF −M �M

s̃DOS
i 8 −1− 1− 4− 4 1

2
+ 1

2
+ 2 + 0 1

s̃DCF
i 8 −1− 1− 1− 1 0 + 0 + 0 + 0 4

TABLE V: Numerical factors of the nine diagrams contribut-
ing to fluctuations of the density of states, δν, and the dif-
fusion constant, δD. ‘Bare’ here refers to diagrams without
single impurity lines, ‘one imp.ln.’ and ‘two imp.lns.’ indi-
cates the corresponding number of the latter. The first two
(third and fourth) lines give the bulk contribution in the limit
of large (small) Fermi energies. The next two lines summa-
rize surface contributions, the contributions listed in the last
four lines arise in the presence of a finite bulk surface cou-
pling only. The coefficients listed here should be introduced
into Eqs. (C4), (C8), (C12), or (C21) in order to find the
contributions of the respective diagrams.

b. DCF-type contribution

Here, we discuss the diagram labeled DCF 1 in Fig. 8
with soft Cooperon modes as an example,

δσ2
DCF1,C =

(
e2~
2πL

)2 2∑
α,α′,β,β′=1

∫
k,k′

ṽxβ′(k)ṽxα(−k)

× ṽxα′(k′)ṽxβ(−k′)
[
GRkG

A
k

]2 [
GRk′G

A
k′
]2

× 1

W 2

∫
q

Cβ
′β

αα′(k,k
′,q)Cα

′α
β,β′(k

′,k,q). (C7)

Proceeding as for the DOS contribution, one finds

δσ2
DCF 1, C =

{
lDCF
1

sDCF
1

}(
e2

hL

)2(
τ

τ0

)2 IS
W 2

, (C8)

with lDCF
1 = sDCF

1 = 4. The integral IS was defined in
Eq. (C5). The overall structure of this result coincides
with that of the DOS diagrams. The contributions from
diagrams DCF 2–DCF 9 can also be written in the form
of Eq. (C8) with varying coefficients lDCF

i and sDCF
i . They

are listed in table V. Adding the contributions of the nine
diagrams, we obtain

δσ2
DCF, C =

9∑
i=1

σ2
DCF i, C = 4

(
e2

hL

)2 IS
W 2

. (C9)

c. Result–CFs bulk

As mentioned earlier, the total result including all rel-
evant diagrams with Cooperons and the analogous dia-
grams for diffusons is obtained as a weighted sum,

δσ2 = 4× δσ2
DOS, C + 2× δσ2

DCF, C = 12

(
e2

hL

)2 IS
W 2

.

Using G = σW , we can formulate the final result for the
conductance fluctuations of the bulk,

δG2 =12

(
e2

hL

)2

× (C10)

×
∫
q


1

(q2+l−2
ϕ )

2 + 1

(q2+l−2
g2 +l−2

ϕ )
2 , εF −M �M,

1

(q2+l−2
ϕ )

2 + 3

(q2+l−2
g1 +l−2

ϕ )
2 , εF −M �M.

For the sake of simplicity, this formula assumes the same
phase coherence time for bulk Cooperons and bulk diffu-
sons.

2. Surface

In this section, DOS and DCF-type fluctuations will
be discussed separately for the surface of the TI. The
‘surface’ label S will be suppressed in this section since
we are dealing with surface quantities exclusively.

The calculation for the surface proceeds in analogy to
the bulk. For example, the first DOS diagram reads as

δσ2
DOS 1, C =

(
e2~
2πL

)2 ∫
k,k′

[ṽxkṽ
x
k′ ]

2 [
GRkG

A
k

]2 [
GRk′G

A
k′
]2

×
∫
q

C(k,k′,q) C(k′,k,q), (C11)

which can be simplified by integration in fast momenta k
and k′. The results for the DOS and DCF-type diagrams
can be summarized in the form{

δσ2
DOS i,C

δσ2
DCF i,C

}
=

{
cDOS
i

cDCF
i

}(
e2

hL

)2(
τ

τ0

)2

×
∫
q

1

(q2 + l−2
ϕ )2

. (C12)

The coefficients ci are listed in table V. Using∑9
i=1 c

DOS
i = 1/4 and

∑9
i=1 c

DCF
i = 1 as well as the rela-

tion τ = 2τ0 results in{
δσ2

DOS,C

δσ2
DCF,C

}
=

{
1

4

}(
e2

hL

)2 ∫
q

1

(q2 + l−2
ϕ )2

. (C13)
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We are now ready to compute the average second moment
of the conductivity on the surface as δσ2 = 4×δσ2

DOS, C +

2× δσ2
DCF, C, which immediately leads us to

δG2 = 12

(
e2

hL

)2 ∫
q

1

(q2 + l−2
ϕ )2

. (C14)

This result includes contributions from Cooperon modes
as well as from diffuson modes.

3. Coupled system

For the coupled system, we are interested in the fluc-
tuations of the total conductance of the system,

δG2 = (δGB + δGS)2. (C15)

Averaging with respect to disorder and random tunneling
is implied. Cross correlations between bulk and surface
appear because the tunneling coupling activates diffusion
processes connecting bulk and surface. As a consequence,
in the diagrammatic language we may now attribute ei-
ther of the two electronic loops to the bulk or to the
surface.

The results for δG2
B and δG2

S on the right hand side
of relation (C15) may be inferred from those in the ab-
sence of tunneling discussed above, with two differences.
(i) The soft modes Ct,m and Cs in the bulk acquire ad-
ditional damping due to the tunneling process, compare
Eqs. (45)–(48). (ii) The fundamental diffusion modes CS0
and CB0 now take the form introduced in Eq. (49).

For the surface term, only (ii) is important, and one
finds

δG2
S = 6

(
e2

hL

)2 ∑
α=C,D

∫
q

[
ASα

q2 + q2
aα

+
BS,α

q2 + q2
bα

]2

,

(C16)

where AS and BS , qa and qb have been defined in and
below Eq. (50), and, for the sake of clarity, we distinguish
the expressions for Cooperons and diffusons by the label
α.

For the bulk, we need to take into account the addi-
tional damping of non-fundamental soft modes, point (i),
to obtain

δG2
B =6

(
e2

hL

)2 ∑
α=C,D

∫
q

([
ABα

q2 + q2
aα

+
BB,α

q2 + q2
bα

]2

+


1

(q2+l−2
g2 +l−2

Bα)2

3
(q2+l−2

g1 +l−2
Bα)2


 , (C17)

where the upper (lower) line corresponds to large (small)
Fermi energies. We wrote l−2

gi = ∆gi/DB and lB has been

defined below Eq. (50).
The term 2δGBδGS on the right hand side of Eq. (C15)

requires an additional calculation. First, let us note that

= CS
CBS C̃B

FIG. 9: Diagrammatic representation for the Cooperon mode
CBS connecting surface and bulk.

we need to know the off-diagonal Cooperons CSBq =

|C0〉CSB0 (q)〈C0| and CBSq = |C0〉CBS0 (q)〈C0| connect-
ing bulk and surface states. A diagrammatic represen-
tation of the equation for CBSq is displayed in Fig. 9 as
an example. It may be solved by the method described
in Appendix B. In the diagrams always combination
CSB0 (q)CBS0 (q) appears. Following similar arguments as
those presented in Appendix B for the coupled system
one may now find CSB0 (q) and CBS0 (q). We quote here
the result for the product,

CSB0 (q)CBS0 (q) =
1

τtBτtS

uB0 u
S
0

τ0Bτ0S

1

(DBDS)2
×

×
[

C

q2 + q2
a

− C

q2 + q2
b

]2

, (C18)

which appears in all diagrams in this combination. We
defined C = 1/(q2

b − q2
a). An expression of the same form

is found for the diffusons.
We use the diagram DOS 1 as an example again. Here,

we are interested in the terms where the left velocity
vertices are on the surface and the right velocity in the
bulk, or vice versa. Adding the two contributions, we get

(2δGBδGS)DOS 1,C = 2

(
e2~
2πL

)2∑
αβ′

∫
kk′

[ṽxB,kṽ
x
S,k′ ]

2

× [GRB,kG
A
B,k]2[GRS,k′G

A
S,k′ ]

2

∫
q

(CBS0 )β
′

α (k,k′,q)

× (CSB0 )β
′

α (k′,k,q), (C19)

with

(CBS0 )β
′

α (k,k′,q) = 〈β′,k| ⊗ 〈α,−k|CBSq | − k′〉 ⊗ |k′〉,
(C20)

compare to Eqs. (33) and (A22). (CSB0 )β
′

α (k′,k,q) is
defined in analogy.

After manipulations closely resembling to those pre-
sented in Secs. C 1 and C 2, the result can be written
as

(2δGBδGS)DOS 1,C =

{
l̃DOS
1

s̃DOS
1

}(
e2

hL

)2(
τB
τ0B

)(
τS
τ0S

)
×

×
∫
q

1

ltSltB

[
C

q2 + q2
a

− C

q2 + q2
b

]2

, (C21)

with l̃DOS
1 = 8 and s̃DOS

1 = 4. In a similar way, one can
proceed for the remaining 8 diagrams of the DOS type
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and for the DCF-type diagrams. The corresponding co-
efficients are listed in table V. Accounting for sum of
coefficients quoted in the table and the corresponding
ratios of scattering times in the limits of large and small
Fermi energies, we obtain

(2δGBδGS)DOS,C =

9∑
i=1

(2δGBδGS)DOS,Ci

= 2

(
e2

hL

)2 ∫
q

1

ltSltB

[
C

q2 + q2
a

− C

q2 + q2
b

]2

, (C22)

in both limits of large and small Fermi energies. For the
DCF terms, we find in a similar way

2(δGBδGS)DCF,C =

9∑
i=1

(2δGBδGS)DCF,Ci

= 8

(
e2

hL

)2
1

ltSltB

∫
q

[
C

q2 + q2
a

− C

q2 + q2
b

]2

. (C23)

We are now in a position to add all relevant contributions,

(2δGBδGS) (C24)

=
∑

α=C,D

(2× (2δGBδGS)DOS,α + (2δGBδGS)DCF,α) ,

and obtain

2δGBδGS (C25)

=12
∑

α=C,D

(
e2

hL

)2
1

ltSltB

∫
q

[
Cα

q2 + q2
aα

− Cα
q2 + q2

bα

]2

.

Finally, we need to combine all terms on the right hand
side of Eq. (C15). In order to simplify the result, the
following relations are useful,

A2
Bα + 2C2

α/(ltSltB)2 +A2
Sα = 1, (C26)

B2
Bα + 2C2

α/(ltSltB)2 +B2
Sα = 1, (C27)

ASαBSα = ABαBBα = C2
α/(ltSltB)2. (C28)

The final result for the conductance fluctuations of the
system with bulk-surface coupling takes a simple form,

δG2 =6

(
e2

hL

)2 ∑
α=C,D

∫
q

(
1

(q2 + q2
aα)2

+
1

(q2 + q2
bα)2

+


1

(q2+l−2
g2 +l−2

Bα)2

3
(q2+l−2

g1 +l−2
Bα)2


 , (C29)

where the upper (lower) line is applicable for large (small)
Fermi energies, lgi has been defined below Eq. (C5) and
lB below Eq. (50)

It is instructive to recast the result in the form of
Eq. (77) in the main text. In Eq. (77), L∆α

is length scale
corresponding to the gap of the soft mode α (obtained
explicitly by comparison with (C29)). Having in mind a
finite system size, the momentum integral in Eq. (77) has
been converted into a sum over discrete momenta. The
specific form of the sum is determined by the boundary
conditions, as will be discussed next.

4. Final result

So far, the quantization of momenta q due to finite sys-
tem size was not accounted for explicitly. One can model
ideal leads coupled at x = 0 and x = L by absorbing walls
(Dirichlet boundary conditions), while the boundary of
the sample at y = 0 and y = L may be modeled by re-
flecting walls (van Neumann boundary condition). This
reasoning corresponds to the replacement of the integral
in q by a sum over mode numbers nx, ny with nx = 0
excluded.34

Introducing the dimensionless function F as

F(x) =
6

π4

∞∑
nx=1

∞∑
ny=0

1

(n2
x + n2

y + x2/π2)2
, (C30)

we may finally cast the result in the form of Eq. (80) in
the main text, where, as in Eq. (77), α runs over all soft
diffusion modes.
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